| 研究生: |
吳佩霖 Wu, Pei-Lin |
|---|---|
| 論文名稱: |
水溶性聚合物對細胞吸收左旋維他命C
與膠原蛋白合成之影響 Effects of Hydrophilic Polymers on the Uptake and Collagen Synthesis of L-ascorbic Acid in Human Skin Fibroblasts |
| 指導教授: |
蔡瑞真
Tsai, Jui-Chen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床藥學研究所 Institute of Clinical Pharmacy |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 左旋維他命C 、纖維母細胞 、水溶性聚合物 |
| 外文關鍵詞: | L-ascorbic acid, fibroblasts, hydrophilic polymers |
| 相關次數: | 點閱:80 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
維他命C是一種水溶性的化合物,在自然界有左旋和右旋之分,其中唯有左旋性具有生理活性。左旋維他命C在皮膚上的功能包括了抗氧化、抗老化、減少黑色素形成、以及促進膠原蛋白的產生,膠原蛋白存在於皮膚的形式主要是第一型和第三型,由真皮層的纖維母細胞所分泌以穩定真皮骨架提供彈性和調節細胞的分化。由於左旋維他命C容易受光線、空氣影響而氧化分解,化妝品工業上亦已開發了相關的劑型和衍生物。
高分子聚合物作為藥物的載體或賦型劑已非常普遍,可以依照不同的需求製造成不同的劑型,例如:水膠、貼片、錠劑、奈米微粒等;在選擇上必須考慮聚合物的物理化學性質、取得來源、生物相容性、生體崩解性、與藥物之間的交互作用等因素。
本研究之主要目的在於利用in vitro cell culture方式,探討帶有不同電荷的水溶性聚合物對於左旋維他命C在人類皮膚纖維母細胞之吸收以及第一型、第三型膠原蛋白合成之影響。選擇的三種水溶性聚合物分別是帶正電荷的chitosan 100、不帶電荷的hydroxypropyl-methylcellulose (HPMC)、以及帶負電荷的carbopol 940。首先採用細胞毒性試驗篩選各個聚合物的適合濃度;在細胞吸收實驗部份利用了L -[1-14C]-ascorbic acid為測量的材料,另一方面則是採用了聚合酵素鏈鎖反應測量細胞第一型和第三型膠原蛋白mRNA之表現量。接著進一步評估以簡易的ionotropic gelation方法製備的chitosan 100奈米微粒包覆左旋維他命C之可行性。
研究結果顯示,HPMC即使在濃度高達10 mg/ml時也不會對fibroblasts造成細胞毒性;chitosan 100和carbopol 940可維持細胞90 %以上存活率的濃度分別是100及300 μg/ml。此外,chitosan 100和carbopol 940兩種聚合物均可以對於左旋維他命C之吸收以及細胞膠原蛋白之合成有促進的效果,HPMC則沒有顯著的影響,且兩種試驗的結果具有一致性。比較三種聚合物在相同濃度(10 μg/ml)下,carbopol 940促進左旋維他命C吸收約2.1倍,而第一型和第三型膠原蛋白的合成則是約增加1.6倍;chitosan 100則是能夠促進約1.6倍的左旋維他命C吸收,增加膠原蛋白表現約1.4倍。總之,三種聚合物對細胞吸收藥物和膠原蛋白mRNA表現的影響為carbopol 940 > chitosan 100 > HPMC。在奈米微粒製備方面,以各種不同比例所製備出的粒子,其左旋維他命C的包埋率均不理想(3.0至22.9%);可能是製備方法未最適化、或是chitosan 100與左旋維他命C之間的交互作用不夠緊密所造成的。
本研究結果可提供資訊作為製備左旋維他命C凝膠劑型之參考,以進一步評估其in vitro穿皮速率或in vivo活體動物模式之影響。此外,在製備包覆左旋維他命C之幾丁聚醣奈米微粒部分,仍待進一步探討以改變實驗條件改善藥物包覆率之可行性。
Vitamin C, a water soluble compound, has levorotary and dextrorotary forms in the nature. Only the levorotary form has the biological activity, and it’s called L-ascorbic acid. Pertinent to dermatology its roles are anti-oxidant, anti-aging, to inhibit melanin synthesis, and to stimulate the production of collagen. The major types of collagen in human skin are type I and III. They are secreted by the fibroblasts in dermal tissue. The function of collagen is to stabilize scaffold of dermal connective tissues, as well as a regulator of differentiation and migration of dermal cells. Due to the poor stability of L-ascorbic acid, which is easily affected by the light、temperature、and air, there have been many formulations and derivatives of L-ascorbic acid developed in the cosmetics industry.
Polymers as drug carriers or excipients are widely used in many fields. They can be formulated into various types depending on different requirements, for example: hydrogels, patches, tablets, and nanoparticles. The selection of appropriate polymers should take account of the physicochemical properties of polymers, sources, biocompatibility, and the interaction with drugs.
The major purpose of this study was to investigate the effects of hydrophilic polymers with different charges on the uptake of L-ascorbic acid and collagen synthesis in human skin fibroblasts. The polymers used were chitosan 100, a positively-charged polymer, hydroxypropyl-methylcellulose (HPMC), and carbopol 940, a negatively-charged polymer. The cytotoxicity of polymers was evaluated using MTT assay. L-[1-14C]-ascorbic acid was employed in cell uptake studies. In addition, we used reverse transcription-polymerase chain reaction to determine the expression of Type I and III procollagen mRNA. Furthermore, we evaluated the feasibility of chitosan 100 nanoparticles prepared using ionotropic gelation technique by determination of the association efficiency of L-ascorbic acid encapsulated in those nanoparticles.
The results indicated that HPMC did not lead to any cytotoxicity even at high concentrations up to 10 mg/ml. The concentrations of chitosan 100 and carbopol 940 when fibroblasts could maintain > 90% cell viability was 100 and 300 μg/ml, respectively. In addition, both chitosan 100 and carbopol 940 enhanced the uptake of L-ascorbic acid and type I either III procollagen mRNA levels. HPMC was shown to have no effects on both aspects. The effect on expression of procollagen synthesis was similar to the results of uptake studies. Comparing the effects of polymers at the same concentration of 10 μg/ml, carbopol 940 stimulated the greatest uptake of L-ascorbic acid, about 2.1-fold of control. It also increased the expression of Type I and III procollagen mRNA by 1.6-fold. For chitosan 100, it enhanced the L-ascorbic ascid uptake by 1.6-fold, and increased the expression of Type I and III procollagen mRNA by 1.4-fold. In summary, the uptake of L-ascorbic acid and Type I and III procollagen mRNA expression in fibroblasts decreased in the order of carbopol 940 > chitosan 100 > HPMC. In the preparation of nanoparticles, the association efficiency of L-ascorbic acid was not high (3.0-22.9 %) at various L-ascorbic acid/chitosan ratio. The phenomenon may be attributed to the sub-optimal preparation conditions, or the weak interaction between L-ascorbic acid and chitosan 100.
In conclusion, the results from the study may provide references for the selection of hydrophilic polymers to prepare L-ascorbic acid gel formulations. In addition, the feasibility of chitosan 100 nanoparticles to encapsulate L-ascorbic acid requires further investigation and evaluation.
Agnihotri, S. A., Mallikarjuna, N. N., and Aminabhavi, T. M. (2004). Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100, 5-28.
Alvarez-Roman, R., Naik, A., Kalia, Y. N., Guy, R. H., and Fessi, H. (2004). Enhancement of topical delivery from biodegradable nanoparticles. Pharm Res 21, 1818-25.
Alvarez-Roman, R., Naik, A., Kalia, Y. N. , Guy, R. H. , and Fessi, H. (2004). Skin penetration and distribution of polymeric nanoparticles. J Control Release 99, 53-62
Anon.A (2002). O/W emulsion based on sodium polyacrylate. Res.Disclosure 464, 2280-2281.
Butler, J. D., Bergsten, P., Welch, R. W., and Levine, M. (1991). Ascorbic acid accumulation in human skin fibroblasts. Am J Clin Nutr 54, 1144S-1146S.
Calvo, P., Alonso, M. J., Vila-Jato, J. L., and Robinson, J. R. (1996). Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol 48, 1147-52.
Calvo P., Remunan-Lopez, Vila-Jato J.L, and M.J., A. (1997). Novel Hydrophilic Chitosan-Polyethylene Oxide nanoparticles as Protein Carriers. J Appl Polym Sci 63, 125-132.
Cerchiara, T., Luppi, B., Bigucci, F., Orienti, I., and Zecchi, V. (2002). Physically cross-linked chitosan hydrogels as topical vehicles for hydrophilic drugs. J Pharm Pharmacol 54, 1453-9.
Cheung C.Y, Murthy Niren, Patrick S. Stayton, and S., A. (2001). A pH-Sensitive Polymer That Enhances Cationic Lipid-mediated Gene Transfer. Bioconjugate Chem 12, 906-910.
Colven, R. M., and Pinnell, S. R. (1996). Topical vitamin C in aging. Clin Dermatol 14, 227-34.
De Campos, A. M., Sanchez, A., and Alonso, M. J. (2001). Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A. Int J Pharm 224, 159-68.
De, T. K., Rodman, D. J., Holm, B. A., Prasad, P. N., and Bergey, E. J. (2003). Brimonidine formulation in polyacrylic acid nanoparticles for ophthalmic delivery. J Microencapsul 20, 361-74.
Gallarate, M. ,Carlotti, M. E. , Trotta, M. , and Bovo, S.(1999). On the stability of ascorbic acid in emulsified systems for topical and cosmetic use. Int J Pharm 188, 233-41.
Geesin, J. C., Darr, D., Kaufman, R., Murad, S., and Pinnell, S. R. (1988). Ascorbic acid specifically increases type I and type III procollagen messenger RNA levels in human skin fibroblast. J Invest Dermatol 90, 420-4.
Gupta, K. C., and Ravi Kumar, M. N. (2000). Drug release behavior of beads and microgranules of chitosan. Biomaterials 21, 1115-9.
Guy R.H, and Hadgraft J. (1989). "Selection of drug candidates for transdermal drug delivery," Transdermal Drug Delivery, Marcel Dekker, New York., 59-83.
Hosoya, O., Sano, M., Wada, Y., Seki, T., Sugibayashi, K., Juni, K., and Morimoto, Y. (1998). Effect of several hydrophilic polymers on the permeation of morphine and salicylic acid through excised hairless rat skin. Chem Pharm Bull (Tokyo) 46, 882-5.
Howling, G. I., Dettmar, P. W., Goddard, P. A., Hampson, F. C., Dornish, M., and Wood, E. J. (2001). The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 22, 2959-66.
Huang, M., Khor, E., and Lim, L. Y. (2004). Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation. Pharm Res 21, 344-53.
Huang, M., Ma, Z., Khor, E., and Lim, L. Y. (2002). Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res 19, 1488-94.
Illum, L. (1998). Chitosan and its use as a pharmaceutical excipient. Pharm Res 15, 1326-31.
Jaulin, N., Appel, M., Passirani, C., Barratt, G., and Labarre, D. (2000). Reduction of the uptake by a macrophagic cell line of nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). J Drug Target 8, 165-72.
Keller, K. L., and Fenske, N. A. (1998). Uses of vitamins A, C, and E and related compounds in dermatology: a review. J Am Acad Dermatol 39, 611-25.
Kusum Devi, V., Saisivam, S., Maria, G. R., and Deepti, P. U. (2003). Design and evaluation of matrix diffusion controlled transdermal patches of verapamil hydrochloride. Drug Dev Ind Pharm 29, 495-503.
Leong, K. W., Mao, H. Q., Truong-Le, V. L., Roy, K., Walsh, S. M., and August, J. T. (1998). DNA-polycation nanospheres as non-viral gene delivery vehicles. J Control Release 53, 183-93.
Li, C. L., Martini, L. G., Ford, J. L., and Roberts, M. (2005). The use of hypromellose in oral drug delivery. J Pharm Pharmacol 57, 533-46.
Lim, S. T., Martin, G. P., Berry, D. J., and Brown, M. B. (2000). Preparation and evaluation of the in vitro drug release properties and mucoadhesion of novel microspheres of hyaluronic acid and chitosan. J Control Release 66, 281-92.
Lin Yang, and Alexandridis, P. (2000). Physicochemical aspects of drug delivery and release from polymer-based colloids. Curr Opin Colloid Interfaxe Sci 5, 132-143.
Lupo, M. P. (2001). Antioxidants and vitamins in cosmetics. Clin Dermatol 19, 467-73.
Ma, Z., Yeoh, H. H., and Lim, L. Y. (2002). Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J Pharm Sci 91, 1396-404.
Miyazaki, S., Ishii, K., and Nadai, T. (1981). The use of chitin and chitosan as drug carriers. Chem Pharm Bull (Tokyo) 29, 3067-9.
Nagamoto, T., Hattori, Y., Takayama, K., and Maitani, Y. (2004). Novel chitosan particles and chitosan-coated emulsions inducing immune response via intranasal vaccine delivery. Pharm Res 21, 671-4.
Nusgens, B. V., Humbert, P., Rougier, A., Colige, A. C., Haftek, M., Lambert, C. A., Richard, A., Creidi, P., and Lapiere, C. M. (2001). Topically applied vitamin C enhances the mRNA level of collagens I and III, their processing enzymes and tissue inhibitor of matrix metalloproteinase 1 in the human dermis. J Invest Dermatol 116, 853-9.
Ozsoy, Y., Gungor, S., and Cevher, E. (2004). Vehicle effects on in vitro release of tiaprofenic acid from different topical formulations. Farmaco 59, 563-6.
Panyam, J., and Labhasetwar, V. (2003). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 55, 329-47.
Pinnell, S. R., Yang, H., Omar, M., Monteiro-Riviere, N., DeBuys, H. V., Walker, L. C., Wang, Y., and Levine, M. (2001). Topical L-ascorbic acid: percutaneous absorption studies. Dermatol Surg 27, 137-42.
Pitt, C. G., Gratzl, M. M., Jeffcoat, A. R., Zweidinger, R., and Schindler, A. (1979). Sustained drug delivery systems II: Factors affecting release rates from poly(epsilon-caprolactone) and related biodegradable polyesters. J Pharm Sci 68, 1534-8.
Ravi Kumar, M. N. (2000). Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 3, 234-58.
Ruszczak, Z. (2003). Effect of collagen matrices on dermal wound healing. Adv Drug Deliv Rev 55, 1595-611.
Santa-Comba, A., Pereira, A., Lemos, R., Santos, D., Amarante, J., Pinto, M., Tavares, P., and Bahia, F. (2001). Evaluation of carboxymethylcellulose, hydroxypropylmethylcellulose, and aluminum hydroxide as potential carriers for rhBMP-2. J Biomed Mater Res 55, 396-400.
Siepmann, J., and Peppas, N. A. (2001). Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 48, 139-57.
Singla, A. K., Chawla, M., and Singh, A. (2000). Potential applications of carbomer in oral mucoadhesive controlled drug delivery system: a review. Drug Dev Ind Pharm 26, 913-24.
Takayama, K., Hirata, M., Machida, Y., Masada, T., Sannan, T., and Nagai, T. (1990). Effect of interpolymer complex formation on bioadhesive property and drug release phenomenon of compressed tablet consisting of chitosan and sodium hyaluronate. Chem Pharm Bull (Tokyo) 38, 1993-7.
Toda, I., Shinozaki, N., and Tsubota, K. (1996). Hydroxypropyl methylcellulose for the treatment of severe dry eye associated with Sjogren's syndrome. Cornea 15, 120-8.
Tokumitsu, H., Ichikawa, H., and Fukumori, Y. (1999a). Chitosan-gadopentetic acid complex nanoparticles for gadolinium neutron-capture therapy of cancer: preparation by novel emulsion-droplet coalescence technique and characterization. Pharm Res 16, 1830-5.
Tokumitsu, H., Ichikawa, H., Fukumori, Y., and Block, L. H. (1999b). Preparation of gadopentetic acid-loaded chitosan microparticles for gadolinium neutron-capture therapy of cancer by a novel emulsion-droplet coalescence technique. Chem Pharm Bull (Tokyo) 47, 838-42.
Traikovich, S. S. (1999). Use of topical ascorbic acid and its effects on photodamaged skin topography. Arch Otolaryngol Head Neck Surg 125, 1091-8.
Trubetskoy, V. S., Wong, S. C., Subbotin, V., Budker, V. G., Loomis, A., Hagstrom, J. E., and Wolff, J. A. (2003). Recharging cationic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery. Gene Ther 10, 261-71.
Valenta, C., and Auner, B. G. (2004). The use of polymers for dermal and transdermal delivery. Eur J Pharm Biopharm 58, 279-89.
Welch, R. W., Bergsten, P., Butler, J. D., and Levine, M. (1993). Ascorbic acid accumulation and transport in human fibroblasts. Biochem J 294 (Pt 2), 505-10.
Yu S.U, Park E.W, and Chow Y.W. (1998). Drug release characteristics and containing kojic acid. Yakche Hakhoechi 28, 87-92.