簡易檢索 / 詳目顯示

研究生: 王俊文
Wang, Chung-Wen
論文名稱: 考慮刀具、工件及夾具動態特性之銑削模擬系統建立與驗證
Modeling of Milling System Including the Dynamics of the Tool, Workpiece and Fixture
指導教授: 王俊志
Wang, J-J Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 73
中文關鍵詞: 銑削動態特性結構動態特性有限元素傾斜銑削力模式
外文關鍵詞: cutter inclination, ball-end milling, finite-element, milling dynamics
相關次數: 點閱:80下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究可分成兩部分,第一部分是建立一刀軸具傾斜情形之銑削力預測模式,此模式主要是由基本切削函數、屑寬密度函數及刀具序列函數所組成。第二部份是建立一球銑刀數值積分銑削力模式,並將此模式與有限元素ANSYS結合運用在銑削製程模擬上,進而分析單自由度與雙自由度結構(刀具-工件-夾具)之銑削動態特性,研究項目包括工件-夾具結構之模態振型、剛性分析及銑削過程中工件振動位移情形。最後並將分析結果與實驗值作驗證,以確保模式與分析流程之正確性。因此藉由以上研究將提供一套完整之銑削製程分析,且透過銑削力與銑削過程中之結構振動情形預測,將可提供使用者事先掌握銑削特性。

    The thesis is divided into two parts. Part 1 is to establish a model of ball-end milling force with cutter inclination. This model consists of fundamental cutting function, chip width density function and tool sequence function. Part 2 is to establish a model of ball-end milling force with numerical integration method, and combine this model with finite-element analysis software Ansys to simulate milling process. This model is then used to simulate the milling dynamics of the one-degree freedom and two-degree freedom structures. Investigations include modal analysis, static analysis, and vibration of the workpiece-fixture structure. Finally, these models are verified through the comparison with experiments. Through this research, it provides a systematic method to predict milling force and the vibration of the workpiece-fixture system.

    中文摘要…………………………………………………Ⅰ 英文摘要…………………………………………………Ⅱ 誌謝………………………………………………………Ⅲ 總目錄……………………………………………………Ⅳ 圖目錄……………………………………………………Ⅶ 表目錄…………………………………………………..Ⅸ 符號說明…………………………………………………Ⅹ 第一章 緒論…………………………………………….1 1.1研究動機與目的………………………….…………1 1.2文獻回顧…………………………….………………3 1.2.1關於銑削力模式………………………….......3 1.2.2關於銑削動態特性分析.…………….………….4 1.3研究範疇及論文架構…………….…………………8 第二章 傾斜切削銑削力模式..……………………….9 2.0前言……………….…………………………………9 2.1球銑刀座標系統與刀具幾何定義.………….……10 2.1.1座標系統定義.………………………………...10 2.1.2座標關係定義..…………………………………10 2.2 銑削範圍定義…….………………………………12 2.3切屑厚度定義………………………………………14 2.4 座標轉換矩陣……………………………….……15 2.5 傾斜銑削力模式………………………….………17 第三章 傾斜銑削實驗與驗證…………………………27 3.0前言…………………………………………………27 3.1實驗設備……………………………………………27 3.2實驗規劃……………………………………………29 3.3實驗結果與驗證…………………………………..31 第四章 銑削系統動態特性分析………………………36 4.0前言…………………………………………………36 4.1有限元素分析………………………………………37 4.2靜力分析..…………………………………………39 4.3模態分析..…………………………………………39 4.4銑削動態分析………………………………………39 4.4.1數值積分銑削力模式..…………………………41 4.4.2座標系統定義.………………………………...41 4.4.3座標關係定義……………………………………41 4.4.4 銑削範圍定義………………………………….42 4.4.5切屑厚度定義……………………………………42 4.4.6 數值銑削力模式.………………………………43 4.4.7模式驗證.…………………………………….…45 4.4.8 動態位移量……………………….……………47 4.5暫態分析……………………………………………51 4.6單自由度結構動態系統分析…..…………………52 4.6.1分析驗證.……………………………………….54 4.7雙自由度結構動態系統分析…..…………………57 4.7.1分析驗證.……………………………………….57 第五章 結論與建議…………………………….…….60 5.1 結論…………………………….……………....60 5.2 建議……………………………………………….62 參考文獻……………………………………………….63 附錄 ANSYS分析程式碼……………………………...66 自述…………………………………………………...73 圖目錄 圖1.1 剪切與犁切效應…………………………………7 圖2.1 球銑刀之幾何關係…………………………….11 圖2.2 h與b之關係圖....…………………….….…11 圖2.3 徑向銑削範圍……….....………………....13 圖2.4 軸向銑削範圍…………………………….....13 圖2.5 切屑厚度示意圖………………………….……14 圖2.6 傾斜切削座標轉換示意圖…….………………15 圖2.7 旋轉座標示意圖……………….………………16 圖2.8 刀軸傾斜平行於進給方向……………….……17 圖2.9 刀軸傾斜垂直於進給方向…………………….17 圖2.10 軸向切深與屑寬密度函數之關係…….…….24 圖2.11 刀具序列函數…………………………………25 圖2.12 刀具位置與其角度定義………………………26 圖3.1 實驗用球銑刀刀具…………….………………28 圖3.2 實驗儀器配置圖……………………………….28 圖3.3 刀軸傾斜平行於進給方向之銑削方式……….30 圖3.4 刀軸傾斜垂直於進給方向之銑削方式……….30 圖3.5 kh=100時之實驗值與預測值比較圖…………31 圖3.6 kh=200時之實驗值與預測值比較圖…………32 圖3.7 kh=300時之實驗值與預測值比較圖…………32 圖3.8 kv=100時之實驗值與預測值比較圖…………33 圖3.9 kv=200時之實驗值與預測值比較圖………..33 圖3.10 kv=300時之實驗值與預測值比較圖…….…34 圖3.11 模式與實驗值趨勢比較………………………35 圖4.1 有限元素分析流程..………………………...38 圖4.2 動態銑削模擬流程圖………………………….40 圖4.3 數值積分銑削力模式與解析模式銑削力驗證.46 圖4.4 動態位移圖……….......…………………..51 圖4.5 單自由度結構模型………………………….…52 圖4.6 動態系統分析流程……….……………………53 圖4.7 單自由度結構於動態銑削力下之Y方向位移情形…56 圖4.8 雙自由度結構系統示意圖..…………….……57 圖4.9 雙自由度結構模型……….……………………58 圖4.10 雙自由度結構於動態銑削力下之Y方向位移情形…59 表目錄 表4.1 數值銑削力模式與解析銑削力模式驗證條件…45 表4.2 單自由度結構模態振型………………………..54 表4.3 單自由度結構動態銑削模擬條件……………..55 表4.4 雙自由度結構模態振型…………………………57 表4.5 雙自由度結構動態銑削模擬條件………………58

    1. W. J. Eneres, R.E. DeVor, and S. G. Kapoor, 1995, “A Dual -Mechanism Approach to the Prediction of Machining Forces,” ASME Journal of Engineering for Industry, Vol. 117, pp. 526-541.
    2. I. Yellowley, 1985, “Observations on the Mean Values of Forces, Torque and Specific Power in the Peripheral Milling Process,” International Journal of Machine Tool Design and Research, Vol. 25(4), pp. 337-346.
    3. A. J. P. Sabberwal, 1961, “Chip Section and Cutting Force During the Milling Operation, ” Annals of the CIRP, Vol. 10, pp. 197-203.
    4. E. Budak, Y. Altintas, E. J. A. Armarego, 1996, ”Prediction of Milling Force Coefficients from Orthogonal Cutting Data,” Transactions of ASME, 118, pp. 216-224.
    5. Y. Altintas, P. Lee, 1998, “Mechanics and Dynamics of Ball End Milling,” Transactions of ASME, Journal of Manufacturing Science and Engineering, 120, pp. 684-692.
    6. J. J. Wang, S. Y. Liang, and W. J. Book, 1994, "Convolution Analysis of Milling Forces Pulsation," ASME Journal of Engineering for Industry, Vol. 116, pp.17-25.
    7. J.-J. Wang and C.M. Zheng, 2002, “An Analytical Force Model with Shearing and Ploughing Mechanisms for End Milling,” Int. J. Machine Tool and Manufacture, Vol. 42, pp.761-771.
    8. J.-J. Wang and C.M. Zheng, 2002, “Identification of Shearing and Ploughing Cutting Constants from Average Forces in Ball-End Milling,” Int. J. Machine Tool and Manufacture, Vol.42, pp.695-705.
    9. J.-J. Wang and C.M. Zheng, 2003, “On-line Identification of Shearing and Plowing Constants in End Milling,” ASME, J. of Manufacturing Science and Engineering, Vol. 125, pp. 58-65.
    10. W. S. Yun, J. H. Ko, D. W. Cho, and K. F. Ehmann, 2002, “Development of a Virtual Machining System, Part 2: Prediction and Analysis of a Machined Surface Error,” International Journal of Machine Tools and Manufacture, Vol. 42, pp. 1067-1615.
    11. S. Y. Liang, I. Lazoglu, 2000, “Modeling of Ball-End Milling Force With Cutter Axis Inclination,” Journal of Manufacturing Science and Engineering, Vol.122, pp. 3-11.
    12. S. A. Tobias, W. Fishwick, 1958, “Theory of Regenerative Machine Tool Chatter,” Engineering, London, Vol. 205.
    13. F. Koenigsberger, and J. Tlusty, 1967, Machine Tool Structure-Vol.Ⅰ: Stability Against Chatter, Pergamon Press.
    14. M. P. Williamson, 1985, "Finite-element analysis," Computer-Aided Engineering Journal , pp.66-69.
    15. Tom Carlstedt-Duke, 1985, "The CAE workstation-how much can it do?," Computer-Aided Engineering Journal, pp.45-49.
    16. C. Shin, K. F. Eman, S. M. Wu, 1989, "Experimental Complex Modal Analysis of Machine Tool Structures," ASME Journal of Engineering for Industry, Vol.111, pp.116-124.
    17. K. F. Eman, K. J. Kim, 1983, "Modal Analysis of Machine Tool Structures Based on Experimental Data," ASME Journal of Engineering for Industry, Vol.105, pp.282-287.
    18. N.H. Cook, 1959, “Self-excited Vibrations in Metal Cutting, ” Trans. ASME Journal of Engineering for Industry, Vol.81, pp.183.
    19. J.P. Gurney, 1962, “Analysis of Two Degree of Freedom Instability in Machine Tool,” J. Mech. Eng. Sci., Vol.4, No.1, pp.53.
    20. H. E. Merritt, 1965, “Theory of Self-Excited Machine Tools Chatter,” Journal of Engineering for Industry, Vol.87, pp.447-454.
    21. J. Tlusty, and F. Ismail, 1983, “Special Aspects of Chatter in Milling,” Journal of Vibration, Stress, and Reliability in Design, Vol.105, pp.24-32.
    22. J. Tlusty, 1986, “Dynamics of High Speed Milling,” Journal of Engineering for Industry, Vol.108, pp.59-67.
    23. R. Sridhar, R. E. Hohn, and G.W. Long, 1968, “A Stability Algorithm for the General Milling Process.” Trans. ASME Journal of Engineering for Industry, pp.330-334.
    24. W. A. Kline, R. E. Devor, and I. A. Shareef, 1982, “The Prediction of Surface Accuracy in End Milling.” Trans. ASME Journal of Engineering for Industry, Vol.104, pp.272-278.
    25. Y. Altintas, D. Monygomery, and E. Budak, 1992, “Dynamic Peripheral Milling of Flexible Structures.” Trans. ASME Journal of Engineering for Industry, 114(2).
    26. R. Sagherian, and M.A. Elbestawi, 1990, “A Simulation System for Improving Machining Accuracy in Milling.” Computer in Industry, Vol. 14, pp.293-305.
    27. E. Budak, 1994, “Mechanics and Dynamics of Milling Thin Walled Structures.” Master’s thesis, University of British Columbia.
    28. 張家豪, 以有限元素法探討薄葉片銑削加工之穩定性分析, 國立成功大學機械工程研究所, 八十八年碩士論文。

    下載圖示 校內:立即公開
    校外:2003-07-08公開
    QR CODE