簡易檢索 / 詳目顯示

研究生: 林承威
Lin, Cheng-Wei
論文名稱: 人類粒線體基因組降解體之結構解析
Structural study of human mitochondrial DNA degradation machinery
指導教授: 吳權娟
Wu, Chyuan-Chuan
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 80
中文關鍵詞: 粒線體基因組DNA 聚合酶γ粒線體DNA解旋酶粒線體基因組維持外切核酸酶1粒線體基因組降解
外文關鍵詞: mitochondrial DNA, DNA polymerase γ, mitochondrial DNA helicase Twinkle, MGME1, mtDNA degradation
相關次數: 點閱:121下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 粒線體DNA (mtDNA) 的完整性對粒線體的氧化磷酸化系統—即製造能量的功能,相當重要。受損的mtDNA需要即時地被修復或清除,否則累積的基因缺陷會導致粒線體功能失常,並發展出各式疾病。有關此胞器如何應付mtDNA損傷的詳細機制至今仍未被清楚闡明。研究指出,雙股斷裂損傷的mtDNA 會在數小時內迅速被降解,並此降解過程是由粒線體DNA 聚合酶γ (DNA polymerase subunit gamma, POLG)、粒線體基因組維持外切核酸酶1 (Mitochondrial Genome Maintenance Exonuclease 1; MGME1)、以及粒線體DNA解旋酶 (Twinkle; TWNK) 負責。有趣的是,這三個酵素同時也負責mtDNA的複製。在目前提出的mtDNA降解模型中,斷裂的mtDNA的其中一股會由POLG的3′-外切酶活性負責降解,另一股則由MGME1的5′-外切酶活性降解。TWNK則負責將雙股DNA解旋,以提供兩外切酶單股DNA受質。在此,我們將此三個酵素組成的複合體命名為粒線體基因組降解體。從分子結構的觀點,此降解體如何組裝並執行其功能,引起了我們實驗室的高度興趣。因此,在本研究中,我們首先透過蛋白質共表達,嘗試利用親和性液相層析來共純化此三個蛋白。然而,於體外,TWNK的溶解度低,並且不易形成正確的聚合化結構,此兩種情形皆不利於蛋白複合體的組裝,因此共表達的方法並未成功。接著,我們轉而將這三個蛋白分別純化,再將其混合藉此重建蛋白複合體。我們也設計了一DNA受質,並將其加入此複合體的組裝。目前我們正在嘗試優化組裝此蛋白複合體的條件。一旦取得此複合體,我們會使用負染電子顯微檢視此複合體的品質,並使用單分子冷凍電子顯微進行分子結構的解析。我們預期此研究將闡明mtDNA降解的結構機制,並增進我們對此基因組品質控管系統的了解。

    The integrity of mitochondrial DNA (mtDNA) is crucial for the function of oxidative phosphorylation system in mitochondria. Damaged mtDNA molecules need to be timely repaired or eliminated, or the accumulated genomic defects could cause mitochondrial dysfunction and lead to disease development. Mechanism about how the organelle deals with severe mtDNA damages, especially DNA double-stranded break (DSB), is largely unknown. It is known that DSB-damaged mtDNA will be rapidly degraded in hours. Surprisingly, the degradation process is mediated by a machinery consisting of mitochondrial DNA polymerase γ (POLG), mitochondrial genome maintenance exonuclease 1 (MGME1) and mitochondrial DNA helicase Twinkle (TWNK)—the three enzymes known for synthesizing mtDNA. In the proposed model, linearized mtDNA fragments are degraded simultaneously from one end, with one strand being degraded in 3′-to-5′ direction via the 3′-exonuclease activity of POLG; and the other strand being degraded in 5′-to-3′ direction by MGME1. The helicase TWNK goes ahead the two exonucleases to unwind double-stranded DNA for degradation. How the three enzymes assemble to compose the mtDNA degradation machinery is unclear. Aiming to reveal the molecular structure of the machinery, here, we are trying to reconstitute the complex consisting of human POLγ, TWNK and MGME1 in vitro. We firstly tried co-expressing the three enzymes in insect cells. By tagging PolgA (the catalytic subunit of POLG holoenzyme), we aimed to co-purify the complex through affinity purification. However, the strategy did not success, owing to the poor solubility of TWNK and its heterogenous oligomerization state in vitro—both would harm protein complex formation. Therefore, we went for the secondary strategy, in which we purified the three proteins to homogenous individually and tried to reconstitute the complex by mixing them together. We also designed a hairpin DNA to mimic degradation substrate for the complex reconstitution. Analytical size-exclusion chromatography was used to purify the protein-DNA complex. We are currently optimizing complex reconstitution condition. Once we obtain the complex, we will employ single-particle Cryo-EM for structural determination. We anticipate our result will elucidate the structural mechanism of mtDNA degradation and further our understanding about the quality control system of mtDNA.

    Abstract I 中文摘要 III 致謝 IV Table of contents V List of figures VII Abbreviation VIII 1. Introduction 1 1.1 Mammalian mitochondrial DNA 1 1.2 mtDNA repair mechanisms 2 1.3 Damage-induced mtDNA degradation 3 1.4 The composition of mtDNA degradation machinery 4 1.4.1 DNA polymerase  4 1.4.2 Mitochondrial Genome Maintenance Exonuclease 1 6 1.4.3 Mitochondrial DNA helicase Twinkle 8 2. Research Objective 12 2.1 Co-expression of the three proteins in host cell followed by co-purification of the complex 12 2.2 In vitro reconstitution of the complex with purified proteins and DNA substrate 13 3. Materials and Methods 14 3.1 Materials 14 3.1.1 Plasmids and Constructs 14 3.1.2 Cell line 14 3.1.3 Antibodies 14 3.1.4 Synthetic oligonucleotides and primers 14 3.1.5 Buffer and solutions 15 3.2 Methods 16 3.2.1 Molecular cloning 17 3.2.2 Generation of recombinant bacmid 18 3.2.3 Production of recombinant baculovirus 19 3.2.4 Protein expression 20 3.2.5 Purification of co-expressed PolgA, TWNK and MGME1 21 3.2.6 Purification of exo-inactive PolgA (PolgADAEA) 22 3.2.7 Western blot 23 3.2.8 In vitro assembly of PolgADAEA-MGME1KH complex 23 3.2.9 Preparation of the hairpin DNA for in vitro protein-DNA complex reconstitution 24 3.2.10 In vitro assembly of PolgADAEA-TWNK-DNA complex 24 3.2.11 In vitro assembling of TWNK-MGME1KH-DNA complex 25 4. Results 27 4.1 Co-expression of PolgA, TWNK and MGME1 in Sf9 insect cells 27 4.2 Purification of co-expressed PolgA, TWNK and MGME1 from Sf9 cells 28 4.2.1 Co-purification of the three proteins by affinity chromatography with nickel column 28 4.2.2 Size-exclusion chromatography to evaluate complex formation 29 4.3 Purification of exo-inactive PolgA 31 4.4 Assembly of PolgA-MGME1 binary complex 31 4.5 Our modified model of mtDNA degradation machinery 32 4.6 The design of DNA substrate for assembling mtDNA degradation machinery 34 4.7 In vitro reconstitution of mtDNA degradation machinery on substrate DNA 35 4.7.1 Assembly of PolgADAEA-TWNK-DNA complex 35 4.7.2 Assembly of TWNK-MGME1KH-DNA complex 38 5. Discussion 40 5.1 The co-expression/purification strategy 40 5.2 The in vitro complex assembling strategy 42 6. Conclusion 46 Figures 47 Appendix Figures 68 References 75

    Alexeyev, M., Shokolenko, I., Wilson, G., & LeDoux, S. (2013). The maintenance of mitochondrial DNA integrity--critical analysis and update. Cold Spring Harbor Perspectives in Biology, 5(5), a012641. doi:10.1101/cshperspect.a012641
    Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S., & Moraes, C. T. (2013). Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nature Medicine, 19(9), 1111-1113. doi:10.1038/nm.3261
    Chen, T., He, J., Huang, Y., & Zhao, W. (2011). The generation of mitochondrial DNA large-scale deletions in human cells. Journal of Human Genetics, 56(10), 689-694. doi:10.1038/jhg.2011.97
    Farge, G., Holmlund, T., Khvorostova, J., Rofougaran, R., Hofer, A., & Falkenberg, M. (2008). The N-terminal domain of TWINKLE contributes to single-stranded DNA binding and DNA helicase activities. Nucleic Acids Research, 36(2), 393-403. doi:10.1093/nar/gkm1025
    Farge, G., Pham, X. H., Holmlund, T., Khorostov, I., & Falkenberg, M. (2007). The accessory subunit B of DNA polymerase gamma is required for mitochondrial replisome function. Nucleic Acids Research, 35(3), 902-911. doi:10.1093/nar/gkl1116
    Fernández-Millán, P., Lázaro, M., Cansız-Arda, Ş., Gerhold, J. M., Rajala, N., Schmitz, C. A., . . . Solà, M. (2015). The hexameric structure of the human mitochondrial replicative helicase Twinkle. Nucleic Acids Research, 43(8), 4284-4295. doi:10.1093/nar/gkv189
    Fontana, G. A., & Gahlon, H. L. (2020). Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Research, 48(20), 11244-11258. doi:10.1093/nar/gkaa804
    Gammage, P. A., Rorbach, J., Vincent, A. I., Rebar, E. J., & Minczuk, M. (2014). Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Molecular Medicine, 6(4), 458-466. doi:10.1002/emmm.201303672
    Gao, Y., Cui, Y., Fox, T., Lin, S., Wang, H., de Val, N., . . . Yang, W. (2019). Structures and operating principles of the replisome. Science, 363(6429). doi:10.1126/science.aav7003
    Gustafsson, C. M., Falkenberg, M., & Larsson, N. G. (2016). Maintenance and Expression of Mammalian Mitochondrial DNA. Annual Review of Biochemistry, 85, 133-160. doi:10.1146/annurev-biochem-060815-014402
    Kaur, P., Longley, M. J., Pan, H., Wang, W., Countryman, P., Wang, H., & Copeland, W. C. (2020). Single-molecule level structural dynamics of DNA unwinding by human mitochondrial Twinkle helicase. Journal of Biological Chemistry, 295(17), 5564-5576. doi:10.1074/jbc.RA120.012795
    Kazak, L., Reyes, A., & Holt, I. J. (2012). Minimizing the damage: repair pathways keep mitochondrial DNA intact. Nature Reviews: Molecular Cell Biology, 13(10), 659-671. doi:10.1038/nrm3439
    Kerrigan, J. J., Xie, Q., Ames, R. S., & Lu, Q. (2011). Production of protein complexes via co-expression. Protein Expression and Purification, 75(1), 1-14. doi:10.1016/j.pep.2010.07.015
    Kornblum, C., Nicholls, T. J., Haack, T. B., Schöler, S., Peeva, V., Danhauser, K., . . . Prokisch, H. (2013). Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nature Genetics, 45(2), 214-219. doi:10.1038/ng.2501
    Krohn, N. M., Yanagisawa, S., & Grasser, K. D. (2002). Specificity of the stimulatory interaction between chromosomal HMGB proteins and the transcription factor Dof2 and its negative regulation by protein kinase CK2-mediated phosphorylation. Journal of Biological Chemistry, 277(36), 32438-32444. doi:10.1074/jbc.M203814200
    Lee, Y. S., Kennedy, W. D., & Yin, Y. W. (2009). Structural insight into processive human mitochondrial DNA synthesis and disease-related polymerase mutations. Cell, 139(2), 312-324. doi:10.1016/j.cell.2009.07.050
    Longley, M. J., Humble, M. M., Sharief, F. S., & Copeland, W. C. (2010). Disease variants of the human mitochondrial DNA helicase encoded by C10orf2 differentially alter protein stability, nucleotide hydrolysis, and helicase activity. Journal of Biological Chemistry, 285(39), 29690-29702. doi:10.1074/jbc.M110.151795
    Matic, S., Jiang, M., Nicholls, T. J., Uhler, J. P., Dirksen-Schwanenland, C., Polosa, P. L., . . . Milenkovic, D. (2018). Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nat Commun, 9(1), 1202. doi:10.1038/s41467-018-03552-x
    Medeiros, T. C., Thomas, R. L., Ghillebert, R., & Graef, M. (2018). Autophagy balances mtDNA synthesis and degradation by DNA polymerase POLG during starvation. Journal of Cell Biology, 217(5), 1601-1611. doi:10.1083/jcb.201801168
    Moretton, A., Morel, F., Macao, B., Lachaume, P., Ishak, L., Lefebvre, M., . . . Farge, G. (2017). Selective mitochondrial DNA degradation following double-strand breaks. PloS One, 12(4), e0176795. doi:10.1371/journal.pone.0176795
    Nicholls, T. J., Zsurka, G., Peeva, V., Schöler, S., Szczesny, R. J., Cysewski, D., . . . Minczuk, M. (2014). Linear mtDNA fragments and unusual mtDNA rearrangements associated with pathological deficiency of MGME1 exonuclease. Human Molecular Genetics, 23(23), 6147-6162. doi:10.1093/hmg/ddu336
    Nissanka, N., Bacman, S. R., Plastini, M. J., & Moraes, C. T. (2018). The mitochondrial DNA polymerase gamma degrades linear DNA fragments precluding the formation of deletions. Nat Commun, 9(1), 2491. doi:10.1038/s41467-018-04895-1
    Nurminen, A., Farnum, G. A., & Kaguni, L. S. (2017). Pathogenicity in POLG syndromes: DNA polymerase gamma pathogenicity prediction server and database. BBA Clin, 7, 147-156. doi:10.1016/j.bbacli.2017.04.001
    Oliveira, M. T., Pontes, C. B., & Ciesielski, G. L. (2020). Roles of the mitochondrial replisome in mitochondrial DNA deletion formation. Genetics and Molecular Biology, 43(1 suppl. 1), e20190069. doi:10.1590/1678-4685-gmb-2019-0069
    Peeva, V., Blei, D., Trombly, G., Corsi, S., Szukszto, M. J., Rebelo-Guiomar, P., . . . Kunz, W. S. (2018). Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat Commun, 9(1), 1727. doi:10.1038/s41467-018-04131-w
    Peter, B., & Falkenberg, M. (2020). TWINKLE and Other Human Mitochondrial DNA Helicases: Structure, Function and Disease. Genes (Basel), 11(4). doi:10.3390/genes11040408
    Peter, B., Farge, G., Pardo-Hernandez, C., Tångefjord, S., & Falkenberg, M. (2019). Structural basis for adPEO-causing mutations in the mitochondrial TWINKLE helicase. Human Molecular Genetics, 28(7), 1090-1099. doi:10.1093/hmg/ddy415
    Riccio, A. A., Bouvette, J., Perera, L., Longley, M. J., Krahn, J. M., Williams, J. G., . . . Copeland, W. C. (2022). Structural insight and characterization of human Twinkle helicase in mitochondrial disease. Proceedings of the National Academy of Sciences of the United States of America, 119(32), e2207459119. doi:10.1073/pnas.2207459119
    Rong, Z., Tu, P., Xu, P., Sun, Y., Yu, F., Tu, N., . . . Yang, Y. (2021). The Mitochondrial Response to DNA Damage. Front Cell Dev Biol, 9, 669379. doi:10.3389/fcell.2021.669379
    Silva-Pinheiro, P., Pardo-Hernández, C., Reyes, A., Tilokani, L., Mishra, A., Cerutti, R., . . . Viscomi, C. (2021). DNA polymerase gamma mutations that impair holoenzyme stability cause catalytic subunit depletion. Nucleic Acids Research, 49(9), 5230-5248. doi:10.1093/nar/gkab282
    Stark, H. (2010). GraFix: stabilization of fragile macromolecular complexes for single particle cryo-EM. Methods in Enzymology, 481, 109-126. doi:10.1016/s0076-6879(10)81005-5
    Stein, A., Kalifa, L., & Sia, E. A. (2015). Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae. Plos Genetics, 11(11), e1005664. doi:10.1371/journal.pgen.1005664
    Szczesny, R. J., Hejnowicz, M. S., Steczkiewicz, K., Muszewska, A., Borowski, L. S., Ginalski, K., & Dziembowski, A. (2013). Identification of a novel human mitochondrial endo-/exonuclease Ddk1/c20orf72 necessary for maintenance of proper 7S DNA levels. Nucleic Acids Research, 41(5), 3144-3161. doi:10.1093/nar/gkt029
    Szymanski, M. R., Kuznetsov, V. B., Shumate, C., Meng, Q., Lee, Y. S., Patel, G., . . . Yin, Y. W. (2015). Structural basis for processivity and antiviral drug toxicity in human mitochondrial DNA replicase. EMBO Journal, 34(14), 1959-1970. doi:10.15252/embj.201591520
    Tadi, S. K., Sebastian, R., Dahal, S., Babu, R. K., Choudhary, B., & Raghavan, S. C. (2016). Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Molecular Biology of the Cell, 27(2), 223-235. doi:10.1091/mbc.E15-05-0260
    Uhler, J. P., Thörn, C., Nicholls, T. J., Matic, S., Milenkovic, D., Gustafsson, C. M., & Falkenberg, M. (2016). MGME1 processes flaps into ligatable nicks in concert with DNA polymerase γ during mtDNA replication. Nucleic Acids Research, 44(12), 5861-5871. doi:10.1093/nar/gkw468
    Yang, C., Wu, R., Liu, H., Chen, Y., Gao, Y., Chen, X., . . . Gan, J. (2018). Structural insights into DNA degradation by human mitochondrial nuclease MGME1. Nucleic Acids Research, 46(20), 11075-11088. doi:10.1093/nar/gky855
    Young, M. J., & Copeland, W. C. (2016). Human mitochondrial DNA replication machinery and disease. Current Opinion in Genetics and Development, 38, 52-62. doi:10.1016/j.gde.2016.03.005
    Zekonyte, U., Bacman, S. R., Smith, J., Shoop, W., Pereira, C. V., Tomberlin, G., . . . Moraes, C. T. (2021). Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat Commun, 12(1), 3210. doi:10.1038/s41467-021-23561-7
    Zhang, L., Reyes, A., & Wang, X. (2017). The Role of DNA Repair in Maintaining Mitochondrial DNA Stability. In H. Sun & X. Wang (Eds.), Mitochondrial DNA and Diseases (pp. 85-105). Singapore: Springer Singapore.
    Zhao, L. (2019). Mitochondrial DNA degradation: A quality control measure for mitochondrial genome maintenance and stress response. Enzymes, 45, 311-341. doi:10.1016/bs.enz.2019.08.004

    無法下載圖示 校內:2027-09-22公開
    校外:2027-09-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE