研究生: |
吳奕鴻 Wu, Yi-Hung |
---|---|
論文名稱: |
多驅動器系統之暫態同步運動控制研究 The Study on Synchronized Motion Control in Transients for Multi-actuator Systems |
指導教授: |
田思齊
Tien, Szu-Chi |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 多驅動器系統 、同步運動 、暫態 、控制器區域網路 |
外文關鍵詞: | multi-actuator systems, synchronized motion, transients, Controller Area Network |
相關次數: | 點閱:100 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一個廣義的暫態同步控制方法,可應用於(1)非線性且(2)多輸入多輸出的多驅動器系統。在此定義廣義的同步控制如下:給定 n 個驅動器系統的子系統以及所欲控制的狀態,我們將設計一控制器使得在控制過程中任相鄰之驅動器所控制的狀態誤差之差趨近於 0,且可達成最終的參考狀態。由此定義可知,提出的控制方法可應用於一般常見的同步控制問題(即參考狀態相同),也可應用於參考狀態不同的延伸問題。此外,以多馬達的運動控制為例,我們建立一個多驅動器的運動控制系統以驗證控制方法的有效性。在控制策略方面,本研究採用結合滑動控制的暫態同步控制方法,並提出數學證明以加強過去滑動同步控制方法缺少數學證明的不足之處;在通訊方法上,利用控制器區域網路來建立實現暫態同步運動控制的通訊網路。為了增加通訊效率,網路中各節點以環狀相連的形式編碼並傳遞運動資訊給相鄰的節點。實驗結果顯示,三個有刷直流馬達在變化的參考輸入、建模誤差與驅動器遭受外部干擾的複雜情況下,運用本研究提出之控制方法能達到暫態同步運動。
This study proposes a method to achieve general synchronized motion control in transients which can be applied to systems with (1) nonlinearity and (2) multi-inputs and multi-outputs. It is noted that the general synchronized motion control is defined as follows: given an n-actuator system with states, the objective is to design a controller such that, the desired state of the ith subsystem can be achieved eventually and the errors of the state errors between any two neighboring subsystems can be minimized in the whole control period. Based on this claim, the proposed method can be used for the common synchronized motion control (i.e., the same desired states), and extended for the cases where the desired states are different. In particular, a system consisted of multiple motors is established to conduct motion control experiments to verify the validity of the proposed method. For the control scheme, a method combining the synchronized motion control in transients and the sliding control is adopted and supplemented with a mathematical proof to complement the inadequacy in past researches; as for the communication method, the Controller Area Network bus (CAN bus) is utilized and, in order to increase communication efficiency, all nodes are numbered in a ring-linked format to communicate with the neighboring nodes only during the synchronized motion control. Experimental results show that under varying reference commands, modelling uncertainties, and external disturbances, three brushed DC motors can achieve a synchronized motion in transients with the proposed control method.
[1] J. Woodacre, R. Bauer, and R. Irani, “A review of vertical motion heave
compensation systems,” Ocean Engineering, vol. 104, pp. 140 – 154, Jun. 2015.
[2] Y. Yang, Y. Li, and Z. Wang, “Coordination optimization-based decoupling
control for a multi-degree of freedom hydraulic system,” in Proceedings of
the 2010 IEEE International Conference on Automation and Logistics, Hong
Kong and Macau, Aug. 16–20, 2010, pp. 285–289.
[3] C. Zhang, H. Wu, J. He, and C. Xu, “Consensus tracking for multi-motor sys-
tem via observer based variable structure approach,” Journal of the Franklin
Institute, vol. 352, no. 8, pp. 3366–3377, Feb. 2015.
[4] W. Lu and T. Chen, “Synchronisation in complex networks of coupled systems
with directed topologies,” International Journal of Systems Science, vol. 40,
no. 9, pp. 909–921, Sep. 2009.
[5] J. Jost and M. P. Joy, “Spectral properties and synchronization in coupled
map lattices,” Physical Review E, vol. 65, no. 1, p. 016201, Dec. 2001.
[6] U. Scarcia, K. Hertkorn, C. Melchiorri, G. Palli, and T. Wimbock, “Local
online planning of coordinated manipulation motion,” in 2015 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), Seattle, Washington,
May 26–30, 2015, pp. 6081–6087.
[7] C. Li, X. Gao, and K. Li, “Smooth control the coaxial self-balance robot under
impact disturbances,” International Journal of Advanced Robotic Systems,
vol. 8, no. 2, pp. 59–67, 2011.
[8] G. Chen, J. Ni, T. Liu, and M. Xu, “Application of high performance electro-
hydraulic synchronous servo system on NC broaching machine,” Advanced
Materials Research, vol. 721, pp. 497–500, Jul. 2013.
[9] C. Zhang, H. Wu, B. Liu, J. He, and B. Li, “Hybrid structure based tracking
and consensus for multiple motors,” Hindawi Publishing Corporation, Sep.
2014.
[10] P. Laguillaumie, M. A. Laribi, P. Seguin, P. Vulliez, A. Decatoire, and
S. Zeghloul, “From human motion capture to industrial robot imitation,”
in Robotics and Mechatronics, S. Zeghloul, M. A. Laribi, and J.-P. Gazeau,
Eds. Springer International Publishing, 2016, pp. 301–312.
[11] M.-C. Tsai and P.-W. Hsueh, “Synchronized motion control for 2D joystick-
based electric wheelchair driven by two wheel motors,” in The 2012
IEEE/ASME International Conference on Advanced Intelligent Mechatron-
ics, Kaohsiung, Taiwan, Jul. 11–14, 2012, pp. 702–707.
[12] D. Sun, “Position synchronization of multiple motion axes with adaptive cou-
pling control,” Automatica, vol. 39, no. 6, pp. 997–1005, 2003.
[13] D. Yu, Q. Guo, Q. Hu, and J. Lili, “Position synchronized control of dual
linear motors servo system using fuzzy logic,” in Proceedings of the 6th World
Congress on Intelligent Control and Automation, Dalian, China, Jun. 21–23,
2006, pp. 8041–8044.
[14] J. Ren, C.-W. Li, and D.-Z. Zhao, “CAN-based synchronized motion control
for induction motors,” International Journal of Automation and Computing,
vol. 6, no. 1, pp. 55–61, 2009.
[15] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall, 2005.
[16] K. M. Passino and S. Yurkovich, Fuzzy Control.
Addison Wesley Longman, Inc., 1998.
Menlo Park, California:
[17] L.-B. Li, L.-L. Sun, S.-Z. Zhang, and Q.-Q. Yang, “Speed tracking and syn-
chronization of multiple motors using ring coupling control and adaptive slid-
ing mode control,” ISA Transactions, vol. 58, pp. 635–649, Aug. 2015.
[18] Z. Zhao and J. Wang, “RS232/CAN intelligent protocol converter and its
communication network,” China Rail Way Science, vol. 28, no. 3, pp. 134–
139, May 2007.
[19] J. C. Moon, B. M. Cheon, J. D. Park, and J. W. Jeon, “Comparison of
IEEE802.1Q and IEEE802.1AVB in in-vehicle network implemented in em-
bedded system,” in Proceeding of the 2015 IEEE International Conference on
Information and Automation, Lijiang, China, Aug. 2015, pp. 1491–1496.
[20] L.-B. Fredriksson, “CAN for critical embedded automotive networks,” IEEE
Micro, vol. 22, no. 4, pp. 28–35, Nov. 2002.
[21] S. Corrigan. (2008, Jul.) Introduction to the Controller Area Network (CAN).
sloa101a.pdf. [Online]. Available: http://www.ti.com/lit/an/sloa101a/
[22] K. Takemori, S. Mizoguchi, H. Kawabata, and A. Kubota, “In-vehicle net-
work security using secure element,” IEICE Transactions on Fundamentals
of Electronics, Communications and Computer Sciences, vol. E99.A (2016),
no. 1, pp. 208–216, Jan. 2016.
[23] G.-L. Zhang, W.-J. Tang, J. Zeng, J. Xu, and E.-L. Yao, “An overview on
the cooperative SLAM problem of multi-robot systems considering communi-
cation conditions,” ACTA Automatica Sinica, vol. 40, no. 10, pp. 2073–2088,
Oct. 2014.
[24] C.-T. Chen, Linear System Theory and Design.
University Press, 1999.
New York City: Oxford
[25] Texas Instruments. (2009, Jan.) TMS320x281x DSP Enhanced Controller
Area Network (eCAN) Reference Guide. spru074f.pdf. [Online]. Available:
http://www.ti.com/lit/ug/spru074f/
[26] ——. (2012, May) TMS320F2810, TMS320F2811, TMS320F2812,
TMS320C2810, TMS320C2811, TMS320C2812 Digital Signal Processors Data
Manual. tms320f2812.pdf. [Online]. Available: http://www.ti.com/lit/ds/symlink/
[27] STMicroelectronics. (2000) L298. CD00000240.pdf. [Online]. Available:
http://www.st.com/st-web-ui/static/active/en/resource/technical/document/datasheet/
[28] Pololul. (2016) 47:1 metal gearmotor 25dx52l mm hp 6v with 48 cpr encoder.
[Online]. Available: https://www.pololu.com/product/2274
[29] Allegro MicroSystems, LLC. (2015, Feb.) Tacs711. ACS711-Datasheet.pdf.
[Online]. Available: http://www.allegromicro.com/en/Products/Current-
Sensor-ICs/Zero-To-Fifty-Amp-Integrated-Conductor-Sensor-ICs/ACS711.aspx
[30] Texas Instruments. (2009, Aug.) C281x C/C++ Header Files and Peripheral
Examples (including F281x). getlitera-ture.tsp?baseLiteratureNumber=sprc097&fileType=zip.
[Online]. Available: http://www.ti.com/general/docs/lit/
[31] ——. (2012, Aug.) TMS320x281x DSP System Control and Interrupts Reference
Guide. spru078g.pdf. [Online]. Available: http://www.ti.com/lit/ug/spru078g/
[32] ——. (2007, Jun.) TMS320x281x DSP Event Manager (EV) Reference Guide.
spru065e.pdf. [Online]. Available: http://www.ti.com/lit/ug/spru065e/
[33] ——. (2005, Jul.) TMS320x281x DSP Analog-to-Digital Converter (ADC) Reference Guide.
spru060d.pdf. [Online]. Available: http://www.ti.com/lit/ug/spru060d/
[34] F. Golnaraghi and B. C. Kuo, Automatic Control Systems.Wiley & Sons, 2010.
Hoboken: John
[35] Y.-J. Li, Precision Motion Control of Linear Motor with Nonlinear Friction
Phenomena Compensation. Tainan City: National Cheng Kung University, 2010.
[36] M. T. Inc. (2001) Understanding Microchip’s CAN Module Bit Timing. 00754.pdf.
[Online]. Available: http://ww1.microchip.com/downloads/en/AppNotes/
[37] jriggs. (2001, Feb.) Motor characteristics: Measurement of lumped parameters. motors.pdf.
[Online]. Available: http://www.mech.utah.edu/ me3200/labs/