| 研究生: |
蔡百揚 Tsai, Pai-yang |
|---|---|
| 論文名稱: |
熱膨脹效應對氮化鎵系列發光二極體電鍍銅基板之影響 Thermal Effects on the GaN-based Vertical Light Emitting Diodes with Electroplating Cu Substrate |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 發光二極體 、氮化鎵 、線性熱膨脹係數 |
| 外文關鍵詞: | coefficient of thermal expansion(CTE), light emitting diode(LED), GaN |
| 相關次數: | 點閱:72 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於鉬金屬與氮化鎵的線性熱膨脹係數非常接近,所以我們試著由鉬金屬去減少氮化鎵和銅基板之間的熱膨脹係數的差異。這次的研究中,將大約四微米的鉬-銅金屬導入氮化鎵和銅基板之間當作緩衝層,再利用這新的金屬基板完成垂直式發光二極體。我們研究不同鉬-銅的層數在經過熱壓力測試之後的變化。在氮化鎵表面現象上,觀察到在經過熱壓力測試過後銅基板有嚴重的破裂情形,相反的,擁有三對鉬-銅緩衝層的銅基板氮化鎵表面則是平滑無損。經過熱壓力測試,電性與光性量測上銅基板的漏電流增加67.7倍,而三對鉬-銅緩衝層銅基板結構有效的抑制漏電流的增加。銅基板光衰減了24.7%,三對鉬-銅緩衝層銅基板結構在光輸出特性的變化比銅基板來的更加穩定。
Due to the similar coefficients of thermal expansion (CTE) of molybdenum (Mo) and GaN, Mo was introduced to GaN and copper substrate to reduce the CTE mismatch. In this work, the molybdenum/copper layers were deposited about 4 μm as buffer layer between GaN and copper substrate for GaN-based vertical light emitting diodes (LEDs). Thermal effects on the GaN-based vertical LEDs with electroplating Cu substrate will be investigated. It is found that serious surface cracking of the LED with copper substrate only after thermal stress can be observed, on the contrary, GaN LED surface with 3 pair Mo/Cu buffer – Cu substrate is still smooth without the cracking behavior. As to the LED performance, the measured reverse current on Cu substrate was increased 67.7 times after thermal stress while effective suppressed in reverse current for the 3 pair Mo/Cu buffer – Cu substrate can be observed. In addition, 24.7% light output power reduction of Cu substrate was observed. The light output power for 3 pair Mo/Cu buffer – Cu substrate was more stable than that of Cu substrate only. It indicates that the Mo/Cu pairs can be effective to reduce the thermal effects for the GaN-based vertical LEDs on copper substrates.
[1] S. N. Mohammad, A. Salvador, and H. Morkoc﹐, “Emerging GaN-based devices,” Proc. IEEE, vol. 83, pp. 1306-1355, Oct. (1995).
[2] H. Morkoc﹐, S. Strite, G. B. Gao, M.E. Lin, B. Sverdlov, and M. Burns, “A review of large bandgap SiC, III–V nitrides, and ZnSe-based II–VI semiconductor structures and devices,” J. Appl. Phys. Rev., vol. 76, no. 3, pp. 1363-1398, Aug. (1994).
[3] S. Strite, and H. Morkoc, “GaN, AlN, and InN”: A Revies, J. Vac.Sci. Technol. B10, 1237 (1992)
[4] H. Morkoc, “ Nitride Semiconductors and Devices”, Springer, Berlin, (1999).
[5] S. Nakamura, “The Blue Laser Diode”, Springer, Berlin, 1997.
[6] X. Guo, E.F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Appl. Phys. Lett. 78 (2001) 3337.
[7] Y.C. Lin, S.J. Chang, Y.K. Su, T.Y. Tsai, C.S. Chang, S.C. Shei, C.W. Kuo, S.C. Chen, “InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts,” Solid-State Electron. 47 (2003) 849.
[8] K.C. Chen, R.W. Chuang, Y.K. Su, C.L. Lin, H.C. Hsu, J.Q. Huang, K.F. Yang, “High Thermal Dissipation of Ultra High Power Light-Emitting Diodes by Copper Electroplating, ” Electronic Components and Technology Conf, Reno, Nevada, USA, (2007).
[9] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L. T. Romano, and N. M. Johnson, “InXGa1-XN light-emitting diodes on Si substrates fabricated by Pd-In metal,” Appl. Phys. Lett., vol. 84, pp.855-857, 2004.
[10] E. Fred Schubert, “Light-Emitting Diodes 2nd”, Cambridge University Press, 2006.
[11] S.Kim, J. H. Jang, J. S. Lee, D. J. Duquette, “Stress behavior of electrodeposite copper film as mechanical supporters for light-emtting diodes,“ Electrochimia Acta,vol.52,p.5258,(2007).
[12] C. N. Han, T .L. Chou, C. F. Huang, K.N. Chiang, “Sapphire-removed induced the deformation of high power InGaN light emitting diodes,” 9th. Int. Conf. on Thermal, Mechanical and Multiphysics Simulation and Experiments in
Micro-Electronics and Micro-Systems, EuroSimE(2008)
[13] S. J. Pearton, “Materials Science and Engineering” B, vol. 40, pp. 101-118, 1996.
[14] R. J. Shul, G. A. Vawter, C. G. Willison, M. M. Bridges, J. W. Lee, S. J. Pearton And C. R. Abernathy, ”Comparison of plasma etch techniques for III-V nitrides,” Solid-State Electronics, vol. 42, no. 12, pp. 2259-2267, 1998.
[15] Hyunsoo Kim, Kyoung-Kook Kim, Kwang-Ki Choi, Hyungkun Kim, June-O Song, Jaehee Cho, Kwang Hyeon Baik, Cheolsoo Sone, Tae-Yeon Seong, and Yongjo Park,” Design of high-efficiency GaN-based light emitting diodes with vertical injection geometry,” Appl. Phys. Lett. 91, 023510 (2007)
[16] Y. Kawakami, Y. Narukawa, K. Omae, S. Fujita, and S. Nakamura, ” Dynamics of optical gain in InxGa1–xN multi-quantum-well-based laser diodes,” Phys.Status Solidi A 178, 331 (2000).
[18] A. Billeb, W. Grieshaber, D. Stocker, E. F. Schubert, and R. F. Karlicek,Jr., “Microcavity effects in GaN epitaxial films and in Ag/GaN/sapphire structures,” Appl. Phys. Lett. 70, 2790 (1997).
[19] A. A. Bergh, M. Hill, R. H. Saul, and S. Plains, ” Surface roughening of electroluminescent,” U.S. Patent No. 3,739,217(1973).
[20] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, ” Cone-shaped surface GaN-based light-emitting diodes,” Appl. Phys. Lett. Vol. 84, No. 6, 9 February( 2004)
[21] W. Y. Lin, D. S. Wuu, K. F. Pan, S. H. Huang, C. E. Lee, W. K. Wang, S.C. Hsu, Y. Y. Su, S. Y. Huang, and R. H. Horng, ” High-Power GaN–Mirror–Cu Light-Emitting Diodes for Vertical Current Injection Using Laser Liftoff and Electroplating Techniques,” IEEE Photonics Technol.Lett. 17, 1809 (2005).