簡易檢索 / 詳目顯示

研究生: 王宏宇
Wang, Hung-Yu
論文名稱: 具高色純度之微發光二極體研究
Investigation of mirco-LEDs with high color purity
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 68
中文關鍵詞: 光色轉換分佈式布拉格反射鏡氮化鎵混合式布拉格反射鏡發光二極體微小化發光二極體陣列量子點藍光吸收材料
外文關鍵詞: color transformation, distributed Bragg reflector, hybrid Bragg reflector, light-emitting diodes, micro light-emitting diode, quantum dots
相關次數: 點閱:88下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用微小化氮化鎵藍光發光二極體與CdSe/ZnS核殼量子點材料,製作微小化紅色發光二極體與微小化綠色發光二極體。首先,製作微小化發光二極體,並搭配黑色光阻製作隔光結構,藉此提升元件對比度,接著使用旋轉塗佈法將紅色量子點與綠色量子點旋塗於微小化藍光發光二極體上,使元件具有光色轉換之效果。為提升元件光色轉換效率,本論文於外部結構進行改善,首先於元件之底部製作混合式布拉格反射鏡,使反向出光反射回正向進入光色轉換層;另外,於元件頂部製作分佈式布拉格反射鏡,將未被轉換之藍光反射回光色轉換層中,使藍光能再次激發量子點,藉此提升元件之光色轉換效率。由於布拉格反射鏡對於斜向入射光反射效果較差,為避免仍有微量藍光穿透分佈式布拉格反射鏡,影響紅光元件與綠光元件之色純度,在完成頂部分佈式布拉格反射鏡後,製作藍光吸收層將剩餘之藍光吸收,提高光色純度。本論文之紅光發光二極體與綠光發光二極體轉換效率分別為24.1 %與23.4 %,CIE色度座標分別為(0.616,0.274)與(0.292,0.612),元件之紅光與綠光色純度分別為86.19%與88.01%。

    In this study, monolithic red, green, and blue (RGB) micro LEDs were fabricated using gallium nitride based blue micro LEDs and quantum dots (QDs). In fabrication of color transformation layer, the red quantum dots and green quantum dots were spined on the surface of the blue micro light-emitting diode. In order to improve of light color conversion efficiency, the distributed Bragg reflector (DBR) and the hybrid Bragg reflector (HBR) were added as external structures. To fabricate the distributed Bragg reflector on the top of reflected the blue back to the color transformation layer to improve the color conversion efficiency. To fabricate hybrid Bragg reflector at the bottom of reflected the downward light to the normally incident to improve the light leakage. Due to the DBR can’t completely the blue light, the blue light absorption layer was deposited on the DBR to avoid the dissipated blue light. The color conversion efficiency of green LED and red LED were 23.4% and 24.1%. The CIE chromaticity coordinate of green LED and red LED is (0.292,0.612) and (0.616,0.274), and the color purity efficiency of green light LED and red light LED were 88.01% and 86.19%.

    摘要 I SUMMARY III 誌謝 IX 目錄 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 發光二極體之近年發展與狀況 1 1.2 研究目的與動機 2 參考文獻 4 第二章 原理 7 2.1 發光二極體的原理 7 2.2 量子點材料介紹 7 2.3布拉格反射鏡之介紹 8 2.3.1分佈式布拉格反射鏡 8 2.3.2混合式布拉格反射鏡 9 2.4 藍光吸收層材料介紹 9 2.5 色度座標CIE 1931 10 2.6量測方法原理與儀器 11 2.6.1光激發光光譜儀 11 2.6.2紫外光-可見光-近紅外光分光光譜儀 12 2.6.3電激發光光譜量測系統 12 參考文獻 13 第三章 實驗規劃與製程步驟 19 3.1製程設備 19 3.1.1電子束蒸鍍系統 19 3.1.2射頻濺鍍系統 19 3.2微小化氮化鎵藍光發光二極體製作與製程步驟 20 3.2.1元件結構 20 3.2.2微小化氮化鎵藍光發光二極體製程步驟 20 3.2.3黑色光阻陣列結構製作 25 3.2.4底部混合式布拉格反射鏡製作 26 3.2.5頂部光色轉換層(量子點凝膠)製作 26 3.2.6頂部分佈式布拉格反射鏡製作 27 3.2.7頂部藍光吸收層製作 27 第四章 實驗量測結果分析與討論 32 4.1 黑色隔光材料之分析 32 4.1.1 黑色光阻特性分析 32 4.2 光色轉換層之分析 32 4.2.1 壓克力粉末材料分析 32 4.2.2 量子點粉末材料分析 33 4.3 布拉格反射鏡之分析 34 4.3.1 二氧化矽與二氧化鈦之材料分析 34 4.3.2 分佈式布拉格反射鏡之特性分析 35 4.3.3 混合式布拉格反射鏡之特性分析 36 4.4 藍光吸收層材料之特性分析 36 4.4.1 藍光吸收層材料之特性分析 36 4.5 微小化發光二極體之元件特性分析 37 4.5.1 基本元件之特性量測與分析 37 4.5.2 具量子點混膠之元件特性量測結果與分析 37 4.5.3 具底部混合式布拉格反射鏡之量子點混膠元件特性量測結果與分析 38 4.5.4 具頂部分佈式布拉格反射鏡與底部混合式布拉格反射鏡之量子點混膠元件特性量測結果與分析 40 4.5.5 具頂部藍光吸收層、頂部分佈式布拉格反射鏡與底部混合布拉格反射鏡之量子點混膠元件特性量測結果與分析 41 4.5.6 元件光色轉換效率之計算與CIE色度座標比較 42 4.5.7 元件光色純度之計算 43 參考文獻 66 第五章 結論 68

    第一章
    [1]F. S. Teixeira, and M. C. Salvadori, “Nucleation of gold nanoclusters in PMMA during energetic plasma deposition: A molecular dynamics and tfMC-Monte Carlo study,” Physica E, vol. 112, pp. 19-25, 2019
    [2] W. Chung, K. Park, H. J. Yu, J. Kim, B. H. Chun, and S. H. Kim, “White emission using mixtures of CdSe Quantum dots and PMMA as a Phosphor,” Opt. Mater., vol. 32, pp. 515-521, 2010
    [3] S. Dhoore, G. Roelkens and G. Morthier , “Fast wavelength-tunable lasers on silicon,” IEEE J. Sel. Top. Quantum Electron., vol. 25, p. 1500908, 2019
    [4] G. S. Chen, B. Y. Wei, C. T. Lee, and H. Y. Lee, “Monolithic Red/Green/Blue micro-LEDs with HBR and DBR structures,” IEEE Photonics Technol. Lett., vol. 30, pp. 262-265, 2018.
    [5] D. Liua, H. J. Lia, B. Lyua, S. Chenga, Y. Zhua, P. Wanga, D. Wanga, X. Wanga, and J. Yanga, “Efficient performance enhancement of GaN-based vertical light-emitting diodes coated with N-doped graphene quantum dots,” Opt. Mater., vol. 89, pp. 468-472, 2019
    [6] S. Y. Wang, Q. Sun, B. Devakumar, J. Liang, L. L. Sun, and X. Y. Huang, “Novel high color-purity Eu3+-activated Ba3Lu4O9 red-emitting phosphors with high quantum efficiency and good thermal stability for warm white LEDs,” J. Lumines., vol. 209, pp. 156-162, 2019
    [7] H. Luo and H. Y. Huang, “Low-temperature solid-state synthesis and photoluminescence properties of novel high-brightness and thermal-stable Eu3-activated Na2Lu(MoO4)(PO4) red-emitting phosphors for near-UV-excited white LEDs,” J. Alloy. Compd., vol. 764, pp. 809-814, 2018
    [8] A. G. Pramod, Y. F. Nadaf, C. G. Renuka, “A combined experimental theoretical approach for energy gap determination, photophysical, photostable, optoelectronic, NLO, and organic light emitting diode (OLED) application: Synthesized coumarin derivative,” J. Mol. Struct., vol. 1194, pp. 271-283, 2019.
    [9] Y. T. Wu, M. Chena, K. Qiub, W. Zhanga and Q. Tanga , “Photoluminescence enhancement of Ca3Sr3(VO4)4:Eu3+,Al3+ red-emitting phosphors by charge compensation,” Opt. Laser Technol., vol. 118, pp. 20-27, 2019.
    [10] A. He, Z. Xi, X. J. Li, W. Long, P. Y. Fang and J. Zhang, “Temperature dependence of upconversion luminescence and sensing sensitivity of Ho3+/Yb3+ modified PSN-PMN-PT crystals ,” J. Alloy. Compd., vol. 803, pp. 405-455, 2019.
    第二章
    [1] E. F. Schubert, “Light-Emitting Diodes,” Cambridge University Press, 2018.
    [2] T. Iwasaki, Z. W. Wang, M. Muruganathan and H. Mizuta, “Formation of quantum dot in graphene single nanoconstriction,” Appl. Phys. Express, vol. 12, p. 205004, 2019.
    [3] B. S. Mashford, T. L. Nguyen, G. J. Wilson and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem., vol. 20, pp. 167-172, 2010.
    [4] X. L. Dai, Z. X. Zhang, Y. Z. Jin, Y. Niu, H. J. Cao, X. Y. Liang, L. W. Chen, J. P. Wang and X. G. Peng, “Solution-processed, high-performance light-emitting diodes based on quantum dots,” Nature, vol. 515, pp. 96-99, 2014.
    [5] L. Xue, Y. Liu, F. Li, K. Sun, W. Chen, K. Y. Yang, H. L. Hu, J. T. Lin, H. P. Chen, Z. X. Yang and T. L. Guo, “Highly flexible light emitting diodes based on a quantum dots-polymer composite emitting layer,” Vacuum, vol. 163, pp. 282-286, 2019.
    [6] A. R. Zali, M. K. Moravvej-Farshi and M. H. Yavari, “Small-signal equivalent circuit model of photonic crystal fano laser,” IEEE J. Sel. Top. Quantum Electron., vol. 25, p. 4900108, 2019.
    [7] C. C. Lin and C. T. Lee,“Enhanced light extraction mechanism of GaN-based light-emitting diodes using top surface and side-wall nanorod arrays,” IEEE Photonics Technology Letters, vol. 22, p. 1132, 2010.
    [8] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Applied Physics Letters, vol. 84, p. 855, 2004.
    [9] C. H. Lin, J. Y. Tsai, C. C. Kao, H. C. Kuo, C. C. Yu, J. R. Lo, and K. M. Leung, “Enhanced light output in InGaN-based light-emitting diodes with omnidirectional one-dimensional photonic crystals,” Jpn. J. Appl. Phys., vol. 45, pp.1591-1593, 2006.
    [10] H. Chena, P. Jiaa, C. Chena, L. Qina, Y. Chena, Y. Huanga,Y. Ninga, and L. J. Wang, “Narrow linewidth DBR laser based on high order Bragg grating defined by i-line lithography,” Opt. Commun., vol. 445, pp. 296-300, 2019.
    [11] G. S. Chen, B. Y. Wei, C. T. Lee, and H. Y. Lee, “Monolithic Red/Green/Blue micro-LEDs with HBR and DBR structures,” IEEE Photonics Technol. Lett., vol. 30, pp. 262-265, 2018.
    [12] C. C. Zhao, X. K. Yang, L. Y. Shen, C. Luan, J. Q. Liu, J. Ma, and H. D. Xiao, “Fabrication and properties of wafer-scale nanoporous GaN distributed Bragg reflectors with strong phase-separated InGaN/GaN layers,” J. Alloy. Compd., vol. 789, pp. 658-663, 2019.
    [13] C. T. Lee, C. J. Cheng, H. Y. Lee, Y. C. Chu, Y. H. Fang, C. H. Chao, and M. H. Wu, “Color conversion of GaN-Based micro light-emitting diodes using quantum dots,” IEEE Photonics Technol. Lett., vol. 27, pp. 2296-2299, 2015.
    [14] N. T. Kalyani, H. Swart, S. J. Dhoble, “Principles and applications of organic light emitting diodes (OLEDs) ,” Woodhead Publishing. 2017.
    第四章
    F. S. Teixeira, and M. C. Salvadori, “Nucleation of gold nanoclusters in PMMA during energetic plasma deposition: A molecular dynamics and tfMC-Monte Carlo study,” Physica E, vol. 112, pp. 19-25, 2019
    [2] W. Chung, K. Park, H. J. Yu, J. Kim, B. H. Chun, and S. H. Kim, “White emission using mixtures of CdSe Quantum dots and PMMA as a Phosphor,” Opt. Mater., vol. 32, pp. 515-521, 2010
    [3] S. Dhoore, G. Roelkens and G. Morthier , “Fast wavelength-tunable lasers on silicon,” IEEE J. Sel. Top. Quantum Electron., vol. 25, p. 1500908, 2019
    [4] G. S. Chen, B. Y. Wei, C. T. Lee, and H. Y. Lee, “Monolithic Red/Green/Blue micro-LEDs with HBR and DBR structures,” IEEE Photonics Technol. Lett., vol. 30, pp. 262-265, 2018.
    [5] D. Liua, H. J. Lia, B. Lyua, S. Chenga, Y. Zhua, P. Wanga, D. Wanga, X. Wanga, and J. Yanga, “Efficient performance enhancement of GaN-based vertical light-emitting diodes coated with N-doped graphene quantum dots,” Opt. Mater., vol. 89, pp. 468-472, 2019
    [6] S. Y. Wang, Q. Sun, B. Devakumar, J. Liang, L. L. Sun, and X. Y. Huang, “Novel high color-purity Eu3+-activated Ba3Lu4O9 red-emitting phosphors with high quantum efficiency and good thermal stability for warm white LEDs,” J. Lumines., vol. 209, pp. 156-162, 2019
    [7] H. Luo and H. Y. Huang, “Low-temperature solid-state synthesis and photoluminescence properties of novel high-brightness and thermal-stable Eu3-activated Na2Lu(MoO4)(PO4) red-emitting phosphors for near-UV-excited white LEDs,” J. Alloy. Compd., vol. 764, pp. 809-814, 2018
    [8] A. G. Pramod, Y. F. Nadaf, C. G. Renuka, “A combined experimental theoretical approach for energy gap determination, photophysical, photostable, optoelectronic, NLO, and organic light emitting diode (OLED) application: Synthesized coumarin derivative,” J. Mol. Struct., vol. 1194, pp. 271-283, 2019.
    [9] Y. T. Wu, M. Chena, K. Qiub, W. Zhanga and Q. Tanga , “Photoluminescence enhancement of Ca3Sr3(VO4)4:Eu3+,Al3+ red-emitting phosphors by charge compensation,” Opt. Laser Technol., vol. 118, pp. 20-27, 2019.
    [10] A. He, Z. Xi, X. J. Li, W. Long, P. Y. Fang and J. Zhang, “Temperature dependence of upconversion luminescence and sensing sensitivity of Ho3+/Yb3+ modified PSN-PMN-PT crystals ,” J. Alloy. Compd., vol. 803, pp. 405-455, 2019.

    無法下載圖示 校內:2024-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE