| 研究生: |
楊聰偉 Yang, Cong-Wei |
|---|---|
| 論文名稱: |
光點陣列斜掃描與二維及三維無光罩微影技術 UV light point array oblique scanning for 2D and 3D maskless lithography |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 數位光學 、無光罩微影 、斜掃描 、微透鏡陣列 、灰階曝光 、3D微結構 |
| 外文關鍵詞: | UV spot array, Maskless lithography, Oblique scanning, Grey-Scaled UV Exposure, 3D Micro-Structures |
| 相關次數: | 點閱:146 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究開發了以紫外光點陣列為基礎之無光罩微影技術,系統架構使用波長405 nm的紫外光,透過數位微鏡面裝置 (Digital Micromirror Device, DMD) 控制光點開關,光線通過第一鏡組成像於微透鏡陣列,並重新聚光之後通過空間濾波器,去除雜散光,接著再由第二成像鏡組將光點陣列傳遞至試片表面進行曝光。本文使用了128×96個光點陣列,實際大小為14.08×10.56 mm2,並由XYZ平台控制試片的移動;本文使用斜掃描法提高光點陣列掃描精度,利用輸入圖檔至控制板控制DMD的圖形更新,發展軟體以檢查圖形的正確性與曝光之模擬。實驗方面,選用S1813光阻,厚度為1 um,光點大小10 um,並測試簡易電路板圖形及最小圖形解析度,最終於6吋玻璃基板上曝光大面積100×50 mm2的電路圖形。實驗結果顯示所建置之無光罩曝光系統可達到最小線寬7 um,線增量2.28 um的任意不規則圖形。此外,本文也嘗試利用此一光點陣列的無光罩式曝光機進行灰階曝光與大面積3D微結構之製作。
This study develops a UV spot array oblique scanning system to perform maskless lithography patterning. A UV light source of 405 nm I wavelength is used along with a digital micromirror device (DMD) to modulate the UV light and to form array of UV spots. The UV light reflected by the DMD is projected by a projection lens into a microlens array and then focused into an array of pin-holes to filter out stray light. Finally, the spots are transmitted onto the substrate through another projection lens to expose a photoresist layer coated on a substrate. The sample is carried by an XYZ stages to perform oblique scanning lithography. The spot array size is 128x96 with an actual size of 14.08x10.056 mm2. An algorithm is developed to generate a series of images to control DMD and the exposure pattern on the substrate. A positive-tone photoresist (S1813) with a thickness of 1 um is used. The spot size of UV light is around 10 um. Finally, a PCB pattern with size of 100 by 50 mm2 is exposed and etched on a 6-inch glass substrate. The minimum linewidth is 7 um with a minimum increment of linewidth of 2.28 um. Also, this study develops an algorithm to simulate the exposure dosage by convolute the spot model with the scanning line with some modulation on the weightings of DMD. It demonstrates the possibility of using this maskless lithography system for grey-scaled UV patterning and 3D micro-fabrication.
[1] B. Wagner, W. Henke, W. Hoppe, and W. Pilz, "Microfabrication of complex surface topographies using grey-tone lithography," Sensors and Actuators A, vol. 46-47, pp. 89-94, 1995.
[2] R. Seltmann, W. Doleschal, A. Ghner, H. Kuck, R. Melcher, and J. Paufler, "New system for fast submicron optical direct writing," Microelectronic engineering, vol. 30, pp. 123 - 127, 1996.
[3] K. Takahashi, "A UV-Exposure System Using DMD," Electronics and Communications in Japan (Part II: Electronics), vol. 83, pp. 56-58, 1999.
[4] D. Dudley, and J. Slaughter, "Emerging digital micromirror device (DMD) applications," in Proc. SPIE 4985, San Jose, CA, United States, 2003.
[5] J. W. Choi, S. H. Kee, and K. H. Choi, "Design of Microstereolithography System Based on Dynamic Image Projection for Fabrication of Three-Dimensional Microstructures," Journal of Mechanical Science and Technology, vol. 20, no. 12, pp. 2094 - 2104, 2006 2006.
[6] K. Zhong, Y. Gao, F. Li, N. Lou, and W. Zhang, "Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD," Optics & Laser Technology, vol. 56, pp. 367 - 371, 2014.
[7] K. F. Chan, R. Yang, A. Ishikawa, and W. Mei, "High-resolution maskless lithograph," Journal of Micro/Nanolighography, MEMS, and MOEMS, vol. 2, no. 4, pp. 331 - 339, 2003.
[8] H. Ryoo, and J. W. Hahn, "Analysis of line pattern width and exposure efficiency in maskless lithography using a digital micromirror device," Microelectronic engineering, vol. 88, pp. 3145 - 3149, 2011.
[9] H. Ryoo, Y. T. Song, and J. W. Hahn, "Experimental analys of pattern line width in digital maskless lithography," Journal of Micro/Nanolighography, MEMS, and MOEMS, vol. 11, pp. 023004-1 - 023004-6, 2012.
[10] K. R. Kim, S. H. Cho, N. H. Kang, M. W. Cho, B. S. Shin, and B. Choi, "SLM-based maskless lithography for TFT-LCD," Applied Surface Science, vol. 255, pp. 7835 - 7840, 2009.
[11] 賴世勳, 「紫外光之點光點陣列斜掃描法實現無光罩微影技術」, 國立成功大學機械工程學系碩士論文pp. 8-12, 2016.
[12] Y. C. Lee, and C. C. Chiu, "Excimer laser micromachining of aspheric microlens arrays based on optimal contour mask design and laser dragging method," Optics Express, vol. 20, no. 6, pp. 5922 - 5935, 2012.
[13] K. Zimmer, and F. Bigl, "Excimer laser machining for the fabrication of analogous microstructures," Applied Surface Science, vol. 96-98, pp. 425 - 429, 1996.
[14] K. Naessens, R. Beats, P. V. Daele,and H.Theinpont, "Direct writing of microlens in polaycarbonate with excimer laser ablation," Applied Optics, vol. 42, pp. 6349 - 6359, 2003.
[15] K. Naessens, R. Beats, and P. V. Daele, "Flexible fabrication of microlenses in polymer layers with excimer laser ablation," Appleid Surface Science, vol. 208, pp. 159 - 164, 2003.
[16] T. Masuzaea, and J. Eindhoven, "A new method for three dimensional excimer laser micromachining, Hole Area Modulation (HAM)," CIRP Annals-Manufacturing Technology, vol. 49, pp. 139 - 142, 2000.
[17] H. Choi, T. Masuzawa, and D. H. Kim, "Excimer laser micromachining for 3D structure " Journal of Materials Processing Technology, vol. 149, pp. 561 - 566, 2004.