| 研究生: |
蘇瑞魁 Su, Jui-kuei |
|---|---|
| 論文名稱: |
台灣加權股價指數極短線之預測 Extreme Short-Term of Forecasting in Taiwan weighting stock price index |
| 指導教授: |
利德江
Li, Der-Chiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 趨勢力道函數 、星期五行為 、類神經網路 、支撐向量迴歸 、預測 、小樣本 、統計方法 |
| 外文關鍵詞: | small data, forecasting, Friday behavior, neural network, regression, support vector regression |
| 相關次數: | 點閱:73 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對股市價預測而言,利用過去大量的歷史資料去做分析並找出一個趨勢可能失去部份意義,故本研究不同於過去之研究,主要是針對每週的星期五去做行為模式的預測。根據實驗結果發現,星期五效應在過去三年間並不顯著,且若加上跨週之資訊,將會使得星期五之行為更難以捉摸。最後本研究測試了多種預測模式:傳統的線性回歸、計量模型中的ARIMMA、類神經網路的倒傳遞類神經(BPNN)、輻狀基底類神經(RBF)、支撐向量回歸(SVR)以及趨勢力道函數簡單型(CLTM-S)、複雜型(CLTM),在各種方法之測試下,不同於傳統之結果,針對星期五行為預測以類神經網路的倒傳遞類神經(BPNN)結果最佳,而在三種群組下,大盤預測績效為1.22%、電子類股為1.11%以及金融保險類股為1.1%皆優於其它模式。
This paper is to study using large data to analysis and find a tendency maybe lose some meanings in forecasting tendency of stock market price index. For the reason, different with traditional method, using small data to find the observations for forecasting Friday by Trend and potency function(CLTM-S) .
Experimental result reveal in that the best observations is four days in the same week in forecasting the stock price of Friday behavior. And using these observations to build establish prediction model with statistics method (REGRESSION)、ARIMA、Neural network(BPNN) 、radial base function(RBF)、 Support vector regression(SVR) and CLTM-S CLTM. The result reveal BPNN is better than other tradition method and the mean absolute percentages error are 1.22%、1.11% and 1.10% in Taiwan weighting stock price index Electric index Finance index.
1.Bollerslev, T. (1990). MODELING THE COHERENCE IN SHORT-RUN NOMINAL EXCHANGE-RATES - A MULTIVARIATE GENERALIZED ARCH MODEL. Review of Economics and Statistics, 72(3), 498-505.
2.Cortes, C., & Vapnik, V. (1995). SUPPORT-VECTOR NETWORKS. Machine Learning, 20(3), 273-297.
3.Harman, G., Parameswaran, P., and Witt, Shares, bonds or cash? Asset Allocation in the new economy using CART, SALOMON SMITH BARNEDY Quantitative Analysis.
4.Harville, D. A. (1977). MAXIMUM LIKELIHOOD APPROACHES TO VARIANCE COMPONENT ESTIMATION AND TO RELATED PROBLEMS. Journal of the American Statistical Association, 72(358), 320-338.
5.Hsieh, D. A. (1989). MODELING HETEROSCEDASTICITY IN DAILY FOREIGN-EXCHANGE RATES. Journal of Business & Economic Statistics, 7(3), 307-317.
6.Huang, C. F., & Moraga, C. (2004). A diffusion-neural-network for learning from small samples. International Journal of Approximate Reasoning, 35(2), 137-161.
7.Huang, W., Lai, K. K., Nakamori, Y., Wang, S. Y., & Yu, L. (2007). Neural networks in finance and economics forecasting. International Journal of Information Technology & Decision Making, 6(1), 113-140.
8.Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32(10), 2513-2522.
9.Jennrich, R. I., & Schluchter, M. D. (1986). UNBALANCED REPEATED-MEASURES MODELS WITH STRUCTURED COVARIANCE MATRICES. Biometrics, 42(4), 805-820.
10.Kim, K. J. (2003). Financial time series forecasting using support vector machines. Neurocomputing, 55(1-2), 307-319.
11.Kohzadi, N., Boyd, M. S., Kermanshahi, B., & Kaastra, I. (1996). A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing, 10(2), 169-181.
12.Kwon, Y. K., & Moon, B. R. (2007). A hybrid neurogenetic approach for stock forecasting. Ieee Transactions on Neural Networks, 18(3), 851-864.
13.Laird, N. M., & Ware, J. H. (1982). RANDOM-EFFECTS MODELS FOR LONGITUDINAL DATA. Biometrics, 38(4), 963-974.
14.Li, D. C., Chen, L. S., & Lin, Y. S. (2003). Using Functional Virtual Population as assistance to learn scheduling knowledge in dynamic manufacturing environments. International Journal of Production Research, 41(17), 4011-4024.
15.Li, D. C., & Lin, Y. S. (2008). Learning management knowledge for manufacturing systems in the early stages using time series data. European Journal of Operational Research, 184(1), 169-184.
16.Li, D. C., & Lin, Y. S. (2008). Learning management knowledge for manufacturing systems in the early stages using time series data. European Journal of Operational Research, 184(1), 169-184.
17.Li, T., Zhang, C. L., & Ogihara, M. (2004). A comparative study of feature selection and multiclass classification methods for tissue classification based on gene expression. Bioinformatics, 20(15), 2429-2437.
18.Maasoumi, E., & Racine, J. (2002). Entropy and predictability of stock market returns. Journal of Econometrics, 107(1-2), 291-312.
19.Niyogi, P., Girosi, F., & Poggio, T. (1998). Incorporating prior information in machine learning by creating virtual examples. Proceedings of the Ieee, 86(11), 2196-2209.
20.Pai, P. F., & Lin, C. S. (2005). A hybrid ARIMA and support vector machines model in stock price forecasting. Omega-International Journal of Management Science, 33(6), 497-505.
21.Roh, T. H. (2007). Forecasting the volatility of stock price index. Expert Systems with Applications, 33(4), 916-922.
22.Sorensen, E. H., Miller, K. L., & Ooi, C. K. (2000). The decision tree approach to stock selection - An evolving tree model performs the best. Journal of Portfolio Management, 27(1), 42-+.
23.Sun, Y. F., Liang, Y. C., Zhang, W. L., Lee, H. P., Lin, W. Z., & Cao, L. J. (2005). Optimal partition algorithm of the RBF neural network and its application to financial time series forecasting. Neural Computing & Applications, 14(1), 36-44.