研究生: |
簡喬亭 Chien, Chiao-Ting |
---|---|
論文名稱: |
案例式概念知識精煉之研究 A case-based refinement of conceptual knowledge |
指導教授: |
李昇暾
Li, Sheng-Tun |
學位類別: |
碩士 Master |
系所名稱: |
管理學院 - 資訊管理研究所 Institute of Information Management |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 45 |
外文關鍵詞: | Information Retrieval, F-Measure, Concepts Similarity, Formal Concept Analysis, Average Precision |
相關次數: | 點閱:111 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於專家內隱知識的具體化一直都是個值得探討的議題,也因此一直以來有許多的研究朝此方向發展。透過正規概念分析法可將專家知識具體概念化後,利用知識地圖的方式來呈現專家知識的概念是如何相互繼承與關聯。於是,如何利用具體化後的知識亦形成另一個重要的議題,亦即一旦當專家知識過於複雜龐大時,即使正規概念分析法仍舊能將其結構化表示,然而卻難以簡潔地提供決策者進行判讀。另一方面,當有取得新進資訊時,龐大複雜的知識地圖中大部份的正規概念與其相關性明顯較低,以致於其知識地圖難以有效利用的問題更形嚴重。因此本研究將著手於透過已結構化的知識中找出與其相關的概念結構方式,以進一步來抽取出相關正規概念並進行重新組織以提供最相關也最簡潔的知識結構供決策者參考利用。
Formation of knowledge maps from experts’ implicit knowledge is an important issue. In order to improve the quality of decision and the sense process, there are many researches which focus on it. Formal concept analysis is an organized and systematical method for presenting experts’ implicit knowledge in a hierarchical and graphical way, revealing the inheritance relationships among concepts. The possibility of creating knowledge maps exists even when the experts’ knowledge is extremely complicated, but the problem relies on how to make the knowledge helpful to decision makers. Moreover, the integration of new information to existent knowledge maps is also an issue that needs to be addressed. This research proposes a method to perform object-concept matching and tries to extract essential information from concept maps to allow reorganization and simplification of a concept lattice with too many objects and attributes hinders human interpretation.
Baeza-Yates, R., & Ribeiro-Neto, B. (1999). Modern information retrieval (1 ed.): Addison Wesley.
Belohlavek, R., Dvořák, J., & Outrata, J. (2007). Fast factorization by similarity in formal concept analysis of data with fuzzy attributes. Journal of Computer and System Sciences, 73(6), 1012-1022.
Buckley, C., & Voorhees, E. M. (2000). Evaluating evaluation measure stability. Paper presented at the Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, Athens, Greece.
Buckley, C., & Voorhees, E. M. (2004). Retrieval evaluation with incomplete information. Paper presented at the Proceedings of the 27th annual international ACM SIGIR conference on Research and development in information retrieval, Sheffield, United Kingdom.
Carpineto, C., & Romano, G. (2004). Concept data analysis theory and applications: John Wiley.
EL-Sayed, & Abou-Zeid. (2003). What can ontologists learn from knowledge management? Journal of Computer Information Systems, 43(3), 109-117.
Formica, A., & Missikoff, M. (2004). Inheritance processing and conflicts in structural generalization hierarchies
ACM Computing Surveys, 36(3), 263-290.
Ganter, B., Stumme, G., & Wille, R. (2005). Formal concept analysis: foundations and applications: Springer.
Ganter, B., & Wille, R. (1999). Formal Concept Analysis. mathematical foundations. Berlin: Springer.
Gordon, J. L. (2006). Creating knowledge maps by exploiting dependent relationships. Knowledge-Based Systems, 13(2-3), 71-79.
Kishida, K. (2005). Property of average precision and its generalization: an examination of evaluation indicator for information retrieval experiments: National Institute of Informatics.
Manning, C. D., Raghavan, P., & Schütze, H. (2007). An Introduction to information retrieval. Cambridge University Press.
Pfaltz, J. L. (2007). Representing numeric values in concept cattices. Depart of computer science, University of Virginia.
Priss, U. (2007). A formal concept analysis homepage. Retrieved December, 1st, 2007, from http://www.fcahome.org.uk/fca.html
Raoa, L., & Osei-Bryson, K.-M. (2007). Towards defining dimensions of knowledge systems quality. Expert Systems with Applications, 33, 368-378.
Rijsbergen, C. J. v. (1998). Information retrieval: uncertainty and logics: advanced models for the representation and retrieval of information (1 ed.): Springer.
Shao, M.-W., Liu, M., & Zhang, W.-X. (2007). Set approximations in Fuzzy Formal Concept Analysis. Fuzzy Sets and Systems, 158(23), 2627-2640.
Sridhar, R., & Iyengar, S. S. (1990). Efficient parallel algorithms for functional dependency manipulations. Paper presented at the International Symposium on Databases for Parallel and Distributed Systems, Dublin, Ireland.
Sutmme, G., Taouil, R., Bastide, Y., & Lakhal, L. (2001). Conceptual clustering with iceberg concept lattices.
Tho, Q. T., Hui, S. C., Fong, A. C. M., & Cao, T. H. (2006). Automatic fuzzy ontology generation for semantic web. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 18(6), 842-856.
Wang, S.-L., Shen, J.-W., & Hong, T.-P. (2001). Incremental discovery of functional dependencies using partitions. Paper presented at the IFSA World Congress and 20th NAFIPS International Conference.
Wille, R. (1982). Restructuring lattice theory: an approach based on hierarchies of concepts. Paper presented at the Ordered Sets.
Wille, R. (1999). Formal concept analysis: tutorial on formal concept analysis. Electronic Notes in Discrete Mathematics, 2, 199-200.
Wolff, K. E. (1994). A first course in Formal Concept Analysis - how to understand line diagrams. Paper presented at the SoftStat'93.
Yevtushenko., S. A. (2000). System of data analysis "Concept Explorer". Paper presented at the Proceedings of the 7th national conference on Artificial Intelligence KII-2000, Russia.