簡易檢索 / 詳目顯示

研究生: 王雅慧
Wang, Ya-Hui,
論文名稱: 連續給予甲基安非他命對於K他命誘發場地制約偏好之影響
The Impact of Repeated Methamphetamine Administrations on Subsequent Ketamine-induced Conditioned Place Preference
指導教授: 游一龍
Yu, Lung
共同指導教授: 蕭雅心
Hsiao, Ya-Hsin
學位類別: 碩士
Master
系所名稱: 醫學院 - 行為醫學研究所
Institute of Behavioral Medicine
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 32
中文關鍵詞: K他命甲基安非他命多巴胺代謝型麩胺酸受體
外文關鍵詞: Ketamine, methamphetamine, superfusion, dopamine, mGluR5
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 藥物濫用者大多為多重藥物濫用。在台灣及東亞根據廢水、人體代謝物及緝私查獲數量的跡證顯示,甲基安非他命(Methamphetamine)和K他命(Ketamine)是目前最為普遍使用的濫用藥物,本研究目的為探討重複給予低劑量之甲基安非他命(Methamphetamine)及K他命(Ketamine),可能會導致神經可塑性和用藥動機行為的改變。已有許多研究證據顯示甲基安非他命(Methamphetamine) (1 mg/kg)和K他命(Ketamine) (10 mg/kg)的互動效果,因此,我們推測連續給予低劑量之甲基安非他命(Methamphetamine),會影響隨後給予的低劑量K他命(Ketamine)誘發場地制約偏好(Conditioned Place Preference)、社交行為及其神經化學基礎。首先,我發現連續改給予甲基安非他命(Methamphetamine)十天,並且等待十天戒斷後,會增強K他命(Ketamine)誘發場地制約偏好。連續改給予甲基安非他命(Methamphetamine)十天,並且等待十天戒斷後之小鼠與連續給予生理食鹽水十天,同樣也等待十天之對照組相比,連續給予甲基安非他命(Methamphetamine)並且經歷戒斷期的小鼠,在給予K他命(Ketamine)之後,表現出更低的多巴胺含量,因此推測其伏隔核組織因受K他命(Ketamine)刺激,而使多巴胺釋放量更多。連續給予甲基安非他命(Methamphetamine)並且經歷戒斷期之小鼠在社交行為的測試中沒有呈現社會互動。在海馬迴組織中,發現連續給予甲基安非他命(Methamphetamine)並且經歷戒斷期之小鼠與對照組相比,幾種相關蛋白質表現中(mGluR5, Homer2,EAAT3),呈現出較高的mGluR5表現。MPEP(2-Methyl-6-phenylethynylpyridine)是mGluR5的拮抗劑,可阻斷甲基安非他命(Methamphetamine)戒斷後K他命(Ketamine)增強場地制約偏好(Conditioned Place Preference),以及改變連續給予甲基安非他命(Methamphetamine)並且經歷戒斷期之小鼠社交行為。因此我認為長期給予甲基安非他命(Methamphetamine)會造成神經可塑性的改變,並經歷長時間戒斷後, K他命(Ketamine)會使其增強場地制約偏好,也會造成社交行為降低。

    Methamphetamine (MA) and ketamine (KE) abuse is prevalent and devastating in local area. Many research shows that repeated low-dose MA and KE administration may render changes in neural plasticity and motivational behavior. This study was undertaken to assess whether exposure to repeated low-dose MA may facilitate the rewarding effects produced by low-dose KE, and its social interaction and neurochemical underpinnings. Mice pretreated with MA (2 mg/kg/day) or equivalent volume of saline for 10 days and 10-day withdrawal enhanced such KE conditioned place preference (CPP). In contrast to the mice undergoing the saline pretreatment and 10-days waiting period, mice pretreated with MA and withdrawal had lower dopamine contents and enhance KE-stimulated nucleus accumbens dopamine release.
    Mice pretreated with MA and withdrawal regimen displayed impairment in the social interaction tests, but mice receiving the MA without withdrawal regimen did not the effect of social interaction. In hippocampal tissues, mice pretreated with MA and withdrawal regimen have greater expression in mGluR5 protein than the mice pretreated with the saline regimen. The mGluR5 antagonist MPEP prevented the MA-withdrawal regimen with KE-induced CPP and impaired social interaction performances.

    Table of contents Abstract (Chinese) ----------------------------------------------------------------------6 Abstract (English) -----------------------------------------------------------------------7 Introduction --------------------------------------------------------------------------8-9 Materials and methods----------------------------------------------------------------10-15 2.1. Animals --------------------------------------------------------------------------10 2.2. Drugs and chemicals -----------------------------------------------------------10 2.3. Methamphetamine-induced sensitization and Ketamine-induced CPP---------------------------------------------------------10 2.4. Core body temperature measurement ----------------------------------------11 2.5. Three-compartment chamber test -------------------------------------------- 12 2.6. Ex vivo superfusion ------------------------------------------------------------12-13 2.7. Western immunoblotting ------------------------------------------------------14 2.8. Statistical analysis --------------------------------------------------------------15 Results ------------------------------------------------------------------------------------15-18 3.1. Repeated, 10-day MA and 10-day withdrawal regimen on locomotor activity sensitization ----------------------------------------------------------------------15 3.2. Repeated, 10-day MA and 10-day withdrawal regimen on KE-induced CPP -----------------------------------------------------------------15 3.3. Repeated, 10-day MA and 10-day withdrawal regimen on and the KE-challenged remaining DA content in nucleus accumbens------------------16 3.4. Repeated, 10-day MA and 10-day withdrawal regimen and 3-day KE treatment on social interaction tests ------------------------------------------16 3.5. Repeated, 10-day MA and 10-day withdrawal regimen on mGluR5 expression levels in hippocampus --------------------------------------------17 3.6. Repeated, 10-day MA and 10-day withdrawal regimen with MPEP pretreatment on the KE-induced CPP, social interaction tests ------------18 Discussion --------------------------------------------------------------------------19-20 References--------------------------------------------------------------------------20-23 List of figures Figure 1. ----------------------------------------------------------------------------24 Figure 2. ----------------------------------------------------------------------------25-26 Figure 3. ----------------------------------------------------------------------------27 Figure 4. ----------------------------------------------------------------------------28 Figure 5. ----------------------------------------------------------------------------29 Figure 6. ----------------------------------------------------------------------------30 Figure 7. ----------------------------------------------------------------------------31-32

    1. Chen, W.J., Fu, T.C., Ting, T.T., Huang, W.L., Tang, G.M., Hsiao, C.K., Chen, C.Y., 2009. Use of ecstasy and other psychoactive substances among school-attending adolescents in Taiwan: national surveys 2004-2006. BMC Public Health 21, 9-27.
    2. Chen, Y.C., Wang, L.J., Lin, S.K., Chen, C.K., 2015. Neurocognitive profiles of methamphetamine users: comparison of those with or without concomitant ketamine use. Subst. Use Misuse. 50, 1778-1785.
    3. Du, P., Li, K., Li, J., Xu, Z., Fu, X., Yang, J., Zhang, H., Li, X., 2015. Methamphetamine and ketamine use in major Chinese cities, a nationwide reconnaissance through sewage-based epidemiology. Water Res. 84, 76-84.
    4. Herrold, A.A., Voigt, R.M., Napier, T.C., 2013. mGluR5 is necessary for maintenance of methamphetamine-induced associative learning. Eur. Neuropsychopharmacol. 23, 691-696.
    5. Ho, M.C., Cherng, C.G., Tsai, Y.P., Chiang, C.Y., Chuang, J.Y., Kao, S.F., Yu, L., 2009. Chronic treatment with monoamine oxidase-B inhibitors decreases cocaine reward in mice. Psychopharmacology (Berl) 205, 141-149.
    6. Khan, U., van Nuijs, A.L., Li, J., Maho, W., Du, P., Li, K., Hou, L., Zhang, J., Meng, X., Li, X., Covaci, A., 2014. Application of a sewage-based approach to assess the use of ten illicit drugs in four Chinese megacities. Sci. Total Environ. 487, 710-721.
    7. Lai, F.Y., Bruno, R., Leung, H.W., Thai, P.K., Ort, C., Carter, S., Thompson, K., Lam, P.K., Mueller, J.F., 2013. Estimating daily and diurnal variations of illicit drug use in Hong Kong: a pilot study of using wastewater analysis in an Asian metropolitan city. Foren. Sci. Int. 233, 126-132.
    8. Lai, Y.T., Fan, H.Y., Cherng, C.G., Chiang, C.Y., Kao, G.S., Yu, L., 2008. Activation of amygdaloid PKC pathway is necessary for conditioned cues-provoked cocaine memory performance. Neurobiol. Learn. Mem. 90, 164-170.
    9. Lee, J.Y., Choe, E.S., Yang, C.H., Choi, K.H., Cheong, J.H., Jang, C.G., Seo, J.W., Yoon, S.S., 2016. The mGluR5 antagonist MPEP suppresses the expression and reinstatement, but not the acquisition, of the ethanol-conditioned place preference in mice. Pharmacol. Biochem. Behav. 140, 33-38.
    10. Liao, T.Y., Tzeng, W.Y., Wu, H.H., Cherng, C.G., Wang, C.Y., Hu, S.S., Yu, L., 2016. Rottlerin impairs the formation and maintenance of psychostimulant-supported memory. Psychopharmacology (Berl). 233, 1455-1465.
    11. McCaughan, J.A., Carlson, R.G., Falck, R.S., Siegal, H.A., 2005. From "Candy Kids" to "Chemi-Kids": a typology of young adults who attend raves in the midwestern United States. Subst. Use Misuse. 40, 1503-1523.
    12. Moghaddam, B., Adams, B., Verma, A., Daly, D., 1997. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J. Neurosci. 17, 2921-2927.
    13. Morgan, C.J., Muetzelfeldt, L., Curran, H.V., 2009. Ketamine use, cognition and psychological wellbeing: a comparison of frequent, infrequent and ex-users with polydrug and non-using controls Addiction 104, 77-87.
    14. Machalova, A., Slais, K., Vrskova, D., Sulcova, A., 2012. Differential effects of modafinil, methamphetamine, and MDMA on agonistic behavior in male mice. Pharmacol. Biochem. Behav. 102, 215-223.
    15. O'Dell, S.J., Feinberg, L.M., Marshall, J.F., 2011. A neurotoxic regimen of methamphetamine impairs novelty recognition as measured by a social odor-based task. Behav. Brain Res. 216, 396-401.
    16. Rutten, K., Van Der Kam, E.L., De Vry, J., Bruckmann, W., Tzschentke, T.M., 2011. The mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) potentiates conditioned place preference induced by various addictive and non-addictive drugs in rats. Addict. Biol. 16, 108-115.
    17. Stephans, S., Yamamoto, B., 1996. Methamphetamines pretreatment and the vulnerability of the striatum to methamphetamine neurotoxicity. Neuroscience 72, 593-600.
    18. Stough, C., King, R., Papafotiou, K., Swann, P., Ogden, E., Wesnes, K., Downey, L.A., 2012. The acute effects of 3,4-methylenedioxymethamphetamine and d-methamphetamine on human cognitive functioning. Psychopharmacology (Berl) 220, 799-807.
    19. Strayer, R.J., Nelson, L.S., 2008. Adverse events associated with ketamine for procedural sedation in adults Am. J. Emerg. Med. 26, 985-1028.
    20. Strong, C.E., Schoepfer, K.J., Dossat, A.M., Saland, S.K., Wright, K.N., Kabbaj, M., 2017. Locomotor sensitization to intermittent ketamine administration is associated with nucleus accumbens plasticity in male and female rats. Neuropharmacology 121, 195-203.
    21. Sun, L., Lam, W.P., Wong, Y.W., Lam, L.H., Tang, H.C., Wai, M.S., Mak, Y.T., Pan, F., Yew, D.T., 2011. Permanent deficits in brain functions caused by long-term ketamine treatment in mice. Hum. Exp. Toxicol. 30, 1287-1296.
    22. Sun, L., Li, Q., Li, Q., Zhang, Y., Liu, D., Jiang, H., Pan, F., Yew, D.T., 2014. Chronic ketamine exposure induces permanent impairment of brain functions in adolescent cynomolgus monkeys. Addict. Biol. 19, 185-194.
    23. Tong, J., Fitzmaurice, P., Furukawa, Y., Schmunk, G.A., Wickham, D.J., Ang, L.C., Sherwin, A., McCluskey, T., Boileau, I., Kish, S.J., 2014. Is brain gliosis a characteristic of chronic methamphetamine use in the human? Neurobiol. Dis. 67, 107-118.
    24. Tzeng, W.Y., Cherng, C.F., Wang, S.W., Yu, L., 2016. Familiar companions diminish cocaine conditioning and attenuate cocaine-stimulated dopamine release in the nucleus accumbens. Behav. Brain Res. 306, 146-153.
    25. Tzeng, W.Y., Chuang, J.Y., Lin, L.C., Cherng, C.G., Lin, K.Y., Chen, L.H., Su, C.C., Yu, L., 2013. Companions reverse stressor-induced decreases in neurogenesis and cocaine conditioning possibly by restoring BDNF and NGF levels in dentate gyrus. Psychoneuroendocrinology 38, 425-437.
    26. Xu, D.D., Mo, Z.X., Yung, K.K., Yang, Y., Leung, A.W., 2006. Individual and combined effects of methamphetamine and ketamine on conditioned place preference and NR1 receptor phosphorylation in rats. Neurosignals 15, 322-331.
    27. Zhu, C., Liu, W., Luo, C., Liu, Y., Li, C., Fang, M., Lin, Y., Ou, J., Chen, M., Zhu, D., Yung, K.K., Mo, Z.,2017. Inhibiting effects of rhynchophylline on methamphetamine-dependent zebrafish are related with the expression of tyrosine hydroxylase (TH). Fitoterapia 117, 47-51.
    28. Zhu, X., Ye, G., Wang, Z., Luo, J., Hao, X., 2017. Sub-anesthetic doses of ketamine exert antidepressant-like effects and upregulate the expression of glutamate transporters in the hippocampus of rats. Neurosci. Lett. 639, 132-137.

    無法下載圖示 校內:2023-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE