簡易檢索 / 詳目顯示

研究生: 黃鈺翔
Huang, Yu-Hsiang
論文名稱: 電漿輔助氣化產氫研究
Plasma-Assisted Gasification for Hydrogen Production Research
指導教授: 王偉成
Wang, Wei-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 54
中文關鍵詞: 生物質氣化下沉式氣化爐氫氣等離子電弧輔助氣化
外文關鍵詞: Biomass gasification, downdraft gasifier, hydrogen, plasma assisted gasification
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 i Extended Abstract ii 致謝 viii 目錄 ix 表目錄 xi 圖目錄 xii 第一章 1 前言 1 第二章 9 實驗設置 9 2.1. 原料 9 2.1.1. 原料特性 9 2.1.2 原料之熱重分析 10 2.2. 下沉式電熱氣化爐體 12 2.3. 底部集渣槽 14 2.4. 等離子電弧技術輔助 14 2.5. 實驗參數 15 2.6. 分析方法 16 2.6.1. 固態產物分析 16 2.6.2. 合成氣氣體分析 16 2.6.3. 液態產物分析 17 2.7. 計算方法 17 2.7.1. H2/CO比 17 2.7.2.氫氣產量計算18 2.7.3.碳轉換效率(CCE) 18 2.7.4.氣體之低熱值(LHVsyngas) 18 第三章 19 結果與討論 19 3.1. 爐體設計之影響 19 3.2. 不同進料率之影響 22 3.3. 不同溫度下之影響 24 3.3.1. 700~850 ℃ 之合成氣組分 24 3.3.2. H2/CO比與氣體低熱值 27 3.3.3. 各溫度之氣體產量 28 3.4. 副產物分析 29 3.4.1. 液態殘留物 30 3.4.2. 固態殘留物 31 3.5. 等離子電弧輔助氣化 33 第四章 36 結論 36 參考文獻 37

    [1] N. Striūgas, K. Zakarauskas, A. Džiugys, R. Navakas, and R. Paulauskas, "An evaluation of performance of automatically operated multi-fuel downdraft gasifier for energy production," Applied thermal engineering, vol. 73, no. 1, pp. 1151-1159, 2014.
    [2] A. Tamošiūnas et al., "The potential of thermal plasma gasification of olive pomace charcoal," Energies, vol. 10, no. 5, p. 710, 2017.
    [3] A. Tamošiūnas et al., "Biomass gasification to syngas in thermal water vapor arc discharge plasma," Biomass Conversion and Biorefinery, vol. 13, no. 18, pp. 16373-16384, 2023.
    [4] A. Tamošiūnas, D. Gimžauskaitė, R. Uscila, and M. Aikas, "Thermal arc plasma gasification of waste glycerol to syngas," Applied Energy, vol. 251, p. 113306, 2019.
    [5] G. Marland, T. A. Boden, and R. J. Andres, "Global, regional, and national fossil fuel CO2 emissions," Environmental System Science Data Infrastructure for a Virtual Ecosystem …, 1985.
    [6] F. Creutzig et al., "Catching two European birds with one renewable stone: Mitigating climate change and Eurozone crisis by an energy transition," Renewable and Sustainable Energy Reviews, vol. 38, pp. 1015-1028, 2014.
    [7] B. f. W. u. Energie, "Erneuerbare Energien in Zahlen—Nationale Und Internationale Entwicklung im Jahr 2017," 2018.
    [8] X. J. Yang, H. Hu, T. Tan, and J. Li, "China's renewable energy goals by 2050," Environmental Development, vol. 20, pp. 83-90, 2016.
    [9] 闕棟鴻, 許雅音, and 林祥輝, "日本能源轉型政策方向與我國借鏡,"臺灣經濟研究月刊, vol. 42, no. 10, pp. 124-134, 2019.
    [10] T.-L. Lin and F.-T. Cheng, "Energy democracy and energy transition in Taiwan," Energy Transition and Energy Democracy in East Asia, p. 67, 2022.
    [11] H. P. Putra, E. Hilmawan, A. Darmawan, K. Mochida, and M. Aziz, "Theoretical and experimental investigation of ash-related problems during coal co-firing with different types of biomass in a pulverized coal-fired boiler," Energy, vol. 269, p. 126784, 2023.
    [12] L.-Y. JHANG. " 農 業 生 質 能 源 利 用 現 況 與 未 來 發 展 簡 介 ."https://km.twenergy.org.tw/ReadFile/?p=KLBase&n=201932595820.odt (accessed.
    [13] A. Inayat et al., "A comprehensive review on advanced thermochemical processes for bio-hydrogen production via microwave and plasma technologies," Biomass Conversion and Biorefinery, pp. 1-10, 2020.
    [14] H. Huang and L. Tang, "Treatment of organic waste using thermal plasma pyrolysis technology," Energy Conversion and Management, vol. 48, no. 4, pp. 1331-1337, 2007.37
    [15] M. Hlina, M. Hrabovsky, T. Kavka, and M. Konrad, "Production of high quality syngas from argon/water plasma gasification of biomass and waste," Waste management,vol. 34, no. 1, pp. 63-66, 2014.
    [16] Q. Zhang, L. Dor, D. Fenigshtein, W. Yang, and W. Blasiak, "Gasification of municipal solid waste in the Plasma Gasification Melting process," Applied Energy, vol. 90, no. 1,pp. 106-112, 2012.
    [17] J.-L. Shie, L.-X. Chen, K.-L. Lin, and C.-Y. Chang, "Plasmatron gasification of biomass lignocellulosic waste materials derived from municipal solid waste,"Energy, vol. 66,pp. 82-89, 2014.
    [18] F. Saleem, J. Harris, K. Zhang, and A. Harvey, "Non-thermal plasma as a promising route for the removal of tar from the product gas of biomass gasification–A critical review," Chemical Engineering Journal, vol. 382, p. 122761, 2020.
    [19] L. Devi, K. J. Ptasinski, and F. J. Janssen, "A review of the primary measures for tar elimination in biomass gasification processes," Biomass and bioenergy, vol. 24, no. 2,pp. 125-140, 2003.
    [20] P. Parthasarathy, K. S. Narayanan, S. Ceylan, and N. A. Pambudi, "Optimization of parameters for the generation of hydrogen in combined slow pyrolysis and steam gasification of biomass," Energy & fuels, vol. 31, no. 12, pp. 13692-13704, 2017.
    [21] X. Zheng, C. Chen, Z. Ying, and B. Wang, "Experimental study on gasification performance of bamboo and PE from municipal solid waste in a bench-scale fixed bed reactor," Energy Conversion and Management, vol. 117, pp. 393-399, 2016.
    [22] P. Lv, Z. Yuan, L. Ma, C. Wu, Y. Chen, and J. Zhu, "Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier," Renewable energy, vol. 32, no. 13, pp. 2173-2185, 2007.
    [23] S. J. Yoon and J.-G. Lee, "Hydrogen-rich syngas production through coal and charcoal gasification using microwave steam and air plasma torch," international journal of hydrogen energy, vol. 37, no. 22, pp. 17093-17100, 2012.
    [24] Y. Pang, Plasma-assisted Gasification of Biomass and its Byproducts. Friedrich-Alexander-Universitaet Erlangen-Nuernberg (Germany), 2020.
    [25] A. Anand, S. Gautam, and L. C. Ram, "A characteristic-based decision tree approach for sustainable energy applications of biomass residues from two major classes," Fuel, vol. 339, p. 127483, 2023.
    [26] A. Chouchene et al., "Energetic valorisation of olive mill wastewater impregnated on low cost absorbent: Sawdust versus olive solid waste," Energy, vol. 39, no. 1, pp. 74- 81, 2012.
    [27] J. Lehmusto, F. Tesfaye, O. Karlström, and L. Hupa, "Ashes from challenging fuels in the circular economy," Waste Management, vol. 177, pp. 211-231, 2024.38
    [28] M. Aravindan et al., "Fuelling the future: A review of non-renewable hydrogenproduction and storage techniques," Renewable and Sustainable Energy Reviews, vol. 188, p. 113791, 2023.
    [29] M. Martinelli, M. K. Gnanamani, S. LeViness, G. Jacobs, and W. D. Shafer, "An overview of Fischer-Tropsch Synthesis: XtL processes, catalysts and reactors," Applied Catalysis A: General, vol. 608, p. 117740, 2020.
    [30]J. Lehmusto, F. Tesfaye, O. Karlström, and L. Hupa, "Ashes from challenging fuels in the circular economy," Waste Management, vol. 177, pp. 211-231, 2024.
    [31]M. Aravindan et al., "Fuelling the future: A review of non-renewable hydrogen production and storage techniques," Renewable and Sustainable Energy Reviews, vol. 188, p. 113791, 2023.
    [32]M. Martinelli, M. K. Gnanamani, S. LeViness, G. Jacobs, and W. D. Shafer, "An overview of Fischer-Tropsch Synthesis: XtL processes, catalysts and reactors," Applied Catalysis A: General, vol. 608, p. 117740, 2020.

    無法下載圖示 校內:2029-08-22公開
    校外:2029-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE