簡易檢索 / 詳目顯示

研究生: 張書瑜
Chang, Shu-Yu
論文名稱: p-y曲線應用砂土層離岸風機群樁基礎之行為分析
The Analysis of Offshore Group Pile Behavior in Sandy Soil with p-y Curve Approach
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 118
中文關鍵詞: 基樁p-y曲線土壤液化超額孔隙水壓力
外文關鍵詞: pile, p-y curve, soil liquefaction, excess pore water pressure
相關次數: 點閱:153下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一般離岸風機基座建置時需考量風力、波浪與海流外力作用下所引起之基樁受力及震動問題,加上台灣受限於近海土層較軟弱、尚乏海上大口徑單樁施作能力、考量颱風與地震作用力以及土壤具液化潛勢等因素,海下群樁基礎為較適合之基座。本研究將以台灣福海離岸風場之風機二號土層為主要研究內容,利用GROUP基樁程式模擬海床砂土與基樁間互制的行為,分析基樁之樁身位移、彎矩值、最大旋轉角隨深度之變化情形,並且考慮海床砂土可能液化之情形,進行離岸群樁基礎在可液化土層之分析,建構土壤完全液化或部分土壤液化之p-y曲線模式。研究方式是以超額孔隙水壓比參考因子,提供兩種超額孔隙水壓修正法修正土壤液化後之p-y曲線,兩者分別為Liu和Dobry修正法(1995)與Chang和Hutchinson修正法(2013),並設法將上述兩種修正法合併使用,提供一個更完整的修正法來描述海床砂土p-y曲線從無液化到完全液化的過程。分析之結果顯示以上述修正法修正後之p-y曲線,能合理地模擬海床砂土之樁土間互制的行為。

    External forces such as wind, wave, and ocean current are factors to be considered during the installation of offshore wind turbine foundation. Limited by the weak soil layer of Taiwan offshore region and the lack of monopole construction capability, plus the consideration of typhoon, earthquake, and potential of soil liquefaction, submerged group pile foundation is believed to be the most suitable option. This study analyzed the change of pile body displacement, moment, and the maximum angle of rotation with depth by using GROUP 2013 software to simulate the interaction between seabed sand and pile foundation using data obtained from soil layer under turbine No.2 in Changhua Fuhai offshore wind farm in Taiwan. Fully and partially liquefied p-y curves were established by analyzing offshore group pile installed in liquefiable soil. By using excess pore water pressure ratio as reference, two excess pore water pressure modifying methods, Liu and Dobry (1995) and Chang and Hutchinson (2013), were selected to correct the p-y curve after soil liquefaction. The two modifying methods were combined to provide a more complete method to describe the process from sand non-liquefied to completely sand liquefied. The analyzing result shows that p-y curves modified by this method are able to simulate the interaction between soil and pile body more reasonably.

    摘要 I Extended Abstract II 誌謝 X 目錄 XI 圖目錄 XV 表目錄 XX 第一章 緒論 1 1.1研究背景 1 1.2研究目的與方法 2 1.3論文內容 2 第二章 文獻回顧 3 2.1基樁承受側向荷重分析法 3 2.1.1彈性分析法 4 2.1.2地盤反力分析法 6 2.1.3有限元素法 9 2.1.4 p-y曲線分析法 9 2.2土壤液化 12 2.2.1土壤液化定義 12 2.2.2液化機制 13 2.2.3 Seed簡易經驗法 14 2.2.4液化潛能範圍 22 第三章 分析方法 24 3.1砂土p-y曲線 24 3.1.1 API砂土 24 3.1.2 Reese 砂土 27 3.1.3 Rollins液化砂土 33 3.2黏土p-y曲線 35 3.2.1軟弱黏土 35 3.2.2含自由水之堅硬黏土層 39 3.2.3不含自由水之堅硬黏土層 44 3.3 p-y曲線法用於群樁基礎 47 3.4超額孔隙水壓之應用與修正法 53 3.4.1超額孔隙水壓力激發之行為 53 3.4.2超額孔隙水壓修正法 54 3.4.3不同孔隙水壓比下之p-y曲線模型思考與分析流程 60 第四章 福海離岸風力發電計畫 62 4.1場址介紹 62 4.2現地土層資料 63 4.3土壤液化潛能分析 65 4.3.1考量淘刷影響 67 4.4程式模擬分析 68 4.4.1 GROUP 2013程式介紹 69 4.4.2場址設計基本資料 70 第五章 案例分析結果與討論 75 5.1 Liu and Dobry修正法之無液化基底p-y曲線選定 75 5.2 Chang and Hutchinson修正法之適用範圍分析 78 5.3建立新修正公式與適用範圍 79 5.4利用新修正法進行群樁分析結果 81 5.4.1群樁效應 81 5.4.2探討不同深度下之p-y曲線圖 82 5.5使用不同樁頭邊界條件進行分析結果 86 5.5.1彈性束制樁頭設定 86 5.5.2三種樁頭之樁身變位與樁身彎矩比較 86 5.6側向變位與旋轉角之性能曲線分析 89 5.6.1單獨施加側向載重與彎矩之性能曲線分析 90 5.6.2額外外力作用下之性能曲線分析 93 5.6.3驗證分析結果之合理性 99 5.7考量旋轉角分析之結果與改善建議 101 5.7.1改善方式 101 5.7.2改善分析之結果 104 第六章 結論與建議 109 6.1結論 109 6.2建議 110 參考文獻 111

    1.肖雄,「運用p-y曲線分析基樁在可液化砂土之行為」,國立成功大學土木工程研究所,碩士論文 (2014)。
    2.莊明仁,「基樁承受側向荷重之反應分析」,國立成功大學土木工程研究所,博士論文 (2001)。
    3.范仲軒,「應用p-y曲線分析離岸風機單樁基礎於可液化海床砂質土壤之行為」,國立成功大學土木工程研究所,碩士論文 (2015)。
    4.陳俶季、吳清裕,「飽和砂土在反覆荷重下之孔隙水壓變化與液化潛能」,第十屆海洋工程研討會論文集,頁599-615(1988)。
    5.葉健輝,「液化地盤樁基之靜力分析模式研究」,淡江大學土木工程研究所,碩士論文 (2006)。
    6.黎杰侖,「沖刷樁基承受側向載重之變位分析」,國立成功大學土木工程研究所,碩士論文 (2006)。
    7.練詠莊、黃迪瑩、曾韋禎、何玉玲、郭玉樹,「離岸風機單樁基礎側向變形分析」,第三十四屆海洋工程研討會論文集,台南,頁863-868 (2012)。
    8.簡連貫、邱淑宜、馮宗緯、林俶寬,「離岸風力計畫海域大地工程調查~以福海離岸風場為例」,地工技術,第142期,頁59-68 (2014) 。
    9.American Petroleum Institute (API) “Recommended practice for planning, designing, and constructing fixed offshore platforms.” API Report No. 2A-WSD, API, Houston. (2005)
    10. Ashour, M., and Norris, G., “Lateral loaded pile response in liquefiable soil.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 6, pp. 404-414. (2003)
    11. Ashour, M., Norris, G., and Pilling, P. “Lateral loading of a pile in layered soil using the strain wedge model,” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 4, pp. 303-315. (1998)
    12. Bhattacharya S., “Challenges in design of foundations for offshore wind turbines.” Reference, The Institution of Engineering and Technology, pp. 1-9. (2014)
    13. Banerjee, P.K., and Davies, T.G., “The behavior of axially and laterally loaded single piles embedded in non-homogeneous soils,” Geotechnique, Vol. 28, No. 3, pp. 309-326. (1978)
    14. Brandenberg, S.J., Boulanger, R W., Kutter, B.L., and Chang D.D., “Static pushover analyses of pile groups in liquefied and laterally spreading ground in centrifuge tests.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 9, pp. 1055-1066. (2007)
    15. Castro, G. and Poulos, S.J. “Factors affecting liquefaction and cyclic mobility.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT6, pp. 501-516. (1977)
    16. Chang, W.J., Rathje, E.M., Stokoe II, K.H., and Hazirbaba, K., “In situ pore-pressure generation behavior of liquefiable sand.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 133, No. 8, pp. 921-931. (2007)
    17. Chang, W.J. “Liquefaction analysis of TGC-Fuhai windfarm,” Research Report, Department of Civil Engineering, National Cheng Kung University, Tainan, Taiwan. (2014)
    18. Chang, B.J. and Hutchinson, T.C., “Experimental evaluation of p-y curves considering development of liquefaction.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 139, No. 4, pp. 577-586. (2013)
    19. Dash, S.R., Bhattacharya, S., Blakeborough, A., and Hyodo, M., “p-y curve to model lateral response of pile foundation in liquefied soils.” The 〖14〗^th World Conference on Earthquake Engineering, October 12-17, Beijing, China. (2008)
    20. De Alba, K., Chan, C., and Seed, H.B., “Determination of soil liquefaction characteristics by large-scale laboratory tests.” EERC 75-14, Berkeley, California. (1975)
    21. Douglas, D.I. and Davis, E.H., “The movement of buried footings due to moment and horizontal and movement if anchor plates.” Geotechnical Engineering, Vol. 14, pp. 115-132. (1964)
    22. Franke, K.W., and Rollins, K.M., “Simplified hybrid p-y spring model for liquefied soils.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 139, No. 4, pp. 564-576. (2013)
    23. Ishihara, K., “Stability of natural deposits during earthquakes.” Proc., 〖11〗^th International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, Rotterdam, pp. 321-376. (1985)
    24. Iwasaki, T., Arakawa, T., and Tokida, K., “Simplified procedures for assessing soil liquefaction during earthquakes.” Soil Dynamics and Earthquake Engineering Conference, Southamption, pp. 925-939. (1982)
    25. Juirnarongrit, T., and Ashford, S.A., “Soil-pile response to blast-induced lateral spreading II: analysis and assessment of the p-y method.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 132, No. 2, pp. 163-172. (2006)
    26. Liu, L. and Dobry, R. “Effect of liquefaction on lateral response of piles by centrifuge model tests.” NCEER Bulletin, Vol. 9, No. 1, p. 8. (1995)
    27. Matlock, H. and Reese, L.C. “Generalized solution for laterally loaded piles.” Journal of Soil Mechanics and Foundations Division, ASCE, Vol. 86, No. SM5, pp. 1220-1246. (1960)
    28. Matlock, H., “Correlation for design of laterally loaded piles in soft clay.” Proceedings, 2nd Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp. 577-594. (1970).
    29. McClelland, B. and Focht, J.A.JR, “Soil modulus for laterally loaded piles.” Transactions, ASCE, Vol. 123, pp. 1049-1063. (1956)
    30. Mcvay, M., Casper, R., and Shang, T., “Lateral response of three-row groups in loose to dense sands at 3D and 5D pile spacing.” Journal of Geotechnical Engineering, ASCE, Vol. 121, No. 5, pp. 436-441. (1995)
    31. Mcvay, M., Zhang, L., Molnit, T., and Lai, P., “Centrifuge testing of large laterally loaded pile groups in sands.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 10, pp. 1016-1026. (1998)
    32. Meyerhof, G.G., “Penetration tests and bearing capacity of cohesionless soils.” Journal of the Soil Mechanics and Foundations Division, 82(1), pp. 1–19. (1956)
    33. Mindlin, R.D., “Forces at a point in the interior of semi-infinite solid.” Physics, Vol. 7, pp. 195-202. (1936)
    34. Mokwa, R.L., and Hon, J.M.D., “Rotational restraint of pile caps during lateral loading.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 129, No. 9, pp. 829-837. (2003)
    35. O’Neill, M.W. and Murchison, J. M. “An evaluation of p-y in sands.” Research Report No.GT-DF02-83, Department of Civil Engineering, University of Houston, Houston, Texas. (1983)
    36. Poulos, H.G., “Behavior of laterally loaded piles: I-single pile.” Journal of the Soil Mech. And Found. Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 97, No. SM5, pp. 711-731. (1971a)
    37. Poulos, H.G., “Behavior of laterally loaded piles: II-group pile.” Journal of the Soil Mech. And Found. Engineering Division, Proceedings of the American Society of Civil Engineers, Vol. 97, NO. SM5, pp. 733-751. (1971b)
    38. Poulos, H.G. and Davis, E.N., Pile Foundation Analysis and Design, John Wiley Sons, New York. (1980)
    39. Reese, L.C., Cox, W.R. and Koop, F.D., “Analysis of laterally load piles in sand.” Proceedings of 5th Annual Offshore Technology Conference, Houston, Texas, Vol. II, pp. 473-485. (1974)
    40. Reese, L.C., Cox, W.R., and Koop, F.D., “Field testing and analysis of laterally loaded piles in stiff clay.” Proceedings, 7th Offshore Technology Conference, Houston, Texas, Vol. II, pp. 672-690. (1975)
    41. Reese, L.C., and Welch, R.C., “Laterally loading of deep foundations in stiff clay.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT7, pp. 633-649. (1975)
    42. Rollins, K.M., Peterson, K.T., and Weaver, T.J., “Lateral load behavior of full-scale pile group in clay.” Journal of the Geotechnical and Geoenvironmental Engineering ASCE, Vol. 124, No. 6, pp. 468-478. (1998)
    43. Rollins, K.M., Gerber, T.M., Dusty, L.J., and Ashford, S.A. “Lateral resistance of a full-scale pile group in liquefied sand.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 1, pp. 115-125. (2005)
    44. Seed, H.B. and Booker, J.R., “Stabilization of potentially liquefiable sand deposits using gravel drains.” Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, pp. 757-768. (1977)
    45. Seed, H.B. and Idriss, I.M. “Simplified procedure for evaluating soil liquefaction potential.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273. (1971)
    46. Seed, H.B., Martin, P.P., and Lysmer, J. “The generation and dissipation of pore water pressure during soil liquefaction.” Report No. EERC 75-26, Earthquake Research Center, University of California, Berkeley, California. (1975)
    47. Seed, H.B. and Idriss, I.M. “Analysis of soil liquefaction: Niigata earthquake.” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM3, pp. 265-290. (1976)
    48. Seed, H.B. and Idriss, I.M. “Ground motions and soil liquefaction during earthquakes.” Monograph Series No. 5, Earthquake Engineering Research Institute, Berkeley, AC, USA. (1982)
    49. Sumer, B.M., Fredsøe, J., and Christiansen, N., “Scour around vertical pile in waves.” Journal of Waterway, Port, Coastal and Ocean Engineering, ASCE, Vol. 118, No. 1, pp. 15-31. (1992)
    50. Terzaghi, K., “Evaluation of coefficients of subgrade reaction,” Geotechnique, Vol. 5, pp. 297-326. (1955)
    51. Wang, S.T., and Reese, L.C., “Design of pile foundation in liquefied soils.” Geotechnical Earthquake Engineering and Soil Dynamics III, pp. 1331-1343. (1998)
    52. Winkler, E., Die Lehre Von Elastizitat Und Festigkert ( On Elasticity and Fixity ), Prague. (1867)

    下載圖示 校內:2021-06-23公開
    校外:2021-06-23公開
    QR CODE