簡易檢索 / 詳目顯示

研究生: 林靜慧
Lin, Ching-Hui
論文名稱: 使用按需輔助控制器於機器人輔助之完整前臂復健訓練
Robot-Aided Total Forearm Rehabilitation Using an Assist-as-Needed Controller
指導教授: 藍兆杰
Lan, Chao-Chieh
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 152
中文關鍵詞: 前臂復健機器人串聯彈性致動器虛擬輸出全向阻抗按需輔助控制
外文關鍵詞: Forearm rehabilitation robot, Series elastic actuator, Omni-directional impedance, Assist-as-needed controller
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文針對一具三自由度之前臂復健機器人進行控制器之設計,此機器能夠帶動人體前臂達成腕屈曲/伸張、尺偏/橈偏及旋前/旋後的復健運動,後續將前臂復健機器人分為腕部復健機器及滾轉復健機器兩部分進行討論。前臂復健機器人是透過串聯彈性致動器達到力量感測,透過量測撓性元件的變形量以進行力量回授控制,使機器不需額外安裝昂貴的力量感測器即可達成人機互動控制功能。
    當患者恢復到可部分自主運動時,傳統的被動式復健忽略了患者主動參與復健的能力,因此逐漸發展出按需輔助,其概念是機器會依照患者表現決定是否提供協助。儘管已有相當多的文獻於復健機器上發展出按需輔助控制器,且已被證實應用於患肢復健之成效,但對於適用於多自由度關節的按需輔助控制器之開發則較少被討論。因此本文提出一種適用於刺激人體手腕之腕屈曲/伸張和尺偏/橈偏運動的按需輔助控制器,並且針對空間多自由度的運動類型在選擇控制架構時所會面臨的問題進行討論。

    為了發展空間多自由度運動的按需輔助控制器,首先基於腕部復健機器建立出於任意參考位置產生虛擬輸出全向阻抗的運算,並以此作為按需輔助控制器的基礎,再結合呆區函數使受試者可以保有自主運動的裕度,接著建立人機介面使受試者可以得知當下位置與參考命令的位置,使受試者可以進一步主動跟隨參考命令移動,最終達成按需輔助控制的目標。此外,本文開發之按需輔助控制器只需調整呆區範圍大小,即可達成完整的復健療程,而不需切換控制器架構。
    本文最後討論驅動人手旋前/旋後運動的滾轉復健機器,首先針對其機構設計進行改善,解決無扭矩感測功能及受到重力影響而垂落兩項缺點,接著建立旋轉串聯彈性致動器的模型,並使用串集式阻抗控制器完成滾轉復健機器的控制。

    Demand for robot-assisted therapy has increased at every stage of the neurorehabilitation recovery. To promote patients’ voluntary involvement and facilitate the rehabilitation process, assist-as-needed (AAN) paradigms are becoming more popular in addition to the traditional passive assistance approach. An AAN controller only provides assistance when the human limb is not on the desired training trajectory and needs correction. Although AAN controllers have been studied for the disabled human limb recovery, specific AAN controllers that can stimulate the voluntary spatial motion of human wrist or other multiple-degrees-of-freedom (DoF) human joints are rarely found. This thesis presents a controller that is suitable for the AAN training of the wrist when performing the spatial motion. A wrist exoskeleton robot is presented to realize the AAN controller. This wrist robot includes series elastic actuators with high torque-to-weight ratios to provide accurate impedance control required for the human-robot interaction. A novel assistance controller that can generate an omni-directional impedance at any equilibrium point is proposed to serve as the basis for the AAN controller. Experimental results show that the proposed AAN controller can effectively provide patients with assistance as needed during the cooperative rehabilitation training.

    摘要 I English Abstract II 致謝 X 目錄 XI 表目錄 XV 圖目錄 XVII 符號說明 XXVI 第一章 緒論 1 1.1 背景介紹 1 1.2 文獻回顧 3 1.2.1 前臂復健機器人研究回顧 3 1.2.2 按需輔助控制文獻回顧 8 1.3 研究動機與目標 12 1.4 論文架構 13 第二章 腕部復健機器之建模與驅動 15 2.1 前言 15 2.2 線性串聯彈性致動器模型 15 2.2.1 時域模型 16 2.2.2 頻域模型 18 2.3 腕部復健機器 19 2.3.1 運動分析 19 2.3.2 力量分析 26 2.3.3 串聯彈性致動器輸出端等效質量 30 2.4 串聯彈性致動器驅動方式 32 2.4.1 軟硬體配置 32 2.4.2 馬達驅動公式推導 34 2.4.3 馬達參數鑑別與驅動電路 37 2.4.4 單軸線性串聯彈性致動器實驗平台設計 42 2.5 本章小結 45 第三章 腕部復健機器之控制器性能分析與實驗驗證 46 3.1 前言 46 3.2 力量控制器設計 46 3.2.1 輸出端固定之力量控制模型建立與穩定性分析 47 3.2.2 系統鑑別 49 3.2.3 輸出端固定之力量控制器增益值最佳化 52 3.2.4 輸出端固定之力量控制模擬模型建立與性能驗證 53 3.3 串集式阻抗控制器理論分析 56 3.3.1 串集式阻抗控制器模型 56 3.3.2 串集式阻抗控制器穩定性分析 59 3.3.3 串集式阻抗控制器模擬模型建立 64 3.4 串集式阻抗控制器實驗及控制性能驗證 66 3.4.1 順向驅動位置追蹤實驗 66 3.4.2 虛擬旋轉輸出勁度追蹤實驗 72 3.4.3 零阻抗逆向驅動實驗 74 3.5 本章小結 79 第四章 按需輔助控制器之設計與實驗 81 4.1 前言 81 4.2 虛擬輸出全向等阻抗之分析與實驗 81 4.2.1 虛擬輸出全向等阻抗理論分析 82 4.2.2 控制方法對達成虛擬輸出全向等勁度之影響 89 4.2.3 虛擬輸出全向等勁度實驗 98 4.3 實現按需輔助控制功能及實驗 103 4.3.1 按需輔助控制實現方式 103 4.3.2 人機介面設計 105 4.3.3 按需輔助控制實驗 106 4.3.4 呆區係數對不同階段復健療程的影響與被動式訓練實驗驗證 118 4.4 本章小結 125 第五章 滾轉復健機器之原型設計改善與驅動控制 127 5.1 前言 127 5.2 滾轉復健機器原型設計改善 127 5.2.1 加入旋轉串聯彈性致動器 127 5.2.2 電磁煞車器選用與安裝方法 129 5.2.3 改善後的原型實作結果 132 5.3 旋轉串聯彈性致動器模型建立與滾轉控制器實驗驗證 134 5.3.1 建立旋轉串聯彈性致動器模型 135 5.3.2 滾轉復健機器之控制器設計 137 5.3.3 滾轉復健機器之零阻抗控制實驗 138 5.3.4 滾轉復健機器之順向驅動位置追蹤實驗 140 5.4 本章小結 141 第六章 結論與未來工作 142 6.1 結論 142 6.2 未來工作 144 參考文獻 147

    [1] 衛生福利部 (2017)。「中華民國105年死因統計」。
    [2] Winstein, C. J., Stein, J., Arena, R., Bates, B., Cherney, L. R., Cramer, S. C., ... & Lang, C. E. (2016). Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke, 47(6), pp. 98-169.
    [3] Clarkson, H. M. (2000). Musculoskeletal assessment: joint range of motion and manual muscle strength. Lippincott Williams & Wilkins.
    [4] 吳冠毅 (2018)。「肘外甲機器之串聯彈性致動機構與驅動控制器設計」,成功大學機械工程學系碩士學位論文。
    [5] Brunnström, S. (1970). Movement therapy in hemiplegia: a neurophysiological approach. Medical Dept., Harper & Row.
    [6] 蘇胤毓 (2019)。「具串聯彈性致動與錯位適應之前臂復健機器人設計」,成功大學機械工程學系碩士學位論文。
    [7] Pezent, E., Rose, C. G., Deshpande, A. D., & O'Malley, M. K. (2017). Design and characterization of the openwrist: a robotic wrist exoskeleton for coordinated hand-wrist rehabilitation. International Conference on Rehabilitation Robotics (ICORR), pp. 720-725.
    [8] Vergaro, E., Casadio, M., Squeri, V., Giannoni, P., Morasso, P., & Sanguineti, V. (2010). Self-adaptive robot training of stroke survivors for continuous tracking movements. Journal of Neuroengineering and Rehabilitation, 7(1):13, pp. 1-12.
    [9] Krebs, H. I., Volpe, B. T., Williams, D., Celestino, J., Charles, S. K., Lynch, D., & Hogan, N. (2007). Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3), pp. 327-335.
    [10] Perry, J. C., Rosen, J., & Burns, S. (2007). Upper-limb powered exoskeleton design. IEEE/ASME Transactions on Mechatronics, 12(4), pp. 408-417.
    [11] French, J. A., Rose, C. G., & O’malley, M. K. (2014). System characterization of MAHI Exo-II: a robotic exoskeleton for upper extremity rehabilitation. American Society of Mechanical Engineers (ASME) Dynamic Systems and Controls Conference.
    [12] Martinez, J. A., Ng, P., Lu, S., Campagna, M. S., & Celik, O. (2013). Design of wrist gimbal: a forearm and wrist exoskeleton for stroke rehabilitation. International Conference on Rehabilitation Robotics (ICORR), pp. 1-6.
    [13] Bian, H., Chen, Z., Wang, H., & Zhao, T. (2017). Mechanical design of EFW Exo II: a hybrid exoskeleton for elbow-forearm-wrist rehabilitation. International Conference on Rehabilitation Robotics (ICORR), pp. 689-694.
    [14] Buongiorno, D., Sotgiu, E., Leonardis, D., Marcheschi, S., Solazzi, M., & Frisoli, A. (2018). WRES: a novel 3DoF WRist ExoSkeleton with tendon-driven differential transmission for neuro-rehabilitation and teleoperation. IEEE Robotics and Automation Letters, 3(3), pp. 2152-2159.
    [15] Wolbrecht, E. T., Chan, V., Reinkensmeyer, D. J., & Bobrow, J. E. (2008). Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 16(3), pp. 286-297.
    [16] Erwin, A. (2018). Series elastic actuation: facilitating robotic assessment of human neurological and biomechanical properties. Doctoral Dissertation, Rice University.
    [17] Reinkensmeyer, D. J., Emken, J. L., & Cramer, S. C. (2004). Robotics, motor learning, and neurologic recovery. Annual Review of Biomedical Engineering, 6, pp. 497-525.
    [18] Pehlivan, A. U., Losey, D. P., & O'Malley, M. K. (2015). Minimal assist-as-needed controller for upper limb robotic rehabilitation. IEEE Transactions on Robotics, 32(1), pp. 113-124.
    [19] Asl, H. J., Narikiyo, T., & Kawanishi, M. (2017). An assist-as-needed control scheme for robot-assisted rehabilitation. American Control Conference (ACC), pp. 198-203.
    [20] Duschau-Wicke, A., Caprez, A., & Riener, R. (2010). Patient-cooperative control increases active participation of individuals with SCI during robot-aided gait training. Journal of Neuroengineering and Rehabilitation, 7(1):43, pp. 1-13.
    [21] Cai, L. L., Fong, A. J., Otoshi, C. K., Liang, Y., Burdick, J. W., Roy, R. R., & Edgerton, V. R. (2006). Implications of assist-as-needed robotic step training after a complete spinal cord injury on intrinsic strategies of motor learning. Journal of Neuroscience, 26(41), pp. 10564-10568.
    [22] Srivastava, S., Kao, P. C., Kim, S. H., Stegall, P., Zanotto, D., Higginson, J. S., & Scholz, J. P. (2014). Assist-as-needed robot-aided gait training improves walking function in individuals following stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 23(6), pp. 956-963.
    [23] Marchal-Crespo, L., & Reinkensmeyer, D. J. (2009). Review of control strategies for robotic movement training after neurologic injury. Journal of Neuroengineering and Rehabilitation, 6(1):20, pp. 1-15.
    [24] Sanchez, R. J., Liu, J., Rao, S., Shah, P., Smith, R., Rahman, T., ... & Reinkensmeyer, D. J. (2006). Automating arm movement training following severe stroke: functional exercises with quantitative feedback in a gravity-reduced environment. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(3), pp. 378-389.
    [25] Krebs, H. I., Palazzolo, J. J., Dipietro, L., Ferraro, M., Krol, J., Rannekleiv, K., ... & Hogan, N. (2003). Rehabilitation robotics: performance-based progressive robot-assisted therapy. Autonomous Robots, 15(1), pp. 7-20.
    [26] Wolbrecht, E. T., Chan, V., Le, V., Cramer, S. C., Reinkensmeyer, D. J., & Bobrow, J. E. (2007). Real-time computer modeling of weakness following stroke optimizes robotic assistance for movement therapy. International IEEE/EMBS Conference on Neural Engineering, pp. 152-158.
    [27] Zhang, Y., Li, S., Nolan, K. J., & Zanotto, D. (2019). Adaptive Assist-as-needed Control Based on Actor-Critic Reinforcement Learning. IEEE/RSJ International Conference on Intelligent Robots and Systems.
    [28] Mancisidor, A., Zubizarreta, A., Cabanes, I., Bengoa, P., Brull, A., & Jung, J. H. (2019). Inclusive and seamless control framework for safe robot-mediated therapy for upper limbs rehabilitation. Mechatronics, 58, pp. 70-79.
    [29] Teramae, T., Noda, T., & Morimoto, J. (2017). EMG-based model predictive control for physical human–robot interaction: application for assist-as-needed control. IEEE Robotics and Automation Letters, 3(1), pp. 210-217.
    [30] Wei, Y., Bajaj, P., Scheidt, R., & Patton, J. (2005). Visual error augmentation for enhancing motor learning and rehabilitative relearning. International Conference on Rehabilitation Robotics (ICORR), pp. 505-510.
    [31] Lee, K. W., Kim, S. B., Lee, J. H., Lee, S. J., & Kim, J. W. (2017). Effect of robot-assisted game training on upper extremity function in stroke patients. Annals of Rehabilitation Medicine, 41(4), pp. 539-546.
    [32] Montagner, A., Frisoli, A., Borelli, L., Procopio, C., Bergamasco, M., Carboncini, M. C., & Rossi, B. (2007). A pilot clinical study on robotic assisted rehabilitation in VR with an arm exoskeleton device. Virtual Rehabilitation, pp. 57-64.
    [33] Hocoma Inc. "ArmeoPower" Available: https://www.hocoma.com/solutions/armeo-power/#product [Accessed: December 3, 2019].
    [34] Fourier Intelligence Co.,LTD. "ArmMotus™ M2" Available: http://www.fftai.com/ product_en /M2.php [Accessed: December 3, 2019].
    [35] MISUMI Group Inc. "MISUMI-彈簧型錄" Available: https://tw.misumi-ec.com/pdf/fa /2015 /p2_355.pdf [Accessed: August 14, 2019].
    [36] Renishaw, Inc. (2001) "ATOM™編碼器系列" Available: http://www.renishaw. com.tw/tw/atom-encoder-series--37564 [Accessed: June 13, 2019].
    [37] 簡隸 (2016)。「使用串聯彈性致動器於肩外甲自適復健機器之阻抗控制」,成功大學機械工程學系碩士學位論文。
    [38] 徐嘉佑 (2013)。「具兩共置撓性驅動軸機器手腕之動力與控制」,成功大學機械工程學系碩士學位論文。
    [39] Oriental motor USA Corp. "Stepper Motors (Motor Only) - PKP Series 2-Phase" Available: https://catalog.orientalmotor.com/item/2-phase-bipolar-stepper-motors/20mm-pkp-series-2-phase-bipolar-stepper-motors/pkp214d06a-2 [Accessed: February 26, 2019].
    [40] Bodson, M., Chiasson, J. N., Novotnak, R. T., & Rekowski, R. B. (1993). High-performance nonlinear feedback control of a permanent magnet stepper motor. IEEE Transactions on Control Systems Technology, 1(1), pp. 5-14.
    [41] Nollet, F., Floquet, T., & Perruquetti, W. (2008). Observer-based second order sliding mode control laws for stepper motors. Control Engineering Practice, 16(4), pp. 429-443.
    [42] Ohmae, T., Matsuda, T., Kamiyama, K., & Tachikawa, M. (1982). A microprocessor-controlled high-accuracy wide-range speed regulator for motor drives. IEEE Transactions on Industrial Electronics, IE-29(3), pp. 207-211.
    [43] Tsuji, T., Hashimoto, T., Kobayashi, H., Mizuochi, M., & Ohnishi, K. (2009). A wide-range velocity measurement method for motion control. IEEE Transactions on Industrial Electronics, 56(2), pp. 510-519.
    [44] Delpoux, R., Bodson, M., & Floquet, T. (2014). Parameter estimation of permanent magnet stepper motors without mechanical sensors. Control Engineering Practice, 26, pp. 178-187.
    [45] Texas Instruments Inc. (1995) " OPA548 - high-voltage, high-current, wide-output-voltage-swing power operational amplfier" Available: http://www.ti.com/product/ OPA548?keyMatch=OPA548&tisearch=Search-EN-Everything [Accessed: March 4, 2019].
    [46] 許登傑、陳文瑞、麥朝創與蔡孟勳 (2017)。「系統頻譜分析於工具機上的應用」,機械工業雜誌。
    [47] Rosen, J., Perry, J. C., Manning, N., Burns, S., & Hannaford, B. (2005). The human arm kinematics and dynamics during daily activities-toward a 7 DOF upper limb powered exoskeleton. International Conference on Advanced Robotics, pp. 532-539.
    [48] 王明揚、王茂駿、黃雪玲、遊志雲、李永輝、何明泉與石裕川 (1996)。「勞工靜態與動態人體計測資料庫之量測(II)」,行政院勞工委員會勞工安全衛生研究所。
    [49] 尤應龍 (2018)。「開發微型串聯彈性致動器於遠端操作機器人的精準力感知與控制」,成功大學機械工程學系碩士學位論文。
    [50] RLS. (1989) "RM08超小型非接觸式磁旋轉編碼器" Available: https://www.rls.si/cn/rm08-super-small-non-contact-rotary-encoder [Accessed: May 07, 2019].
    [51] MIKI PULLEY CO., LTD. "Electromagnetic clutchches & brakes" Available: https://www.mikipulley.co.jp/data/pdf/en/cb_of_ct.pdf [Accessed: April 25, 2019].

    無法下載圖示 校內:2025-02-10公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE