簡易檢索 / 詳目顯示

研究生: 鄧友迪
Teng, Yu-Ti
論文名稱: Doxycycline對增殖性玻璃體視網膜病變的影響
Doxycycline for Proliferative Vitreoretinopathy
指導教授: 陳舜華
Chen, Shun-Hua,
許聖民
Hsu, Sheng-Min,
學位類別: 碩士
Master
系所名稱: 醫學院 - 臨床醫學研究所碩士在職專班
Institute of Clinical Medicine(on the job class)
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 31
中文關鍵詞: 增殖性玻璃體視網膜病變視網膜剝離抗生素
外文關鍵詞: Proliferative vitreoretinopathy, retinal detachment, doxycycline
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 裂孔性視網膜剝離是目前造成失明的重要原因之一,一旦發生裂孔性視網膜剝離通常需要手術治療。然而,增殖性玻璃體視網膜病變常是造成手術失敗的主要原因。增殖性玻璃體視網膜病變發生時,視力癒後及手術成功率往往會明顯下降。但目前卻無一有效的治療或預防方法。雖然增殖性玻璃體視網膜病變的成因尚不清楚,一般認為視網膜色素上皮細胞在增殖性玻璃體視網膜病變發生時扮演了重要的角色。視網膜色素上皮細胞在發生視網膜剝離時,會爬行到玻璃體的位置,在玻璃體內存活、增生,並分泌出許多細胞外的基質蛋白,這些基質蛋白會讓增生的細胞可以貼附到視網膜上和視網膜形成連結,進而收縮造成視網膜再次剝離導致手術治療的失敗。Doxycycline是Tetracycline家族中一個強效的抗生素,目前亦普遍的在臨床上被使用。除了抗生素的效果外,在先前的研究當中也發現,doxycycline會抑制數種癌細胞的爬行、貼附、增生以及收縮。目前沒有doxycycline運用在治療PVR的相關研究,因此本研究計畫將探討doxycycline對於增殖性玻璃體視網膜病變的預防及治療效果。在研究中我們發現,doxycycline可以有效抑制人類視網膜色素上皮細胞株(ARPE-19)的增生、爬行及收縮。此外,我們發現doxycycline可以抑制ARPE-19細胞中NF-κB 及matrix metalloproteinases的活性,這可能是doxycycline抑制ARPE-19細胞增生、爬行及收縮的機制。在動物實驗中,我們成功的利用dispase及ARPE-19 cells建立了兩個PVR的小鼠動物模型。在口服doxycycline及腹腔施打doxycycline的治療途徑中,doxycycline並無法有效的降低PVR的疾病嚴重度。然而利用玻璃體內注射doxycycline的方式,則可以有效地降低了PVR疾病的嚴重度,且此結果可以在兩個不同的PVR動物模型中被重現。在人體試驗的部分,初步結果尚無法展現在doxycycline組和控制組的差異,主要係因目前收案人數有限,截至目前為止尚無不良藥物反應的發生,後續我們持續收案,以達到目標收案人數。未來,我們將進一步探討藥物作用的機轉,期能對PVR的發生機制有更深入的認識及了解。

    Rhagmatogenous retinal detachment is a major cause of blindness nowadays, and surgical intervention is usually indicated. However, proliferative vitreoretinopathy (PVR) is the most common reason for the failure of this operation. Visual outcomes and the success of surgery are worse for retinal detachment that is complicated by PVR when compared to those of retinal detachment cases without PVR. Effective therapies are not available for PVR treatment and prevention. Although the pathophysiology of PVR is not clear, it is believed that retinal pigment epithelial cells play an important role. During the progression of retinal detachment, retinal pigment epithelial cells can migrate to the vitreous to survive, proliferate, form extracellular matrix proteins, and assemble into a membrane. Then the membrane can attach to the retina and subsequently contract, which can cause a new retinal detachment or failure of a surgically corrected detachment. Doxycycline is one of the potent and well-tolerated antibiotics in the tetracycline family that has been frequently used clinically. In previous studies, doxycycline is reported to inhibit the migration, adhesion, proliferation, and contraction of several cancer cell lines. It has not been tested as a treatment for PVR, so this project was designated to assess the effect of doxycycline in PVR treatment and prevention. In this study, doxycycline arrested the proliferation, migration, and contraction of human retinal pigment epithelial (ARPE-19) cell line with reduction in the total activity of matrix metalloproteinases and NF-κB activation. In vivo, we successfully set up two mouse PVR models by using dispase and ARPE-19 cells. Although oral doxycycline treatment and intraperitoneal injection of doxycycline failed to reduce PVR severity, we found that intravitreal injection of doxycycline effectively reduced the severity of PVR in two mouse models. In our clinical trial, there was no obvious difference between doxycycline and control groups due to limited case numbers. There were no severe adverse events noted till now, so the trial will keep going to include more participants. In future, we will try to uncover the action mechanism of doxycycline and lead to a better understanding of pathogenesis in PVR for the future development of effective PVR therapies.

    中文摘要………………………………………….……………………………………………………………………i Abstract……………………………………………………………………………………………………………….iii Acknowledgements……………………………………………………….………………………….………….v Table of contents…………………………………………………….………………………………..……......vi List of tables…………………………………………………………………………………………………..……vii List of figures………………………………………………………………….………………………………… viii 1. Chapter 1: introduction……………………………………...………………………….1 1.1 Proliferative vitreoretinopahy………………………….…………………………1 1.2 Doxycycline…………………………………………………………..………….2 1.3 Aims ………………………………………………………….………………….3 2. Chapter 2: Research designs and methods………..……………………………………4 2.1 To study the effects of doxycycline in arresting the cell proliferation, migration, and contraction by in vitro studies.………………………………..………..……4 2.2 To test doxycycline treatment on PVR in mice………..…………………...…..4 2.3 To assess doxycycline treatment to prevent PVR in patients undergoing retinal detachment surgeries……….…..………………………………………….…..……5 3. Chapter 3: results………………………………………………..…………………….9 3.1 Doxycycline arrests the cell proliferation, migration, and contraction demonstrated by in vitro studies...…………………..………………………….…9 3.2 Doxycycline treatment on PVR in mouse models………...………………...…10 3.3 The effect of doxycycline on PVR prevention in clinical trial …………………11 4. Chapter 4: Discussions…………...………………………………………………….....12 5. Chapter 5: Conclusions……………………………………………………………………..……………..15 Table and figures……………..………………….………………………………………………………………16 References……………………………………….…………………………………………………………………27

    (1) Moysidis SN, Thanos A, Vavvas DG. Mechanisms of inflammation in proliferative 
 vitreoretinopathy: from bench to bedside. Mediators Inflamm. 2012;2012(815937.
    (2) Tseng W, Cortez RT, Ramirez G, Stinnett S, Jaffe GJ. Prevalence and risk factors for 
proliferative vitreoretinopathy in eyes with rhegmatogenous retinal detachment but no 
previous vitreoretinal surgery. Am J Ophthalmol. 2004;137(6):1105-15. 

    (3) Ryan SJ. The pathophysiology of proliferative vitreoretinopathy in its management. Am J 
Ophthalmol. 1985;100(1):188-93. 

    (4) Newsome DA, Rodrigues MM, Machemer R. Human massive periretinal proliferation. In vitro characteristics of cellular components. Arch Ophthalmol. 1981;99(5):873-80.
    (5) Patel NN, Bunce C, Asaria RH, Charteris DG. Resources involved in managing retinal 
detachment complicated by proliferative vitreoretinopathy. Retina. 2004;24(6):883-7.
    (6) Chang YC, Kao YH, Hu DN, Tsai LY, Wu WC. All-trans retinoic acid remodels extracellular 
matrix and suppresses laminin-enhanced contractility of cultured human retinal pigment 
epithelial cells. Exp Eye Res. 2009;88(5):900-9. 

    (7) 
 Herrera I, et al. Matrix metalloproteinase (MMP)-1 induces lung alveolar epithelial cell migration and proliferation, protects from apoptosis, and represses mitochondrial oxygen consumption. J Biol Chem. 2013;288(36):25964-75.
    (8) Verslegers M, et al. Identification of MMP-2 as a novel enhancer of cerebellar granule cell proliferation. Mol Cell Neurosci. 2013;57(63-72).
    (9) Ozeki N, et al. Polyphosphate induces matrix metalloproteinase-3-mediated proliferation of odontoblast-like cells derived from induced pluripotent stem cells. Exp Cell Res. 2015;333(2):303-15.
    (10) Xiao Q, et al. Matrix metalloproteinase-8 promotes vascular smooth muscle cell proliferation and neointima formation. Arterioscler Thromb Vasc Biol. 2014;34(1):90-8.
    (11) Yang L, Zeng W, Li D, Zhou R. Inhibition of cell proliferation, migration and invasion by DNAzyme targeting MMP-9 in A549 cells. Oncol Rep. 2009;22(1):121-6.
    (12) Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem. 2007;15(6):2223-68
    (13) Franco C, et al. Doxycycline alters vascular smooth muscle cell adhesion, migration, and reorganization of fibrillar collagen matrices. Am J Pathol. 2006;168(5):1697-709.
    (14) Li H, Ezra DG, Burton MJ, Bailly M. Doxycycline prevents matrix remodeling and contraction by trichiasis-derived conjunctival fibroblasts. Invest Ophthalmol Vis Sci. 2013;54(7):4675-82. 

    (15) Sun T, et al. Doxycycline inhibits the adhesion and migration of melanoma cells by inhibiting the expression and phosphorylation of focal adhesion kinase (FAK). Cancer Lett. 2009;285(2):141-50 

    (16) Onoda T, et al. Doxycycline inhibits cell proliferation and invasive potential: combination 
therapy with cyclooxygenase-2 inhibitor in human colorectal cancer cells. J Lab Clin Med. 
2004;143(4):207-16.

Li H, Ezra DG, Burton MJ, Bailly M. Doxycycline prevents matrix remodeling and contraction by trichiasis-derived conjunctival fibroblasts. Invest Ophthalmol Vis Sci. 2013;54(7):4675-82.
    (17) Cho Y, et al. Doxycycline is neuroprotective against nigral dopaminergic degeneration by a dual mechanism involving MMP-3. Neurotox Res. 2009;16(4):361-71.
    (18) Smith GN, Jr., Mickler EA, Hasty KA, Brandt KD. Specificity of inhibition of matrix metalloproteinase activity by doxycycline: relationship to structure of the enzyme. Arthritis Rheum. 1999;42(6):1140-6.
    (19) Cazalis J, Bodet C, Gagnon G, Grenier D. Doxycycline reduces lipopolysaccharide-induced inflammatory mediator secretion in macrophage and ex vivo human whole blood models. J Periodontol. 2008;79(9):1762-8.
    (20) Bostanci N, et al. Effects of low-dose doxycycline on cytokine secretion in human monocytes stimulated with Aggregatibacter actinomycetemcomitans. Cytokine. 2011;56(3):656-61.
    (21) Solomon A, et al. Doxycycline inhibition of interleukin-1 in the corneal epithelium. Invest Ophthalmol Vis Sci. 2000;41(9):2544-57.
    (22) Babaeinejad S, Khodaeiani E, Fouladi RF. Comparison of therapeutic effects of oral doxycycline and azithromycin in patients with moderate acne vulgaris: What is the role of age? J Dermatolog Treat. 2011;22(4):206-10.
    (23) Scott IU, et al. Effect of doxycycline vs placebo on retinal function and diabetic retinopathy progression in patients with severe nonproliferative or non-high-risk proliferative diabetic retinopathy: a randomized clinical trial. JAMA Ophthalmol. 2014;132(5):535-43.
    (24) Canto Soler MV, Gallo JE, Dodds RA, Suburo AM. A mouse model of proliferative 
vitreoretinopathy induced by dispase. Exp Eye Res. 2002;75(5):491-504. 

    (25) Davies JE, et al. Doxycycline attenuates and delays toxicity of the oculopharyngeal muscular 
dystrophy mutation in transgenic mice. Nat Med. 2005;11(6):672-7. 

    (26) Symeonidis C, et al. Correlation of matrix metalloproteinase levels with the grade of proliferative vitreoretinopathy in the subretinal fluid and vitreous during rhegmatogenous retinal detachment. Acta Ophthalmol. 2011;89(4):339-45.
    (27) Symeonidis C, et al. Interleukin-6 and the matrix metalloproteinase response in the vitreous during proliferative vitreoretinopathy. Cytokine. 2011;54(2):212-7.
    (28) Symeonidis C, et al. Interleukin-6 and matrix metalloproteinase expression in the subretinal fluid during proliferative vitreoretinopathy: correlation with extent, duration of RRD and PVR grade. Cytokine. 2012;59(1):184-90.
    (29) Bernardino AL, Kaushal D, Philipp MT. The antibiotics doxycycline and minocycline inhibit the inflammatory responses to the Lyme disease spirochete Borrelia burgdorferi. J Infect Dis. 2009;199(9):1379-88.
    (30) Banerjee PJ, et al. Slow-Release Dexamethasone in Proliferative Vitreoretinopathy: A Prospective, Randomized Controlled Clinical Trial. Ophthalomology. 2017 Jun;124(6):757-767.
    (31) Tikhonovich MV, et al. Nonsteroid anti-inflammatory therapy suppresses the development of proliferative vitreoretinopathy more effectively than a steroid one. Int Ophthalmol. 2018 Aug; 38(4): 1365-1378

    無法下載圖示 校內:2023-07-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE