簡易檢索 / 詳目顯示

研究生: 吳奕蓉
Wu, I-Jung
論文名稱: 在非直視環境下基於半正定規劃之混合型TOA和AOA定位
Hybrid TOA/AOA Localization Based on Semidefinite Programming in Non-Line-of-Sight Environment
指導教授: 劉光浩
Liu, Kuang-Hao
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 49
中文關鍵詞: 無線定位非通視環境時間到達定位法訊號到達角度定位法半正定規劃
外文關鍵詞: Wireless localization, non-line of sight (NLOS), time of arrival (TOA), angle of arrival (AOA), semide nite programming (SDP)
相關次數: 點閱:102下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來隨著無線技術的發展,對於定位服務的需求也急遽上升。全球衛星定位系統(GPS) 是常見的無線定位技術之一,但是當接收機放在室內時,定位效果會不如預期,主要原因是環境從通視變成非通視的環境以及較大的訊號能量衰減造成可以協助定位的衛星數量減少。本論文研究結合時間到達定位法和訊號到達角度定位法,並且在未知通視或非通視的情況下探討定位效果。根據測量到的距離資訊與角度資訊,可以推導出最大似然估計器,但這是一個非凸優化的問題,不易求解,我們根據半正定規劃將非凸優化的問題轉成凸優化問題,使求解可以更有效率。為了對抗非通視的影響,提出的半正定規劃估計器中,針對每一個路徑資訊設計出不同的權重,以提升定位效果。最後,將提出的半正定規劃估計器探討在不同的網路配置下的效能,並且應用在蜂巢式網路,模擬結果顯示,所提出的方法可有效提升非通視環境的定位精確度。

    With the rapid development of wireless technologies, the demand for positioning services has grown dramatically over the past years. Global Positioning System (GPS) is widely used in wireless devices for positioning. However, GPS receiver can not operate in the indoor because of the existence of Non-Line of Sight (NLOS) and the absence of available satellites. In this work, we investigate the hybrid localization technique based on Time of Arrival (TOA) and Angle of Arrival (AOA) information. We assume that the estimator does not have any prior knowledge of path propagation type, i.e., either LOS or NLOS. Based on the range and angle measurements, we derive the Maximum Likelihood (ML) estimator in this work, which is a non convex optimization problem. We show that the ML estimator can be transformed into a convex problem by applying the Semide nite Programming (SDP) relaxation technique, which can be solved effciently. To be robust in the NLOS environment, the proposed SDP estimator treats each measured data with different importance by assigning a weight to each path. Extensive simulations are performed to examine the performance of the proposed SDP estimator in numerous network con gurations. A case study is also carried out to demonstrate the usefulness of the proposed SDP estimator in cellular networks.

    Chinese Abstract . . . . . . . . . . . . . . . . i English Abstract . . . . . . . . . . . . . . . . ii Acknowledgements . . . . . . . . . . . . . . . . iii Table of Contents . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . viii List of Symbols . . . . . . . . . . . . . . . . ix List of Acronyms . . . . . . . . . . . . . . . . x 1 Introduction . . . . . . . . . . . . . . . . 1 1.1 Problem Statement and Literature Review . . . . . . . . . . . . . . . . 1 1.2 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2 Background . . . . . . . . . . . . . . . . 3 2.1 Measurement Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Time of Arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Received Signal Strength . . . . . . . . . . . . . . . . . . . . . . 4 2.1.3 Angle of Arrival . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1.4 Hybrid Localization Methods . . . . . . . . . . . . . . . . . . . 6 2.2 Algorithm Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Cumulative Distribution Function . . . . . . . . . . . . . . . . . 6 2.2.2 Root Mean Square Error . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 Average Location Error . . . . . . . . . . . . . . . . . . . . . . 7 3 Localization Method . . . . . . . . . . . . . . . . 8 3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.2 Localization Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.2.1 Maximum Likelihood Estimators . . . . . . . . . . . . . . . . . 10 3.2.2 Semide nite Programming . . . . . . . . . . . . . . . . . . . . . 13 3.2.3 Carmer-Rao Lower Bound . . . . . . . . . . . . . . . . . . . . . 19 4 Simulation Results and Discussions . . . . . . . . . . . . . . . . 21 4.1 Impact of Number of Anchors . . . . . . . . . . . . . . . . . . . . . . . 22 4.2 Impact of Weight design . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.3 Impact of Number of LOS Paths . . . . . . . . . . . . . . . . . . . . . 24 4.3.1 Small Area with 4 Anchors . . . . . . . . . . . . . . . . . . . . . 26 4.3.2 Small Area with 8 Anchors . . . . . . . . . . . . . . . . . . . . . 31 4.3.3 Large Area with 4 Anchors . . . . . . . . . . . . . . . . . . . . . 35 4.4 Impact of Angle Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.5 The Average Running Time . . . . . . . . . . . . . . . . . . . . . . . . 40 4.6 Application in Cellular Network . . . . . . . . . . . . . . . . . . . . . 41 5 Conclusion . . . . . . . . . . . . . . . . 45 5.1 Summery of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 References . . . . . . . . . . . . . . . . 47

    [1] M. Thorpe, M. Kottkamp, A. R¨ossler, and J. Schu¨tz, “LTE location based services technology introduction,” Rohde & Schwarz, 2013.
    [2] R. M. Vaghefi and R. M. Buehrer, “Asynchronous time-of-arrival-based source localization,” in Proc. 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, May 2013, pp. 4086–4090.
    [3] S. Venkatesh and R. M. Buehrer, “Non-line-of-sight identification in ultrawideband systems based on received signal statistics,” IET Microwaves, Antennas Propagation, vol. 1, no. 6, pp. 1120–1130, Dec 2007.
    [4] B. Y. Shikur and T. Weber, “TDOA/AOD/AOA localization in nlos environments,” in Proc. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2014, pp. 6518–6522.
    [5] J. Li, J. Conan, and S. Pierre, “Position location of mobile terminal in wireless mimo communication systems,” Journal of Communications and Networks, vol. 9, no. 3, pp. 254–264, Sept 2007.
    [6] Y. Xie, Y. Wang, and X. You, “Closed-form location estimator from
    TOA/AOA/AOD measurements in mimo communication systems,” in Proc. 2009 IEEE Sarnoff Symposium, March 2009, pp. 1–6.
    [7] R. M. Vaghefi, J. Schloemann, and R. M. Buehrer, “NLOS mitigation in TOAbased localization using semidefinite programming,” pp. 1–6, March 2013.
    [8] R. M. Vaghefi and R. M. Buehrer, “Cooperative localization in nlos environments using semidefinite programming,” IEEE Communications Letters, vol. 19, no. 8, pp. 1382–1385, Aug 2015.
    [9] H. Tang, Y. Park, and T. Qiu, “A TOA-AOA-based NLOS error
    mitigation method for location estimation,” EURASIP Journal on Advances in Signal Processing, vol. 2008, no. 1, 2007. [Online]. Available: http: //dx.doi.org/10.1155/2008/682528
    [10] S. Venkatraman and J. Caffery, “Hybrid toa/aoa techniques for mobile location in non-line-of-sight environments,” in Proc. 2004 IEEE Wireless Communications and Networking Conference, vol. 1, March 2004, pp. 274–278.
    [11] S. Tomic, M. Beko, and R. Dinis, “3-D target localization in wireless sensor networks using RSS and AoA measurements,” IEEE Transactions on Vehicular Technology, vol. 66, no. 4, pp. 3197–3210, April 2017.
    [12] R. Zekavat and R. M. Buehrer, Handbook of Position Location: Theory, Practice and Advances, 1st ed. Wiley-IEEE Press, 2011.
    [13] M. R. Gholami, “Positioning algorithms for wireless sensor networks,” Master’s thesis, Chalmers University of Technology, 2011.
    [14] Q. Spencer, M. Rice, B. Jeffs, and M. Jensen, “A statistical model for angle of arrival in indoor multipath propagation,” in Proc. 1997 IEEE 47th Vehicular Technology Conference., vol. 3, May 1997, pp. 1415–1419.
    [15] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.
    [16] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex programming, version 2.1,” http://cvxr.com/cvx, Mar. 2014.
    [17] Y. Qi, H. Kobayashi, and H. Suda, “Analysis of wireless geolocation in a non-lineof-sight environment,” IEEE Transactions on Wireless Communications, vol. 5, no. 3, pp. 672–681, March 2006.
    [18] 3GPP TR 36.814, “Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects,” 3rd Generation Partnership Project (3GPP), TR 36.814, v9.0.0, March 2010.

    下載圖示 校內:2020-07-14公開
    校外:2020-07-14公開
    QR CODE