| 研究生: |
張勝一 Chang, Sheng-I |
|---|---|
| 論文名稱: |
近端脛骨骨板之斷裂分析 Fracture Analysis of Proximal Tibia Plate |
| 指導教授: |
鍾高基
Chung, Kao-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 有限元素模擬 、近端脛骨骨折 、近端脛骨骨板 |
| 外文關鍵詞: | LISS, proximal tibia plate |
| 相關次數: | 點閱:54 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
脛骨骨折為人體中經常發生骨折之部位,脛骨前側有三分之一的面積只有皮膚包覆,在血液以及養份的供應上皆較差,骨折之復原較不容易。對此,LISS近端脛骨骨板提供了脛骨近端骨折微創的手術方式,且其將骨螺絲鎖固於骨板而固定骨螺絲角度之設計,適合於骨質較差之病人,臨床文獻上顯示LISS在近端脛骨骨折治療上有不錯的效果。但是實際臨床用此骨板治療脛骨骨幹近端骨折仍然有斷裂的案例發生,而文獻中對此類骨板之力學表現仍有不同之研究結果,因此對於此骨板用在治療近端脛骨骨折的生物力學情形,仍然值得探討。
本研究以有限元素模擬分析之方法,探討LISS近端脛骨骨板固定於不同部位及不同型態之近端脛骨骨折的生物力學表現,及不同骨螺絲位置對於受力的影響。並以各種材料測試試驗,對臨床上使用後實際斷裂之骨板進行分析,再與有限元素模擬之結果進行對照。
有限元素模擬之結果顯示,脛骨骨折部位越靠近於脛骨遠端時,骨板之受力會越來越大;骨板用於固定斜向脛骨骨折之受力會比用於固定橫向骨折為高;改變骨螺絲之位置以增長骨板的工作長度,可降低骨板之受力。此外在鎖上骨螺絲的孔洞周圍易產生應力集中的現象,此現象容易產生疲勞裂縫,對照材料測試結果以及臨床之情形,此應力集中之作用即造成骨板疲勞破壞而產生之原因。因此在臨床使用上,若病人骨折復原情況緩慢,則必須注意骨板發生疲勞斷裂之情況。
對此骨板之改進,本研究建議可由兩個方向來改善,在骨板之近端外形,設計符合國人骨骼之外型,可減少骨板的彎曲程度,降低骨板近端之應力集中,同時改進骨板製程,增加骨板之疲勞強度,減少疲勞斷裂的機率。
Abstract
Tibial fractures are the third most common fracture type following femur and radius/ulna fractures. The tibia has one third area, which is only covered by skin and lack of blood and nutrient supply with poor bone healing. The Less Invasive Stabilization System (LISS) for proximal tibial fractures provides a locking mechanism of the screw in the plate which offers angular stability and is suitable for patients with osteopenia or osteoporosis. LISS proximal tibia plate has been clinically efficacy on the fixation of proximal tibial fractures for bone healing. However, the biomechanics of the fixation of LISS on tibital fractures are still not clear. The purpose of this research was to apply finite element method to characterize the biomechanical performance of the proximal tibia plate to stabilize the proximal tibia fracture.
Finite element method was used to analyze the stresses distribution on the fixation of the plate to three different sites of, two common types of proximal tibial fractures and different screw positions. In addition, a fractured plate after clinical use was investigated by using material testing to determine fracture characteristics and to validate through the outcomes of finite element analysis.
The analytical results illustrate that (1) the higher stress are occurring in the plate, while the tibia fracture site is more closer to the distal region of tibia; (2) the fixation of oblique fracture has led to higher stress in the plate than the fixation of transverse fracture; (3) a change of screw position to increase the working length of plate is led to the reduction of stress in the plate. In all conditions, the stress concentration are occurred around the screw hole of the plate, which may lead to fatigue failure of the bone plate. This may also lead to the delay of fracture healing.
The results of this research have suggested the following two designs to the improved bone plate: (1) smooth the curvature in the proximal region of the plate to fit the bone contour of domestic people and to reduce the stress; (2) improve the manufacture process to enhance fatigue strength of the plate.
參考文獻
[1] E. N. Marieb, J. Mallatt, P. B. Wilhelm, “Human anatomy”, 4th edition, Benjamin Cummings, 2004
[2] Jeffrey A. Seaman, Amelia M. Simpson, “Tibial Fractures”, Clin Tech Small Anim Pract, 2004(19),151-167
[3] S. Vidyadhara, Sharath K. Rao, “Prospective study of the clinico radiological outcome of interlocked nailing in proximal third tibial shaft fractures”, Injury, 2006(37), 536-542
[4] 楊榮森等譯,「臨床骨折學」,合記圖書出版社, 1999
[5] 侯勝茂、林晉,「鎖定式骨髓內釘之基礎科學與臨床應用」,合記圖書出版社,2004
[6] Hans K. Uhthoff, Philippe Poitras, David S. Backman, “Internal plate fixation of fractures: short history and recent developments”, J Orthopaedic science, 2006(11), 118-126
[7] 楊榮森譯,「基本骨科學與創傷學」,合記圖書出版社,2001
[8] M. Schutz, Norbert P. Sudkamp, “Revolution in plate osteosynthesis: new internal fixator systems, J Orthopaedic science, 2003(8), 252-258
[9] Hans K. Uhthoff, Denes I. Bardos, Maria Liskova-Kiar, “The advantages of titanium alloy over stainless steel plates for the internal fixation of fractures”, Journal of bone and joint surgery, 1981,63-B, No.3, 427-434
[10] http://www.matweb.com
[11] Less Invasive Stabilization System (LISS) Proximal Tibia Technique Guide, Synthes
[12] Duda GN, Mandruzzato F, Heller M, Kassi JP, Khodadadyan C, Hass NP, “Mechanical conditions in the internal stabilization of proximal tibial defects” Clinical Biomechanics. 2002;17(1):64-72
[13] Karl Stoffel, Ulrich Dieter, Gwidon Stachowiak, Andre Gachter , Markus S. Kuster, “Biomechanical testing of the LCP – how can stability in locked internal fixators be controlled”, Injury, 2003(34) S-B11-S-B19
[14] William M. Ricci, Jonas R. Rudzki, Joseph Borrelli, Jr, “Treatment of complex proximal tibia fractures with the less invasive skeletal stabilization system ”, J Orthop Trauma, 2004 Sep;18(8):521-527
[15] C. Boldin, F. Fankhauser, H. P. Hofer, R. Szyszkowitz, “Three-year Result od Proximal Tibia Fractures Treated with the LISS”, Clinical Orthopedics and Related Research, 2006,445:222-229
[16] Claes LE, Heigele CA, “Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing”, J Biomech, 1999(32), 255-266
[17] 韓毅雄,「骨骼肌肉系統之生物力學」,華杏出版社,1983
[18] http://www.doh.gov.tw/statistic/data/性別統計指標/性別統計指標.htm
[19] ASTM F1295-05 Standard Specification for Wrought Titanium- 6Aluminum-7Niobium Alloy for Surgical Implant Applications
[20] 莊東漢,「材料分析與檢測實驗」,五南圖書出版公司,2006