| 研究生: |
陳泓政 Chen, Hung-Cheng |
|---|---|
| 論文名稱: |
燃料電池用之甲醇重組器氫氣產生研究 Study on the Hydrogen Generation by the Methanol Reformer for a PEM Fuel Cell |
| 指導教授: |
邱輝煌
Chiu, Hui-Huang 賴維祥 Lai, Wei-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 燃料電池 、甲醇 、重組器 、氫氣 |
| 外文關鍵詞: | Fuel Cell, Methanol, Reformer, Hydrogen |
| 相關次數: | 點閱:137 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
燃料電池逐漸地成為潔淨新能源的代名詞,其中PEM型燃料電池的技術最成熟。而PEMFC所使用的燃料為氫氣和氧氣,氧氣可取自於大氣,氫氣可由儲氫材料或重組製氫來供應。使用儲氫材料,其填充上不方便,而且儲氫的密度低。利用重組反應製氫,由不同燃料可發展出不同的重組反應。甲醇具有重組反應溫度低(約250~350℃)、燃料品質高(硫含量<5ppm)、易於貯存、運輸等優點,室溫為液體,符合目前填充汽油的方式,因此研究甲醇重組器是促進燃料電池普及化的一項重要關鍵。
為了對甲醇重組反應的特性有進一步的了解,本研究設計並製造一管型甲醇重組器,長約420 mm、內徑約44 mm,使用G66B商業觸媒進行實驗,將依比例配好的燃料(甲醇與水)經由液體幫浦輸送到加熱蒸發段,加熱蒸發後進到甲醇重組器中,在預熱段與空氣混合並且加熱到需求之反應溫度,到達反應區,反應後的產物經由冷凝器,將產物中殘餘的水及甲醇冷凝析出,氣體送至氣相層析儀進行氣體成分分析。本研究用水對甲醇莫耳比(S/C)、氧氣對甲醇莫耳比(O/C)、反應溫度及進料率,來當實驗參數,觀察甲醇重組器的性能表現,如氫氣濃度、一氧化碳濃度、氫氣莫耳產生率及甲醇轉化率等。
本研究所設計甲醇重組器及分析系統已可順利運作,進料採用加熱蒸發方式。關於甲醇蒸汽重組反應,進料中水對甲醇的莫耳比控制在1.8為較佳的進料條件。在進行甲醇蒸汽重組反應與甲醇部份氧化重組反應的比較實驗,結果比較顯示後者顯然比前者更適合用在甲醇重組器中。在甲醇部分氧化重組實驗結果中,O/C控制在0.2為較佳的控制條件。本甲醇重組器在S/C=1.8、O/C=0.2、進料率6 ml/min、反應溫度為350℃情況下,氫氣的最大產率為0.145 mole/min,一氧化碳的莫耳濃度約為2.45%,約可供應燃料電池260瓦的電力輸出。
Abstract
Fuel Cell generally becomes the pronoun of new and clear power. Among different types of fuel cells, the PEM Fuel Cell (PEMFC) is the most mature in technology. The fuels for the PEMFC are hydrogen and oxygen. Oxygen can be obtained from air, but the hydrogen must be derived from metal hydrides or from the reforming product. When metal hydride is used as the source of hydrogen, the storage density of hydrogen is low and it is not convenient to refill. The reforming reaction to generate hydrogen is an alternative choice. Different reforming reactions are developed with different fuels. As a liquid fuel for producing hydrogen, methanol has many advantages, such as low steam to carbon ratio, low reforming temperatures (250~350℃), high quality (sulfur <5 ppm), ease of storage and transportation.
To further understand the characteristics of the methanol reformer, a tube-type methanol reformer is designed (Length: 420mm, inner diameter: 44mm) with the commercial catalyst G66B in this experiment. Methanol and water are sent to the vaporizing section by the liquid pump, and then sent to the methanol reformer after the vaporizing process. Premixing with the air is performed in the preheating section of the methanol reformer and the mixture is heated to the required reacting temperature before entering the reaction section. The reforming product then passes through the cooler system where the resident water and methanol will be condensed out. Part of product gas is further sent to the GC to analyze the species of the gas. In this study, effects of experimental parameters of the design methanol reformer, such as steam-to-methanol mole ratio (S/C), oxygen-to-methanol mole ratio (O/C), reacting temperature and feeding rate, are investigated and the performance of the methanol reformer is evaluated.
The result of the designed methanol reformer works well. In the experiment results, about the methanol steam reforming reaction, controlling the S/C at 1.2, 1.8, and 2.0, S/C=1.8 is the best feeding condition among these experiments. In the comparison experiment between the methanol steam reforming reaction and the methanol autothermal reforming reaction, it appears that the latter is obviously more suitable for the methanol reformer. About the methanol autothermal reforming, controlling the O/C at 0.2 is a better feeding condition. At S/C = 1.8, O/C = 0.2, feeding rate = 6ml/min, and reaction temperature = 350℃, the maximum rate of hydrogen generation is about 0.145 mole/min, which is equivalent to a 260-Watt power output of the PEM Fuel Cell; meanwhile, the carbon-monoxide mole concentration is about 2.45%.
參考文獻
1. Adamson, K.A., Pearson, P., “Hydrogen and methanol: a comparison of safety, economics, efficiencies and emissions,” Journal of Power Source, 86, pp. 548~555, 2000.
2. Ahmed, S., Kumar, R., Krumpelt, M., “Methanol Partial Oxidation Reformer,” United States Patent, Patent Number:5,942,346, 1999.
3. Alejo, L., Lago, R., Peña, M.A., Fierro, J.L.G., ”Partial Oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts,” Applied Catalysis A:General, 162, pp. 281~297, 1997.
4. Asprey, S. P., Wojciechowski, B. W., Peppley, B. A., “Kinetic studies using temperature-scanning: the steam-reforming of methanol,” Applied Catalysis A:General, 179, pp. 51~70, 1999.
5. Brown, L. F.,“ A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles,” International Journal of Hydrogen Energy, 26, pp. 381~397, 2001.
6. Edwards, N., Ellis, S. R., Frost, J. C., Golunski, S. E., Keulen, A. N.J. van, Lindewald, N. G., Reinkingh, J. G., “ On-board hydrogen generation for transport applications: the HotSpot(TM) methanol processor,” Journal of Power Source, 71, pp. 123~128, 1998.
7. Emonts, B., “Catalytic radiant burner for stationary and mobile applications,” Catalysis Today, 47, pp.407~414, 1999.
8. Han, J., Kim, I.S., Choi, K.S., “Purifier-integrated methanol reformer for fuel cell vehicles,” Journal of Power Source, 86, pp. 223~227, 2000.
9. Höhlein, B., Boe M., Bøgild-Hausen, J., Bröckerhoff , P., Colsman, G., Emonts, B., Menzer, R., Riedel, E., “Hydrogen from methanol for fuel cells in mobile systems: development of a compact reformer,” Journal of Power Source, 61, pp.143~147, 1996.
10. Joon, K., “Fuel Cells-a 21st century power system,” Journal of Power Source, 71, pp. 12~18, 1998.
11. Kolios, G., Frauhammer, J., Eigenberger, G., “ Review Autothermal fixed –bed reactor concepts,” Chemical Engineering Science, 55, pp. 5945~5967, 2000.
12. Lin, Y.M., Rei, M.H., “Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor,” Catalysis Today, 67, pp. 77~84, 2001.
13. Mizsey, P., Newson, E., Truong, T.B., Hottinger, P., “The kinetics of methanol decomposition: a part of autothermal partial oxidation to produce hydrogen for fuel cells,” Applied Catalysis A:General, 213, pp. 233~237, 2001.
14. Emonts, B., “Catalytic radiant burner for stationary and mobile applications,” Catalysis Today, 47, pp.407~414, 1999.
15. Peppley, B. A., Amphlett, J. C., Kearns, L. M., Ronald F. M., “Methanol-steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction work,” Applied Catalysis A:General, 179, pp. 21-29, 1999.
16. Peters, R., Düsterwald, H.G., Höhlein, B., “Inverstigation of a methanol reformer concept considering the particular impact of dynamics and long-term stability for use in a fuel-cell-powered passenger car,” Journal of Power Source, 86, pp. 507~514, 2000.
17. Utaka, T., Sekizawa, K., Eguchi, K., “CO removal by oxygen-assisted water gas shift reaction over supported Cu catalysts,” Applied Catalysis A:General, 194-195, pp. 21~26, 2000.
18. Velu, S., Suzuki, K., Kapoor, M.P., Ohashi, F., Osaki, T., “Selective production of hydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-Oxide catalysts,” Applied Catalysis A:General, 213, pp. 47~63, 2001.
19. Wiese, W., Emonts, B., Peters, R., “Methanol steam reforming in a fuel cell drive system,” Journal of Power Source, 84, pp. 187~193, 1999.
20. 王森偉, “在銅鋅觸媒上以甲醇製造氫氣之動力學研究,” 碩士論文,清華大學化學工程研究所,民國75年。
21. 宋隆裕, “燃料電池用甲醇重組器之測試研究,” 能源季刊,第二十四卷 第一期,pp. 69~88,民國83年。
22. 黃大仁, “小型甲醇重組器技術開發-期末報告,” 工業技術研究院能資所委託研究計畫,民國89年。
23. 張蕙芳, “二十一世紀的發電技術-燃料電池,” 能源季刊,第二十三卷 第四期,pp. 64~78,民國82年。