| 研究生: |
戴威立 Dianbudiyanto, Wahid |
|---|---|
| 論文名稱: |
以微波-水熱輔助製備高效能三維石墨烯應用於電容去離子 Preparation of 3D graphene with Microwave-Hydrothermal Assistance for Ultrahigh Performance of Capacitive Deionization |
| 指導教授: |
劉守恒
Liu, Shou-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 95 |
| 外文關鍵詞: | Capacitive Deionization, Graphene, Microwave, Hydrothermal, Electrosorption. |
| 相關次數: | 點閱:55 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電容去離子是具有潛力的海水淡化技術,它可以在低伏特電壓、低溫與低能量消耗下將海水淡化。為了獲得最佳的電荷吸附,電極應具有良好的導電性、高表面積、優良的潤濕性以及多中孔結構,其中以中孔結構可有效提供離子傳遞的路徑。在本研究中,三維結構的石墨烯的製備是使用微波並加上水熱法生成三維還原氧化石墨稀 (3D rGO,以Gr-Mw-Hyd命名)。以SEM, TEM, Raman, FTIR, XPS, XRD與BET分析樣品的物理特性。結果顯示三維石墨烯(Gr-Mw-Hyd)樣品在濃度約500 mg/L氯化鈉溶液中擁有良好的比電容 (189.2 F/g)與超高電荷吸附能力(28.5 mg/g)。這顯示Gr-Mw-Hyd樣品比其他只用水熱法(Gr-Hyd)或迴流法(Gr-Reflux)製備的樣品有更低的電阻以及更高的導電性。因此,三維石墨烯(Gr-Mw-Hyd)電極未來具有相當高的潛力被應用於電容去離子技術
Capacitive deionization (CDI) is a prospective desalination technology, which can be operated at low voltage, low temperature and potentially consume low energy for brackish water desalination. To obtain the optimal electrosorption, an electrode should possess high electrical conductivity, large surface area, good wettability, highly mesoporous structure which provide efficient pathways for ion distribution. In this study, a 3D structure graphene was fabricated using hydrothermal method which is assisted with microwave treatments to form 3D rGO (Gr-Mw-Hyd). Physical characterizations such as SEM, TEM, Raman, FTIR, XPS, XRD, and BET have been used to study the physicochemical properties of the samples. Among them, the Gr-Mw-Hyd samples have excellent specific capacitance (189.2 F/g) and ultrahigh electrosorption capacity (28.5 mg/g) for the desalination of ca. 500 mg/L NaCl. This may be attributed to the fact that Gr-Mw-Hyd samples have lower resistance and higher conductivity than other samples which are fabricated by only using hydrothermal method without microwave assistance (Gr-Hyd) and traditional reflux method (Gr-Reflux). Therefore, the prepared Gr-Mw-Hyd samples may be one of promising electrode for CDI in the practical applications
[1] K. C. Ng, K. Thu, Y. Kim, A. Chakraborty, and G. Amy, “Adsorption desalination: An emerging low-cost thermal desalination method,” New Dir. Desalination, vol. 308, pp. 161–179, Jan. 2013.
[2] Y. Liu, C. Nie, X. Liu, X. Xu, Z. Sun, and L. Pan, “Review on carbon-based composite materials for capacitive deionization,” RSC Adv., vol. 5, no. 20, pp. 15205–15225, 2015.
[3] C.-H. Hou and C.-Y. Huang, “A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization,” Desalination, vol. 314, pp. 124–129, Apr. 2013.
[4] C. J. Gabelich, T. D. Tran, and I. H. “Mel” Suffet, “Electrosorption of Inorganic Salts from Aqueous Solution Using Carbon Aerogels,” Environ. Sci. Technol., vol. 36, no. 13, pp. 3010–3019, Jul. 2002.
[5] A. F. Ismail and M.-S. Yim, “Investigation of activated carbon adsorbent electrode for electrosorption-based uranium extraction from seawater,” Nucl. Eng. Technol., vol. 47, no. 5, pp. 579–587, Aug. 2015.
[6] S.-J. Seo, H. Jeon, J. K. Lee, G.-Y.Kim, D.Park, H. Nojima, J. Lee, and S.-H. Moon., “Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications,” Water Res., vol. 44, no. 7, pp. 2267–2275, Apr. 2010.
[7] Q. Dong, G. Wang, B. Qian, C. Hu, Y. Wang, and J. Qiu, “Electrospun Composites Made of Reduced Graphene Oxide and Activated Carbon Nanofibers for Capacitive Deionization,” Electrochimica Acta, vol. 137, pp. 388–394, Aug. 2014.
[8] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat Mater, vol. 6, no. 3, pp. 183–191, Mar. 2007.
[9] X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors,” Science, vol. 319, no. 5867, p. 1229, Feb. 2008.
[10] H. Li, T. Lu, L. Pan, Y. Zhang, and Z. Sun, “Electrosorption behavior of graphene in NaCl solutions,” J. Mater. Chem., vol. 19, no. 37, pp. 6773–6779, 2009.
[11] H. Li, L. Zou, L. Pan, and Z. Sun, “Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization,” Sep. Purif. Technol., vol. 75, no. 1, pp. 8–14, Sep. 2010.
[12] H. Li, L. Zou, L. Pan, and Z. Sun, “Novel Graphene-Like Electrodes for Capacitive Deionization,” Environ. Sci. Technol., vol. 44, no. 22, pp. 8692–8697, Nov. 2010.
[13] Y. Chen, X. Zhang, H. Zhang, X. Sun, D. Zhang, and Y. Ma, “High-performance supercapacitors based on a graphene-activated carbon composite prepared by chemical activation,” RSC Adv., vol. 2, no. 20, pp. 7747–7753, 2012.
[14] X. Xu, Z. Sun, D. H. C. Chua, and L. Pan, “Novel nitrogen doped graphene sponge with ultrahigh capacitive deionization performance,” Sci. Rep., vol. 5, p. 11225, Jun. 2015.
[15] X. Wen, D. Zhang, T. Yan, J. Zhang, and L. Shi, “Three-dimensional graphene-based hierarchically porous carbon composites prepared by a dual-template strategy for capacitive deionization,” J. Mater. Chem. A, vol. 1, no. 39, pp. 12334–12344, 2013.
[16] Z.-Y. Yang, L.-J. Jin, G.-Q. Lu, Q.-Q. Xiao, Y.-X. Zhang, L. Jing, X.-X. Zhang, Y.-M. Yan, and K.-N. Sun,“Sponge-Templated Preparation of High Surface Area Graphene with Ultrahigh Capacitive Deionization Performance,” Adv. Funct. Mater., vol. 24, no. 25, pp. 3917–3925, 2014.
[17] H. Yin, S. Zhao, J. Wan, H. Tang, L. Chang, L. He, H. Zhao, Y. Gao, and Z. Tang, “Three-Dimensional Graphene/Metal Oxide Nanoparticle Hybrids for High-Performance Capacitive Deionization of Saline Water,” Adv. Mater., vol. 25, no. 43, pp. 6270–6276, 2013.
[18] H. Wang, D. Zhang, T. Yan, X. Wen, J. Zhang, L. Shi, and Q. Zhong, “Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization,” J Mater Chem A, vol. 1, no. 38, pp. 11778–11789, 2013.
[19] W. Shi, H. Li, Z. Cao, Z. Y. Leong, J. Zhang, T. Chen, H. Zhang, and H. Y. Yang., “Ultrahigh Performance of Novel Capacitive Deionization Electrodes based on A Three-Dimensional Graphene Architecture with Nanopores,” Sci. Rep., vol. 6, p. 18966, Jan. 2016.
[20] “The American Heritage Science Dictionary, Houghton Mifflin Company.” [Online]. Available: http://www.dictionary.com/browse/desalination. [Accessed: 19-Apr-2017].
[21] P. G. Youssef, R. K. AL-Dadah, and S. M. Mahmoud, “Comparative Analysis of Desalination Technologies,” Int. Conf. Appl. Energy ICAE2014, vol. 61, pp. 2604–2607, Jan. 2014.
[22] H. T. El-Dessouky and H. M. Ettouney, “Preface,” in Fundamentals of Salt Water Desalination, Amsterdam: Elsevier Science B.V., 2002, pp. VII–X.
[23] J. L. P.E, “Advancements in Desalination.” South Texas AWWA/WEAT, 2013.
[24] T. Humplik, L. Jee, S. C. O'Hern, B. A. Fellman,M. A. Baig, S. F. Hassan, M. A. Atieh, F. Rahman, T. Laoui, R. Karnik, and E. N. Wang, “Nanostructured materials for water desalination,” Nanotechnology, vol. 22, no. 29, p. 292001, 2011.
[25] M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser, “Water desalination via capacitive deionization: what is it and what can we expect from it?,” Energy Env. Sci, vol. 8, no. 8, pp. 2296–2319, 2015.
[26] M. A. Anderson, A. L. Cudero, and J. Palma, “Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?,” Electrochimica Acta, vol. 55, no. 12, pp. 3845–3856, 2010.
[27] S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, “Review on the science and technology of water desalination by capacitive deionization,” Prog. Mater. Sci., vol. 58, no. 8, pp. 1388–1442, Oct. 2013.
[28] P. M. Biesheuvel, R. Zhao, S. Porada, and A. van der Wal, “Theory of membrane capacitive deionization including the effect of the electrode pore space,” J. Colloid Interface Sci., vol. 360, no. 1, pp. 239–248, 2011.
[29] Y. Bouhadana, M. Ben-Tzion, A. Soffer, and D. Aurbach, “A control system for operating and investigating reactors: The demonstration of parasitic reactions in the water desalination by capacitive de-ionization,” Desalination, vol. 268, no. 1–3, pp. 253–261, 2011.
[30] M. E. Sus, T. F. Baumann, W. L. Bourcier, C. M. Spadacini, K. A. Rose, J. G. Santiago, and M. Stadermann, “Capacitive desalination with flow-through electrodes,” Energy Env. Sci, vol. 5, no. 11, pp. 9511–9519, 2012.
[31] S. Jeon, H. Park, J. Yeo, S. C. Yang, C. H. Cho, M. H. Han, and D. K. Kim, “Desalination via a new membrane capacitive deionization process utilizing flow-electrodes,” Energy Env. Sci, vol. 6, no. 5, pp. 1471–1475, 2013.
[32] J. Yang, L. Zou, H. Song, and Z. Hao, “Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology,” Desalination, vol. 276, no. 1–3, pp. 199–206, 2011.
[33] J.-W. Lee, H.-I. Kim, H.-J. Kim, and S.-G. Park, “Electrosorption behavior of Tio 2/Activated carbon composite for capacitive deionization,” Appl. Chem. Eng., vol. 21, no. 3, pp. 265–271, 2010.
[34] P. Długołęcki and A. van der Wal, “Energy Recovery in Membrane Capacitive Deionization,” Environ. Sci. Technol., vol. 47, no. 9, pp. 4904–4910, 2013.
[35] S. Porada, R. Zhao, A. Van Der Wal, V. Presser, and P.M Biesheuvel, “Review on the science and technology of water desalination by capacitive deionization,” Prog. Mater. Sci., 2013.
[36] B. Jia and W. Zhang, “Preparation and Application of Electrodes in Capacitive Deionization (CDI): a State-of-Art Review,” Nanoscale Res. Lett., vol. 11, p. 64, 2016.
[37] J. A.M and N. John, “Desalting by Means of Porous Carbon Electrodes,” Electrochimica Acta, vol. 118, no. 3, pp. 510–517, Mar. 1971.
[38] A. Bockris and A. Reddy, Modern Electrochemistry 2B: Electrodics in Chemistry, Engineering, Biology and Environmental Science. Kluwic Academic Publishers, 2000.
[39] P. M. Biesheuvel, “Thermodynamic cycle analysis for capacitive deionization,” J. Colloid Interface Sci., vol. 332, no. 1, pp. 258–264, 2009.
[40] P. M. Biesheuvel, B. van Limpt, and A. van der Wal, “Dynamic Adsorption/Desorption Process Model for Capacitive Deionization,” J. Phys. Chem. C, vol. 113, no. 14, pp. 5636–5640, 2009.
[41] R. Zhao, P. M. Biesheuvel, H. Miedema, H. Bruning, and A. van der Wal, “Charge Efficiency: A Functional Tool to Probe the Double-Layer Structure Inside of Porous Electrodes and Application in the Modeling of Capacitive Deionization,” J. Phys. Chem. Lett., vol. 1, no. 1, pp. 205–210, 2010.
[42] M. Noked, E. Avraham, A. Soffer, and D. Aurbach, “The Rate-Determining Step of Electroadsorption Processes into Nanoporous Carbon Electrodes Related to Water Desalination,” J. Phys. Chem. C, vol. 113, no. 51, pp. 21319–21327, 2009.
[43] L. Pilon, H. Wang, and A. d’Entremont, “Recent Advances in Continuum Modeling of Interfacial andTransport Phenomena in Electric Double Layer Capacitors,” J. Electrochem. Soc., vol. 162, 2015.
[44] J.-H. Lee, W.-S. Bae, and J.-H. Choi, “Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process,” Desalination, vol. 258, no. 1–3, pp. 159–163, 2010.
[45] J.-H. Choi, “Determination of the electrode potential causing Faradaic reactions in membrane capacitive deionization,” Desalination, vol. 347, pp. 224–229, Aug. 2014.
[46] Y. Bouhadana, E. Avraham, M. Noked, M. Ben-Tzion, A. Soffer, and D. Aurbach, “Capacitive Deionization of NaCl Solutions at Non-Steady-State Conditions: Inversion Functionality of the Carbon Electrodes,” J. Phys. Chem. C, vol. 115, no. 33, pp. 16567–16573, 2011.
[47] D. He, C. E. Wong, W. Tang, P. Kovalsky, and T. D. Waite, “Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization,” Environ. Sci. Technol. Lett., vol. 3, no. 5, pp. 222–226, 2016.
[48] M. Cho, V. Gandhi, T.-M. Hwang, S. Lee, and J.-H. Kim, “Investigating synergism during sequential inactivation of MS-2 phage and Bacillus subtilis spores with UV/H2O2 followed by free chlorine,” Water Res., vol. 45, no. 3, pp. 1063–1070, 2011.
[49] D. Rubio, “Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV–Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater,” Water Res., vol. v. 47, pp. 6367–6379, Oct. 2013.
[50] A. Omosebi, X. Gao, J. Rentschler, J. Landon, and K. Liu, “Continuous operation of membrane capacitive deionization cells assembled with dissimilar potential of zero charge electrode pairs,” J. Colloid Interface Sci., vol. 446, pp. 345–351, 2015.
[51] S. Porada, L. Borchardt, M. Ozhatz, M. Bryjak, J. S. Atchison, K. J. Keesman, S. Kaskel, P. M. Bieshevuel, and V. Presser, “Direct prediction of the desalination performance of porous carbon electrodes for capacitive deionization,” Energy Env. Sci, vol. 6, no. 12, pp. 3700–3712, 2013.
[52] T. Kim and J. Yoon, “CDI ragone plot as a functional tool to evaluate desalination performance in capacitive deionization,” RSC Adv, vol. 5, no. 2, pp. 1456–1461, 2015.
[53] R. Zhao, O. Satpradit, H. H. M. Rijnaarts, P. M. Biesheuvel, and A. van der Wal, “Optimization of salt adsorption rate in membrane capacitive deionization,” Water Res., vol. 47, no. 5, pp. 1941–1952, Apr. 2013.
[54] S. Porada, D. Weingarth, H. V. M. Hamelers, M. Bryjak, V. Presser, and P. M. Biesheuvel, “Carbon flow electrodes for continuous operation of capacitive deionization and capacitive mixing energy generation,” J. Mater. Chem. A, vol. 2, no. 24, pp. 9313–9321, 2014.
[55] Y. Oren, “Capacitive deionization (CDI) for desalination and water treatment — past, present and future (a review),” Desalination, vol. 228, no. 1, pp. 10–29, Aug. 2008.
[56] E. R. Nightingale, “Phenomenological Theory of Ion Solvation. Effective Radii of Hydrated Ions,” J. Phys. Chem., vol. 63, no. 9, pp. 1381–1387, Sep. 1959.
[57] J. Rouquerol, D. Avnir, D. H. Everett, C. Fairbridge, M. Haynes, N. Pernicore, J. D. F. Ramsay, K. S. W. Sing, and K. K Unger, “Guidelines for the Characterization of Porous Solids,” Charact. Porous Solids III, vol. 87, pp. 1–9, Jan. 1994.
[58] H. Marsh and F. Rodríguez-Reinoso, “Preface,” in Activated Carbon, Oxford: Elsevier Science Ltd, 2006, pp. xv–xvi.
[59] L. Zou, G. Morris, and D. Qi, “Using activated carbon electrode in electrosorptive deionisation of brackish water,” Desalination, vol. 225, no. 1, pp. 329–340, May 2008.
[60] R. W. Pekala, C. T. Alviso, F. M. Kong, and S. S. Hulsey, “Aerogels derived from multifunctional organic monomers,” J. Non-Cryst. Solids, vol. 145, pp. 90–98, Jan. 1992.
[61] C.-M. Yang, W.-H. Choi, B.-K. Na, B. W. Cho, and W. I. Cho, “Capacitive deionization of NaCl solution with carbon aerogel-silicagel composite electrodes,” Desalination, vol. 174, no. 2, pp. 125–133, Apr. 2005.
[62] C. J. Gabelich, Pei Xu, and Y. Cohen, “Concentrate Treatment forInland Desalting,” Sustain. Sci. Eng., vol. 2, pp. 295–326, 2010.
[63] Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, and S. Dai, “Carbon Materials for Chemical Capacitive Energy Storage,” Adv. Mater., vol. 23, no. 42, pp. 4828–4850, 2011.
[64] T. Kyotani, J. Chmiola, and Y. Gogotsi, “Carbide-Derived Carbons and Templated Carbons,” in Carbons for Electrochemical Energy Storage and Conversion Systems, 0 vols., CRC Press, 2009, pp. 77–113.
[65] L. Zou, L. Li, H. Song, and G. Morris, “Using mesoporous carbon electrodes for brackish water desalination,” Water Res., vol. 42, no. 8–9, pp. 2340–2348, Apr. 2008.
[66] L. Li, L. Zou, H. Song, and G. Morris, “Ordered mesoporous carbons synthesized by a modified sol–gel process for electrosorptive removal of sodium chloride,” Carbon, vol. 47, no. 3, pp. 775–781, Mar. 2009.
[67] Z. Linda, “Linda Zou (2011). Developing Nano-Structured Carbon Electrodes for Capacitive Brackish Water Desalination, Expanding Issues in Desalination, Prof. Robert Y. Ning (Ed.), InTech, DOI: 10.5772/19852. Available from: https://www.intechopen.com/books/expanding-issues-in-desalination/developing-nano-structured-carbon-electrodes-for-capacitive-brackish-water-desalination,” InTech, 2011.
[68] W. Choi and J. Lee, Graphene : Synthesis and Applications. CRC Press, 2011.
[69] A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, and A. Rousset, “Specific surface area of carbon nanotubes and bundles of carbon nanotubes,” Carbon, vol. 39, no. 4, pp. 507–514, Apr. 2001.
[70] D. Zhang, X. Wen, L. Shi, T. Yan, and J. Zhang, “Enhanced capacitive deionization of graphene/mesoporous carbon composites,” Nanoscale, vol. 4, no. 17, pp. 5440–5446, 2012.
[71] R. Zhao, V. Soesthergen M, A. van der Wal, M. Z. Bazant, and P. M. Biesheuvel, “Time-dependent ion selectivity in capacitive charging of porous electrodes,” J. Colloid Interface Sci., 2012.
[72] R. Zhao, P. M. Biesheuvel, and A. van der Wal, “Energy consumption and constant current operation in membrane capacitive deionization,” Energy Env. Sci, vol. 5, no. 11, pp. 9520–9527, 2012.
[73] H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, “Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes,” Water Res., vol. 42, no. 20, pp. 4923–4928, Dec. 2008.
[74] G. Wang, C. Pan, L. Wang, Q. Dong, C. Yu, Z. Zhao, and J. Qiu, “Activated carbon nanofiber webs made by electrospinning for capacitive deionization,” Electrochimica Acta, vol. 69, pp. 65–70, May 2012.
[75] D. Zhang, L. Shi, J. Fang, K. Dai, and X. Li, “Preparation and desalination performance of multiwall carbon nanotubes,” Mater. Chem. Phys., vol. 97, no. 2–3, pp. 415–419, Jun. 2006.
[76] H.-J. Oh, J.-H. Lee, H.-J. Ahn, Y. Jeong, Y.-J. Kim, and C.-S. Chi, “Nanoporous activated carbon cloth for capacitive deionization of aqueous solution,” Int. Conf. Surf. Coat. Nanostructured Mater. 2005, vol. 515, no. 1, pp. 220–225, Sep. 2006.
[77] J. Li, X. Wang, Q. Huang, S. Gamboa, and P. J. Sebastian, “Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor,” J. Power Sources, vol. 158, no. 1, pp. 784–788, Jul. 2006.
[78] Z. Peng, D. Zhang, L. Shi, T. Yan, S. Yuan, H. Li, R. Gao, and J. Fang, “Comparative Electroadsorption Study of Mesoporous Carbon Electrodes with Various Pore Structures,” J. Phys. Chem. C, vol. 115, no. 34, pp. 17068–17076, Sep. 2011.
[79] X. Gu, M. Hu, Z. Du, J. Huang, and C. Wang, “Fabrication of mesoporous graphene electrodes with enhanced capacitive deionization,” Electrochimica Acta, vol. 182, pp. 183–191, Nov. 2015.
[80] Y. Zhu, S. Murali, M. D. Stoller, A. Velamakanni, R. D. Piner, and R. S. Ruoff, “Microwave assisted exfoliation and reduction of graphite oxide for ultracapacitors,” Carbon, vol. 48, no. 7, pp. 2118–2122, Jun. 2010.
[81] C.-H. Hou, J.-F. Huang, H.-R. Lin, and B.-Y. Wang, “Preparation of activated carbon sheet electrode assisted electrosorption process,” J. Taiwan Inst. Chem. Eng., vol. 43, no. 3, pp. 473–479, May 2012.
[82] M. Bradley, “FTIR Basics,” ThermoFisher Scientific, 2017.
[83] Lucideon team, “Brunauer-Emmett-Teller (BET) Surface Area Analysis and Barrett-Joyner-Halenda (BJH) Pore Size and Volume Analysis,” .com, 2017. .
[84] Renishaw, “A basif of review of Raman Spectroscopy,” Renishaw apply innovation, 2017. .
[85] Shimadzu, “Wide-Range Array Detector with 1280 Channels,” Shimadzu Excellence in Science, 2017. .
[86] I. A. Sahito, K. C. Sun, A. A. Arbab, M. B. Qadir, and S. H. Jeong, “Graphene coated cotton fabric as textile structured counter electrode for {DSSC},” Electrochimica Acta, vol. 173, pp. 164–171, 2015.
[87] Y. Huang, J. Liang, and Y. Chen, “An Overview of the Applications of Graphene-Based Materials in Supercapacitors,” Small, vol. 8, no. 12, pp. 1805–1834, 2012.
[88] M. J. McAllister, J.-L. Li, D. H. Adamson, H. C. Schiniepp, A. A. Abdala, J. Liu, M. Herrera-Alonso, D. L. Milius, R. Car, R. K. Prud'homme, and I. A. Aksay., “Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite,” Chem. Mater., vol. 19, no. 18, pp. 4396–4404, 2007.
[89] J. G. Radich and P. V. Kamat, “Making Graphene Holey. Gold-Nanoparticle-Mediated Hydroxyl Radical Attack on Reduced Graphene Oxide,” ACS Nano, vol. 7, no. 6, pp. 5546–5557, Jun. 2013.
[90] T. N. Blanton and D. Majumdar, “Characterization Of X-Ray Irradiated Graphene Oxide Coatings Using X-Ray Diffraction, X-Ray Photoelectron Spectroscopy, and Atomic Force Microscopy.” JCPDS-International Centre for Diffraction, 2013.
[91] Y. Li and K. Wu, Modification of ZIF-8 derivd, N-Doped Porous Carbon Electrodes for High Performance Capacitive Deionization, 1st ed. Taipei Taiwan: National Taiwan University, 2017.
[92] H. Dehsari Shafiri, F. Afshar Taromi, E. Khodabakhshi Shalamzari, J. Nasrollah, and S. Ghanbary, “Highly Conductive and Transparent Graphene Oxide modfied PEDOT: OSS Films as Strecthable and Flexible Transparent Electrodes.,” 11th Int. Semin. Polym. Sci. Technol.
[93] M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-Based Ultracapacitors,” Nano Lett., vol. 8, no. 10, pp. 3498–3502, 2008.
[94] Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, “Supercapacitor Devices Based on Graphene Materials,” J. Phys. Chem. C, vol. 113, no. 30, pp. 13103–13107, 2009.
[95] G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, and K. M. Abramski, “Graphene Oxide vs. Reduced Graphene Oxide as saturable absorbers for Er-doped passively mode-locked fiber laser.” Optical Society of America, 2012.
[96] J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, and S. Guo, “Reduction of graphene oxide vial-ascorbic acid,” Chem. Commun., vol. 46, no. 7, pp. 1112–1114, 2010.
[97] Thermo scientific inc, “Oxygen non-metal,” Thermo Scientific XPS, 2016. .
[98] W.-C. Chen, T.-C. Wen, and H. Teng, “Polyaniline-deposited porous carbon electrode for supercapacitor,” Electrochimica Acta, vol. 48, no. 6, pp. 641–649, 2003.
[99] H. Li, L. Zou, L. Pan, and Z. Sun, “Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization,” Sep. Purif. Technol., vol. 75, no. 1, pp. 8–14, 2010.