簡易檢索 / 詳目顯示

研究生: 周建志
Chou, Chien-chih
論文名稱: 濺鍍非晶質SbTe合金薄膜電阻特性之Ag/In複合添加與結晶化效應研究
Effects of Ag/In Additives and Crystallizations on The Resistive Characteristics of Amorphous SbTe Chalcogenide Films
指導教授: 呂傳盛
Lui, Truan-sheng
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 117
中文關鍵詞: 薄膜電阻結晶化硫屬化合物
外文關鍵詞: crystallization, chalcogenide, sheet resistance
相關次數: 點閱:156下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,硫屬化合物薄膜已證實可被應用於相變化光碟與相變化隨機存取記憶體用途,主要原因是這類材料的結構,可以快速地在結晶態與非晶態間轉變,且伴隨光學與電阻特性的大幅改變,這種材料行為過去被稱之為Ovonic現象,而具有這種現象的材料也被稱為相變化材料。實際應用上,硫屬化合物薄膜必須著重於提高相變化速度,以及增強其伴隨電阻或光學特性改變的差異。因此研究與控制相變化薄膜的光學與電阻特性改變,以及其結晶化的熱激活參數就成為重要的課題之ㄧ。
    本研究使用射頻磁控濺鍍法,製作兩種成分之硫屬化合物薄膜,純SbTe合金薄膜(以下稱ST)與Ag/In複合添加SbTe薄膜(以下稱AIST)。第一部分的研究中,主要探討初鍍薄膜之微觀組織結構與薄膜電阻率,並釐清濺鍍參數對於膜厚及電阻率間之影響。結果顯示本研究設定之濺鍍條件範圍沉積之薄膜,藉由X-ray繞射與電子顯微鏡分析,確認AIST與ST初鍍薄膜皆具有非晶質結構。經測量該二種初鍍薄膜之電阻特性,除發現該初鍍薄膜具有極高之薄膜電阻值外,也發現該初鍍薄膜具有負電阻溫度係數。經比較不同膜厚試片的薄膜電阻率,發現非晶態的AIST薄膜,其電阻率與膜厚關係不遵循常見之尺寸效應。
    第二部份的實驗中,主要係將相同條件之AIST與ST薄膜試片,於不同溫度下進行恆溫退火1小時後,以獲得完全與部分結晶化之試片。經調查該試片之薄膜電阻值,發現薄膜電阻值會隨結晶度增加而降低,且值得注意的結果是:非晶態薄膜與結晶化後薄膜間的電阻差異比例可達104。此外,比對X-ray繞射分析與電阻量測實驗結果,也發現兩者電阻發生轉變的臨界溫度分別為160 ℃與120 ℃,結晶化發生的臨界溫度也與電阻轉變相同,意味Ag/In的複合添加可以提高該薄膜的結晶溫度。配合穿透式電子顯微鏡觀察薄膜微觀組織特徵,顯示結晶化ST薄膜的主要結晶析出物為-Sb相,而經過複合添加Ag/In元素的AIST薄膜,除-Sb相外尚有AgSbTe2相生成。值得一提的觀察結果是經250 ℃退火1小時候的試片,可發現仍然有部分非晶相殘留,且無論是X-ray分析與電子顯微鏡觀察都未發現任何與In相關之化合物生成。
    有關熱激活參數之研究,本研究利用DSC測量AIST與ST非晶薄膜之結晶活化能與結晶溫度,結果ST薄膜為0.82 eV,AIST薄膜為0.92 eV;結晶溫度 ST薄膜為172 ℃,AIST薄膜為202 ℃,顯示Ag/In複合添加可提高非晶薄膜之室溫穩定度。此外,本研究也利用試片電阻值隨結晶程度變化之現象,自行設計等溫即時電阻測量裝置,於較低退火溫度下進行恆溫退火,並即時記錄該薄膜電阻值隨加熱時間變化之圖形。獲得之實驗結果配合Johnson-Mehl- Avrami方程式,計算出非晶質AIST薄膜之結晶活化能約為0.815 eV;Avrami指數n約為1.1~1.4。根據實驗結果推論薄膜電阻值於過渡區間內發生急劇變化之現象,可來自於結晶化之電流通路模式的形成。

    Chalcogenide films were able to be used as the recording layer of phase change recording media and in the application of phase change random access memory (PCRAM). The most attractive property of this material is its quick transformation between the amorphous and crystalline states, which phenomenon can accompany huge changes in the optical and electric properties. The reversible transformation between amorphous and crystalline phases was named as the Ovonic Memory phenomenon and materials with such kind of properties were also named as the phase change materials. In practical applications, major efforts have been focused on increasing the crystallization speed and improvement on the optical or electrical contrast between amorphous and crystalline state.
    In this study, there are two chalcogenide films being deposited with RF-sputtering method, pure SbTe films (ST) and Ag/In added SbTe films (AIST). In the first part, the microstructure and sheet resistivity of AIST films deposited with different parameters were analyzed. The result shows that the as-deposited films possess amorphous structure no matter with what the sputtering parameter being adopted. The sheet resistivity measurement shows the amorphous films possess an extremely high resistivity and the temperature coefficient of resistivity (TCR) is negative. It is worthy noting that the relationship of amorphous AIST films between the sheet resistivity and film thickness was found to against the classic size effect.
    In the second part, similar amorphous films were annealed isothermally at different temperatures to obtain their different crystallinity. The sheet resistance of the annealed specimens was measured at room temperature, where the sheet resistance of amorphous films can be 104 higher than that of the crystalline films. As comparing X-ray diffraction patterns of AIST films to that of ST films, the sheet resistance change of the specimens can be correlated to the crystallization of amorphous phases, which transition temperature of the change in the sheet is at about 160 ℃ for AIST and 120 ℃ for ST. Through transmission electron microscopy observations and X-ray diffraction, the major phase in the crystalline ST films is the delta-Sb phase and the mixture of delta-Sb and AgSbTe2 phases in the crystalline AIST films.
    Concerning of the thermal activation measurements, the activation energy and crystallization temperature were measured with the differential scanning calorimeter (DSC). The activation energy of AIST films is about 0.92 eV and that of ST is about 0.82 eV, the crystallization temperature of AIST films is about 202 ℃ and that of ST films is about 172 ℃. The result reveals Ad/In added SbTe films possesses high room temperature stability. Because the sheet resistance has been proven to change with the crystallinity, an apparatus was developed to estimate the activation energy and the Avrami exponent of crystallization through Johnson-Mehl-Avrami formulism. The activation energy is estimated to be about 0.815 eV and the Avrami exponent n is about 1.1~1.4. The exponent indicates that the crystal can grow freely and the sheet resistance will decrease dramatically after the impingement occurring. A model is proposed to explain why the sheet resistance decreases within a very short period and the homogeneous nucleation and free growth during isothermal annealing in this study.

    中文摘要•••••••••••••••••••••••••••••••Ⅰ 英文摘要•••••••••••••••••••••••••••••••Ⅲ 誌謝•••••••••••••••••••••••••••••••••Ⅴ 目錄•••••••••••••••••••••••••••••••••Ⅵ 表目錄••••••••••••••••••••••••••••••••Ⅸ 圖目錄••••••••••••••••••••••••••••••••Ⅹ 第一章 序論••••••••••••••••••••••••••••••1 第二章理 論基礎與文獻回顧•••••••••••••••••••••••6 2-1 非晶質材料•••••••••••••••••••••••••••6 2-2 非晶質材料種類與硫屬化合物•••••••••••••••••••7 2-3 硫屬化合物薄膜製備方法•••••••••••••••••••••9 2-4 非晶硫屬化合薄膜於記錄媒體之應用•••••••••••••••10 2-4-1 相變化光碟原理與種類•••••••••••••••••••10 2-4-2 SbTe相變化合金薄膜中Ag/In添加之必要性••••••••••12 2-4-3 隨機存取記憶體之應用•••••••••••••••••••14 2-5 非晶硫屬化合物薄膜之電氣特性•••••••••••••••••14 2-5-1 非晶材料之導電性質••••••••••••••••••••14 2-5-2 硫屬化合物薄膜電氣特性之應用•••••••••••••••16 2-5-3 非晶AIST薄膜電氣特性調查•••••••••••••••••18 2-6 非晶硫屬化合物薄膜電阻特性與結晶化動力學研究•••••••••18 2-7 非晶Ag/In複合添加之SbTe薄膜電性研究之必要性與應用••••••22 第三章 實驗方法•••••••••••••••••••••••••••37 3-1 非晶質薄膜試片製作••••••••••••••••••••••38 3-2 靶材與薄膜組成分析••••••••••••••••••••••38 3-3 低角度X-ray繞射分析•••••••••••••••••••38 3-4 薄膜電阻測量•••••••••••••••••••••••••39 3-5 薄膜熱性質分析••••••••••••••••••••••••40 3-6 恆溫退火熱處理••••••••••••••••••••••••40 3-7 結晶程度定量分析•••••••••••••••••••••••41 3-8 穿透式電子顯微鏡觀察•••••••••••••••••••••41 3-9 H/L ratio分析••••••••••••••••••••••••42 3-10 電阻溫度效應量測••••••••••••••••••••••42 3-11 Kissinger法之活化能概算••••••••••••••••••43 3-12 等溫退火即時電阻量測實驗••••••••••••••••••43 3-13 等溫退火即時電阻量測試片之結晶結構分析•••••••••••44 第四章 結果與討論 •••••••••••••••••••••••••50 4-1 非晶質SbTe薄膜Ag/In複合添加效應•••••••••••••••50 4-1-1 Ag/In複合添加非晶質薄膜之顯微組織••••••••••••50 4-1-1a 初鍍膜試片晶體結構特徵••••••••••••••••50 4-1-1b Ag/In複合添加之初鍍膜試片晶體結構特徵•••••••••51 4-1-1c Ag/In複合添加與非晶質結構熱穩定性探討•••••••••52 4-1-2 Ag/In複合添加非晶質薄膜濺鍍參數與薄膜電阻率膜厚效應探討•53 4-1-2a 濺鍍參數對薄膜厚度之影響••••••••••••••••53 4-1-2b 初鍍膜結晶結構隨膜厚之變化•••••••••••••••55 4-1-2c Ag/In複合添加非晶質薄膜之膜厚效應檢討•••••••••55 4-2 結晶化過程之Ag/In複合添加效應釐清••••••••••••••57 4-2-1 Ag/In複合添加非晶質薄膜經恆溫熱處理後之薄膜電阻變化•••57 4-2-1a 非晶質薄膜經恆溫熱處理後之晶體結構變化•••••••••58 4-2-1b 非晶質薄膜經恆溫熱處理後電阻特性之變化•••••••••60 4-2-2 非晶AgInSbTe薄膜電阻值變化與結晶化之熱激活要因探討••••61 4-2-2a 非晶AgInSbTe薄膜之等溫即時電阻量測•••••••••••61 4-2-2b 恆溫熱處理之結晶活化能與Avrami指數計算•••••••••63 4-2-2c 高電流通路模型•••••••••••••••••••••65 4-3 討論•••••••••••••••••••••••••••••66 4-3-1 Ag/In複合添加之非晶質與結晶質薄膜TCR特性探討•••••••66 4-3-2 非晶SbTe薄膜之高電阻特性與高低電阻差異值檢討•••••••67 4-3-3 非晶SbTe薄膜結晶化之Ag/In複合添加效應••••••••••68 4-3-4 等溫即時電阻測量之研究應用••••••••••••••••69 第五章 結論•••••••••••••••••••••••••••••90 參考文獻 ••••••••••••••••••••••••••••••92

    1)T. Ohta: “Overview and the Future of Phase-change Optical Disk Technology”, The Joint International Symposium on Optical Memory and Optical Data Storage, ed. by S. R. Kubota, R. Katayama and D. G. Stinson, (SPIE, 1999) pp. 188-190.
    2)王東釧、王威翔:”相變化光碟材料系統簡介(上)(下)”,工業材料143期 (87年11月) pp. 154-168.
    3)M. Shinotsuka, T. Shibaguchi, M. Abe and Y. Ide: “Potentiality of the Ag-In-Sb-Te phase change recording material for high density erasable optical discs”, Jpn. J. Appl. Phys. 36 (1997) 536-538.
    4)T. Ohta, W. Czubatyj and T. Lowrey: “Review of OUM development in ECD”, Proc. 15th Symposium on Phase Change Optical Information Storage, ed. by T. Ide, (The Society of Phase Change Recording, 2003) pp.42-47.
    5)古士良碩士論文:“以銀銦銻碲光相轉變材料製作可擦拭光碟片之研究”, 清華大學 (2000) pp. 1-12.
    6)H. Iwasaki, M. Harigaya, O. Nonoyama and Y. Kageyama: “Completely erasable phase change optical disc I”, Jpn. J. Appl. Phys. 32 (1993) 5241-5247.
    7)T. Matsushita, A. Suzuki, T. Hishiguchi, K. Shibata and M. Okuda: “Phase-change optical recording films with AgInTe2-Sb-Te system“, Jpn. J. Appl. Phys. 32 (1995) 519-520.
    8)S. Fujmori, S. Shogo, H. Yamazaki and N. Funakoshi: “Crystallization process of Sb-Te alloy films for optical storage”, J. Appl. Phys. 64 (1988) 1000-1006.
    9)M. Horie and T. Ohta: “Durability of dielectric protective layers against repetitious thermal stress in phase-change optical recording”, Thin Solid Films 278 (1996) 74-81.
    10)M. Terada, K. Furuya: “Optimized disk structure and Ge-Te-Sb composition for overwritable phase change disk “, Jpn. J. Appl. Phys. 32 (1993) 5219-5222.
    11)G. F. Zhou, H.J. Borg, J.C.N. Rijpers, M. Lankhorst, “Crystallization behavior of phase change materials: comparison between nucleation and growth dominated crystallization”, Optical Data Storage, 2000 Conference Digest (2000) pp.74 -76
    12)J. Tominaga, T. Handa, S. Haratani and S. Takayama: “V and Ti doping effect on In-Ag-Te-Sb optical phase change rewritable disc”, Jpn. J. Appl. Phys. 32 (1993) 1980-1982.
    13)J. M. Bruneau, B. Bechevet, B. Valon, E. Butaud, “Optical properties of phase change materials for optical recording”, Optical Data Storage Topical Meeting, 1997. ODS. Conference Digest , 1997, pp.104-105
    14)N. Ziani, M. Belhadji, L. Heireche, Z. Bouchaour and M. Belbachir: “Crystallization kinetics of GeTe chalcogenide glasses doped with Sb”, Phys. B 358 (2005) 132-137.
    15)M. Libera, M. Chen: “Time-resolved reflection and transmission studies of amorphous Ge-Te thin film crystallization”, J. Appl. Phys. 73 (1993) 2272- 2278.
    16)J. Maimon, K. Hunt, J. Rodgers, L. Burcin and K. Knowles: “Demonstration of chalcogenide based non volatile memory”, Proceedings of 2002 Non-Volatile Memory Technology Symposium, Nov. 2002.
    17)S. Hosaka, K. Miyauchi, T. Tamura, Y. Yin and H. Sone: “Proposal of memory transitor using a phase change and nona-size effects for high density memory array”, Proc. 15th Symposium on Phase Change Optical Information Storage, ed. by T. Ide, (The Society of Phase Change Recording, 2003) pp. 52-55.
    18)H. Horii, J. H. Yi, B. J. Kuh, Y. H. Ha, Y. T. Kim, K. H. Lee, S. O. Park, U. I. Chung and J. T. Moon: “A 0.24 m PRAM cell technology using N-doped GeSbTe films”, Proc. 15th Symposium on Phase Change Optical Information Storage, ed. by T. Ide, The Society of Phase Change Recording (2003) pp. 37-41.
    19)H. E. Kissinger: “Reaction kinetics in differential thermal analysis”, Anal. Chem. 29 (1957) 1702-1706.
    20)J. W. Christian: Transformations in Metals and Alloy, (Pergamon Press, Oxford, 1981) pp. 350-378.
    21)高誠輝:非晶態合金鍍及其鍍層性能, 科學出版社, 北京 (2003).
    22)J. Kramer, Z. Phys. 106 (1937) 639-641.
    23)J. Kramer, Annln Phys. 37 (1934) 19-21.
    24)A. Bremer, D. E. Couch and E. K. Williams: J. Res. Natn. Bur. Stand. 44 (1950) 109-115.
    25)P. Duwes: Trans. Am. Soc. Metals 60 (1967) 607-610.
    26)A. Inoue, T. Zhang and T. Masumoto: “Glass-Forming Ability of Alloys”, J. Non-crystalline Solids 156 (1993) 473-480.
    27)A. Greer: “Confusion by Design”, Nature 25 (1993) 303-304.
    28)吳學陞: “新興材料-塊狀非晶質金屬材料”, 工業材料149期, pp. 154-164.
    29)H. Wang, R. Luck and B. Predel: “Mixing enthalpy of liquid Fe-Co-Ti alloys”, J. Alloys and Comp. 1 (1993) 43-49.
    30)鐘伯強, 蔣幼梅, 程繼健: 非晶態半導體材料及其應用, 華東化工學院, 上海 (1991) pp. 1-12.
    31)黃國雄: “等莫耳比多元合金系統之研究”, 國立清華大學材料科學工程研究所碩士論文, (1996) pp.6-18.
    32)賴高廷: “高亂度合金微結構及性質探討”, 國立清華大學材料科學工程研究所碩士論, (1998) pp. 3-9.
    33)J. Maimon, E. Spall, Q. Quinn and S. Schnur: “Chalcogenide-Based Non-Volatile Memory Technology”, Proceedings 2001 IEEE Aerospace Conf., Jan. 2001.
    34)S. Ovshinsky: “Reversible electrical switching phenomena in disordered structure”, Phys. Rev. Lett. 20 (1968) 1450-1453.
    35)T. Matsunaga and N. Yamada: “Thermal properties on the structures of AgInSbTe and GeSbTe compounds, high-speed phase-change materials”, Proc. 15th Symposium on Phase Change Optical Information Storage, ed. by T. Ide, (The Society of Phase Change Recording, 2003) pp.7-12.
    36)K. Tanaka: Encylopedia of Materials: Science and Technology, Elsevier Science (2001).
    37)G. Ghosh: “The Sb-Te system”, J. Phase Equilib. 15 (1994) 349-355.
    38)ASM Handbook Vol.3, ed. by Hugh Baker, The Materials Information Society (1992).
    39)R. W. Berry, P. M. Hall and M. T. Harris: Thin Film Technology, (Princeton, N. J.; Van Norstrand, N. Y. 1968).
    40)D. L. Smith: Thin Film Deposition: Principles and Practices, (McGraw-Hill, 1995).
    41)D. R. Sahu, C. Y. Chen, S. Y. Lin and J. L. Huang: “Effect of substrate temperature and annealing treatment on the electrical and optical properties of silver-based multilayer coating electrodes”, Thin Solid Films 515 (2006) 932-935.
    42)S. Mochizuki, T. Mihara, S. Tamura, T. Ishida: “Crystal structure and deposition rate of PbTiO3 films prepared on glass and platinum substrate by rf sputtering”, Appl. Sur. Sci. 169 (2001) 557-559.
    43)S. K. Habib, A. Rizk and I. A. Mousa: “Physical parameters affecting deposition rates of binary alloys in a magnetron sputtering system”, Vacuum 49 (1998) 153-160.
    44)陳學定, 韓文政:表面塗層技術, 機械工業出版社, 北京 (1994).
    45)唐硒元, 劉家瑞, 謝漢萍: “可擦拭相變化超解析碟片的設計與製作”, 第十三屆磁學與磁性技術研討會論文集, July (1998).
    46)駱統: “高倍速與高密度相變化光碟材料開發與研究”, 工業材料,145期 (2000) 156-161.
    47)J. Li and F. Gan: “Optical properties of AgInSbTe phase-change film”, Thin Solid Films 402 (2002) 232-236.
    48)T. Ohta, M. Uchida, K. Kotera and S. Naka mura: Proc. SPIE, Vol.1078, 1989, pp.27
    49)H. Iwasaki: CD-Rewritable and Future Disc Technology, Digest of Technical Papers Proceedings of the 1997 Optical Data Storage Topical Meeting, (1997) pp 9-10.
    50)J. Tomminaga, T. Kikukawa, M. Takahashi and R.T. Phillips: J. Appl. Phys. 82 (1997) 3214-3218
    51)R. Kojima: Jpn. J. Appl. Phys. 37 (1998) 2098-2103.
    52)T. Yamada: “ Sputtering Target, Method of producing the Target“, U.S. Patent. No:6-127-016, Oct. (2000).
    53)H. Situ, Z. T. Wang and Ai-Lien Jung: J. Non-Crystal. Solids 113 (1989) 88-93.
    54)N. Nobukuni, M. Takashima, T.Ohna and M. Horie: Jpn. J. Appl. Phys. 78 (1995) 6980-6988
    55)K. Nishiuchi, N.Akahira, E. Ohno. and N. Yamada: Jpn. J. Appl. Phys. 31 (1992) 653-659.
    56)P. W. Anderson, Phys. Rev. 109 (1958) 1492-1495.
    57)J. L. Cui, H. F. Xue, W. J. Xiu, L. Jiang and P. Z. Ying: “Thermoelectric properties of p-type pseudo-binary alloys prepared by spark plasma sintering”, J. Solid State Chemistry 179 (2006) 3751-3755
    58)S. N. Dhar and C. F. Desai: “ Sb2Te3 and InSbTe: a comparative study of thermoelectric and related properties”, Philo. Mag. Lett. 82 (2002) 581-587.
    59)D. Lakshminarayana: “Growth of semiconducting ternary thin film of AgSbTe2”, Thin Solid Films 201 (1991) 91-96.
    60)E. Mytilineou, S.R. Ovshinsky, B. Pashmakov, D. Strand and D. Jablonski: “Electro-optical investigations of Ovonic chalcogenide memory devices”, J. Non-Cryst. Solids 352 (2006) 1991-1994.
    61)B. Liu, Z. Song, S. Feng and B. Chen: “Characteristics of chalcogenide nonvolatile memory mamo-cell-element based on Sb2Te3 materials”, Microelectron. Eng. 82 (2005) 168-174.
    62)E. M. Sanchez, E. F. Prokhorov, J. G. Hernandez and A. M. Galvan: “Structural, electric and kinetic parameters of ternary alloys of GeSbTe”, Thin Solid Films 471 (2005) 243-247.
    63)C. Drasar, M. Steinhart, P. Lostak, H. K. Shin, J. S. Dyck and C. Uher: “ Transportation coefficient of titanium-doped Sb2Te3 single crystals”, J. Solid State Chemistry 178 (2005) 1301-1307
    64)S. A. Baily, D. Emin and H. Li: “Hall mobility of amorphous Ge2Sb2Te5”, Solid State Communications 139 (2006) 161-164..
    65)T. S. Kim, B. S. Chun, J. K. Lee and H. G. Jung: “Thermoelectric properties of gas atomized p-type Sb2Te3-Bi2Te3 alloys”, J. Alloys and Comp. (2006) In Pressed.
    66)H. E. Kissinger: J. National Bureau of Standard 57 (1956) 217-221.
    67)J. C. Holzer and K. F. Kelton: “Kinetics of the amorphous to lcosahedral phase transformation in Al-Cu-V alloys”, Acta Metal. Et Materialia 8 (1991) 1833-1843.
    68)G. Ghosh, M. Chandrasekrran and L. Delaey: Acta Metal. 39 (1991) 925-936.
    69)N. X. Sun, X. D. Liu and K. Lu: “An explanation to the anomalous Avrami exponent”, Scripta Materialia 34 (1996) 1201-1207.
    70)D. Chiang, T. R. Jeng, D. R. Huang, Y. Y. Chang, C. P. Liu: “Kinetic crystallization behavior of phase-change medium”, Jpn J. Appl. Phys. 38 (1999) 1649-1651.
    71)I. J. M. M. Raaijmakers, A. H. van Ommen and A. H. Reader: “Crystallization of amorphous Ti-Si alloy thin film: Microstructure and resistivity”, J. Appl. Phys. 65 (1989) 3896-3906.
    72)Y. Ohta, M. Kitayama, K. Kaneko, S. Toh, F. Shimizu and K. Morinaga: “In situ measurement of capacitance: a method for fabricating nanoglass”, J. Am. Ceram. Soc. 88 (2005) 1634-1636.
    73)B. D. Cullity: Elements of X-ray Diffraction, Addison-Wesley, Philippines, (1978).
    74)TA Differential Scanning Calorimeter Instrument Manual, Du Pont Co. (2003).
    75)C. Y. Yang, B. C. Wang and J. D. Wu: J. Mater. Sci.-Mater. Med. 6 (1995) 249-257.
    76)小島忠宣, 小島和子譯: E. A. Davis, Conduction in Non-crystalline Materials, Oxford, 1987.
    77)T. Keiji: “Medium-range structure in chalcogenide glasses”, Jpn. J. Appl. Phys. 37 (1998) 1747-1453.
    78)H. Tashiro, M. Harigaya, Y. Kageyama, K. Ito, M. Shinotsuka, K. Tani, A. Watada, N. Yiwata, Y. Nakata, S. Emura: “Structural analysis of Ag-In-Sb-Te phase change material”, Jpn. J. Appl. Phys. 41 (2002) 3758-3759.
    79)Y. M. Chen and P. C. Kuo: IEEE Trans. on Magnet. 34 (1998) 432-435.
    80)L. Men, F. Jiang and F. Gan: “Short-wavelength phase-change optical data storage in In-Sb-Te alloy films”, Mater. Sci. and Eng. 47 (1997) 18-22.
    81)V. A. Volpyas, E. K. Hollann, D. A. Goldrin: “Ion plasma sputtering of multi-component materials”, Vacuum 51 (1998) 227-230.
    82)T. K. Hatwar, D. Genova and D. G. Stinson: “Correlation of composition and angular uniformity with performance in magneto-optic disks prepared from alloy targets”, J. Appl. Phys.76 (1990) 5304-5306.
    83)G. Hass, R. Thum: Phys. of Thin Films 3 (1966) 64-68.
    84)B. Fritsche, T. Chevolleau, J. Kourtev and W. Moller: “Plasma diagnostic of an RF magnetron Ar/N2 discharge”, Vacuum 69 (2003) 139-145.
    85)P. Arun, P. Tyagi, A. G. Vedeshwar and V. K. Paliwal: “Ageing effect of Sb2Te3 thin films”, Physica B 307 (2001) 105-110.
    86)P. Arun and A. G. Vedeshwar: “Large potential of SbTe films for optical storage”, Mater. Resear. Bull. 2 (1999) 203-216.
    87)M. J. H. Kemper and P. H. Oosting: “Crystallization and resistivity of amorphous titanium silicide films deposited by cooperation”, J. Appl. Phys. 53 (1982) 6214-6217.
    88)V. D. Das and N. Soundarajan: “Thermoelectric power and electrical resistivity of crystalline antimony telluride (Sb2Te3) thin film: temperature and size effect”, J. Appl. Phys. 65 (1989) 2332-2341.
    89)D. Lakshminarayana and R. R. Desai: J. of Mater. Sci.: “Thickness dependence of electrical resistivity and activation energy in AgSbTe2 thin films”, Mater. in Electron. 4 (1993) 183-186
    90)R. C. Munoz, G. Vidal, G. Kremer, L. Moraga and C. Arenas: ”Surface-induced resistivity of gold films on mica: comparison between the classical and the quantum theory”, J. Phys.: Condens. Matter 11 (1999) 299-307.
    91)J. M. Camcho and A. I. Oliva: “Surface and grain boundary contributions in electrical resistivity of metallic nanofilms”, Thin Solid Films 515 (2006) 1881-1885.
    92)E. H. Sondheimer: Adv. Phys. 1 (1952) 1-4.
    93)K. B. Gylfason, A. S. Ingason, J. S. Agustsson, S. Olafsson, K. Johnsen and J. T. Gudmundsson: “In situ resistivity measurements during growth of ultra-thin Cr0.7Mo0.3”, Thin Solid Films 515 (2006) 583-586.
    94)L. Sheng, D. Y. Xing and Z. D. Wang: “Transport theory in metallic films: Crossover from the classical to the quantum regime”, Phys. Review B 51 (1995) 7325-7328.
    95)H. Iwasaki, M. Harigaya, O. Nonoyama, Y. Kaygeyama, A. Takahashi, K. Yamada and Y. Ide: “Completely erasable phase change optical discs II: Application of Ag-In-Sb-Te mixed-phase system for rewritable compact disc compatible with CD-velocity and double CD-velocity”, Jpn. J. Appl. Phys. 32 (1993) 5241-5247.
    96)C. C. Chou, F. Y. Hung and T. S. Lui: “Activation energy of AgInSbTe film through isothermal sheet resistance measurements”, Mater. Trans. 2 (2007) 258-264.
    97)R. Luck, K. Lu and W. Frantz: Scripta Materialia 28 (1993) 1071-1074.
    98) Z. Altounian, C. A. Volkert and J. O. Strom-Olson: J. Appl. Phys. 57 (1985) 1777-1778.
    99)M. P. Shepilov and D. S. Baik: J. Non-cryst. Solids: 141 (1994) 141-156.
    100)T. J. Park, S. Y. Choi and M. J. Kang: “Phase transition characteristics of Bi/Sn doped Ge2Sb2Te5 thin film for PRAM”, Thin Solid Film (2006) In Pressed.
    101)E. M. Sanchz, E. F. Prokhorov, J. G. Hernandez and A. M. Galvan: “Structural, electrical and kinetic parameters of ternary alloys of GeSbTe”, Thin Solid Films 471 (2005) 243-243.
    102)B. Liu, N. Liu Y. Wu and L. Wang: “Preparation and transport properties of a bulk isosahedral quasicrystalline Ti45Zr35Ni17Cu3 alloy”, Phys. B (2007) In Pressed.
    103)竹內伸, 枝川圭一: 結晶‧準結晶‧非晶, 材料學, 內田老鶴圃 (1997).
    104)Y. M. Chen and P. C. Kuo:”Effect of Ag ou Cu doping on erasable phase change Sb-Te thin films”, IEEE Trans. Magnet. 2 (1998) 432-435.
    105)T. Pradell, D. Crespo, N. Clavaguera and M. T. Clavaguera-Mora: “Diffusion controlled grain growth in primary crystallization: Avrami exponents revisited”, J. Phys.: Condens. Matter 10 (1998) 3833-3844.

    下載圖示 校內:立即公開
    校外:2007-07-27公開
    QR CODE