| 研究生: |
曾瑄維 Tseng, Hsuan-Wei |
|---|---|
| 論文名稱: |
探究SlSWEET5b單糖卸載的功能及對番茄花粉與果實發育的影響 Investigate the function of SlSWEET5b in hexose unloading and effect on pollen and fruit development in tomato |
| 指導教授: |
郭瑋君
Guo, Woei-Jiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技與產業科學系 Department of Biotechnology and Bioindustry Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 98 |
| 中文關鍵詞: | SWEET 、糖轉運蛋白 、番茄 、花粉 、花與花粉之發育 |
| 外文關鍵詞: | SWEET, sugar transporter, Solanum lycopersicum, flower and pollen development |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
花的發育決定番茄果實的產量,其中糖卸載量為花發育的關鍵,但是糖被運輸至
番茄花的分子機制仍未知。SWEET 糖轉運蛋白已被證實負責積儲器官中蔗糖輸
出及分佈,其對番茄花發育中的角色值得進一步研究。qRT-PCR 結果顯示在31
個番茄SWEET 基因中,SlSWEET5b 在花中高度表現,尤其專一表現在晚期花
苞(7mm)的雄蕊中,in situ hybridization 分析進一步發現RNA 主要累積在花粉
粒及韌皮部細胞,此分佈與SlSWEET5b-GUS 融合蛋白累積位置一致,顯示
SlSWEET5b 糖轉運蛋白在花粉有絲分裂期間可能扮演糖供應的角色。GFP 融合
蛋白分析進一步確認SlSWEET5b 表現在細胞膜,其為糖進出細胞的主要調控位
置。酵母菌生長分析和放射性追蹤分析也證實了SlSWEET5b 對葡萄糖及果糖具
有轉運活性。為了驗證SlSWEET5b 在植物中的功能,也利用RNAi 建立了表現
基因沈默的番茄轉植株。觀察發現在SlSWEET5b 沉默的植物中,花粉發育畸形
且發芽率顯著下降,而果實發育也顯著延遲使得種子總數下降。此外,
SlSWEET5b 的下降表現也顯著提高花中細胞壁轉化酶的活性,可見SlSWEET5b
活性也影響花粉內的糖訊息傳遞。綜合這些結果,証實SlSWEET5b 位在番茄花
藥的韌皮部細胞及薄壁細胞的細胞膜上輸入單糖使糖卸載至花粉腔中,同時也
位在花粉表皮細胞以輸入單糖促進花粉成熟,使得自交授粉得以成功以促使果實和種子的發育。
Flower development determines the yield of tomato fruits, where efficient sugar unloading is critical for flower development. However, the molecular mechanism to import sugars to tomato flowers is unknown. SWEET sugar transporters have been shown to be responsible for the sucrose export and distribution in sink organs. Their role in flower development deserves further research. Here, qRT-PCR showed that SlSWEET5b was highly expressed in flowers within 31 tomato SlSWEETs, particularly in stamens of the late stage of flowers buds (7mm). In situ hybridization analysis further indicated that RNA transcripts were accumulated in pollen grains and phloem cells. The pattern was consistent with accumulation of SlSWEET5b-GUS fusion proteins, indicating that SlSWEET5b may function to supply sugars during the mitosis stage of pollen development. Expression of GFP fusion proteins indicated that SlSWEET5b mainly localized on the plasma membrane, which is the major location to regulate sugar transport. The yeast growth assay and radiotracer analyses further confirmed the transport activity of SlSWEET5b to glucose and fructose. To verify SlSWEET5b function, knock-down transgenic tomato plants carrying the RNAi construct were generated. In SlSWEET5b-silenced plants, pollens were abnormal and pollen germination rate was greatly reduced. The fruit development was greatly delayed and total seed numbers were dramatically reduced. Moreover, reduced expression of SlSWEET5b significantly increased activities of cell wall invertase, indicating that SlSWEET5b transport activity affects sugar signaling pathway. Combining these results, we showed that SlSWEET5b located on the plasms membrane of phloem cells and parenchyma cells of tomato anthers to mediate sugar unloading into the pollen cavity and pollens. These sugars enable pollen maturation and make pollination successful to promote the development of fruits and seeds.
行政院農業委員會農糧署 (2018)。臺閩地區農產品生產量值年報。取自
https://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation.aspx。
何俐萱,探討番茄 SlSWEETs 轉運蛋白對於器官中醣類的分配以及抗青
枯病機制中所扮演的角色,國立成功大學熱帶植物科學研究所碩士論文,
2017。
Aluri, S., and Büttner, M. Identification and functional expression of the
Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed
germination and flowering. Proceedings of the National Academy of Sciences
of the United States of America 104, 2537-2542, 2007.
Ayre, B.G. Membrane-transport systems for sucrose in relation to whole-plant
carbon partitioning. Molecular Plant 4, 377-394, 2011.
Borghi, M., and Fernie, A.R. Floral metabolism of sugars and amino acids:
implications for pollinators’ preferences and seed and fruit set. Plant
Physiology 175, 1510-1524, 2017.
Braun, D.M., and Slewinski, T.L. Genetic control of carbon partitioning in
grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. Plant
Physiology 149, 71-81, 2009.
Brooks, C., Nekrasov, V., Lippman, Z.B., and Van Eck, J. Efficient gene editing
in tomato in the first generation using the clustered regularly interspaced short
palindromic repeats/CRISPR-associated9 system. Plant Physiology 166, 1292-
1297, 2014.
Brukhin, V., Hernould, M., Gonzalez, N., Chevalier, C., and Mouras, A. Flower
development schedule in tomato Lycopersicon esculentum cv. sweet cherry.
Sexual Plant Reproduction 15, 311-320, 2003.
Bürkle, L., Hibberd, J.M., Quick, W.P., Kühn, C., Hirner, B., and Frommer,
W.B. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from
tobacco leaves. Plant Physiology 118, 59-68, 1998.
55
Cao, S., Yang, Z., and Zheng, Y. Sugar metabolism in relation to chilling
tolerance of loquat fruit. Food Chemistry 136, 139-143, 2013.
Castro, A.J., and Clément, C. Sucrose and starch catabolism in the anther of
Lilium during its development: a comparative study among the anther wall,
locular fluid and microspore/pollen fractions. Planta 225, 1573-1582, 2007.
Castro, P.H., Verde, N., Lourenço, T., Magalhaes, A.P., Tavares, R.M., Bejarano,
E.R., and Azevedo, H. SIZ1-dependent post-translational modification by
SUMO modulates sugar signaling and metabolism in Arabidopsis thaliana.
Plant and Cell Physiology 56, 2297-2311, 2015.
Chen, L., Q., Hou, B., H., Lalonde, S., Takanaga, H., Hartung, M.L., Qu, X.,
Q., Guo, W., J., Kim, J., G., Underwood, W., and Chaudhuri, B. Sugar
transporters for intercellular exchange and nutrition of pathogens. Nature 468,
527-532, 2010.
Chen, L., Q., Lin, I.W., Qu, X., Q., Sosso, D., McFarlane, H.E., Londoño, A.,
Samuels, A.L., and Frommer, W.B. A cascade of sequentially expressed sucrose
transporters in the seed coat and endosperm provides nutrition for the
Arabidopsis embryo. The Plant Cell 27, 607-619, 2015.
Chen, L., Q., Qu, X., Q., Hou, B., H., Sosso, D., Osorio, S., Fernie, A.R., and
Frommer, W.B. Sucrose efflux mediated by SWEET proteins as a key step for
phloem transport. Science 335, 207-211, 2012.
Cheng, J., Wang, Z., Yao, F., Gao, L., Ma, S., Sui, X., and Zhang, Z. Downregulating
CsHT1, a cucumber pollen-specific hexose transporter, inhibits
pollen germination, tube growth, and seed development. Plant Physiology 168,
635-647, 2015.
Chen, T. K., Yang, H. T., Fang, S. C., Lien, Y. C., Yang, T. T., and Ko, S. S.
Hybrid-Cut: an improved sectioning method for recalcitrant plant tissue
samples. Journal of Visualized Experiments 117, e54754, 2016.
56
Chong, J., Piron, M., C., Meyer, S., Merdinoglu, D., Bertsch, C., and Mestre, P.
The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved
in the interaction with Botrytis cinerea. Journal of Experimental Botany 65,
6589-6601, 2014.
Christiaens, A., De Keyser, E., Pauwels, E., De Riek, J., Gobin, B., and Van
Labeke, M.C. Suboptimal light conditions influence source-sink metabolism
during flowering. Frontiers in Plant Science 7, 249, 2016.
Chu, Z., Yuan, M., Yao, J., Ge, X., Yuan, B., Xu, C., Li, X., Fu, B., Li, Z., and
Bennetzen, J.L. Promoter mutations of an essential gene for pollen
development result in disease resistance in rice. Genes and Development 20,
1250-1255, 2006.
Cooper, D.C. Anatomy and development of tomato flower. Botanical Gazette
83, 399-411, 1927.
Dinesh-Kumar, S., Anandalakshmi, R., Marathe, R., Schiff, M., and Liu, Y.
Virus-induced gene silencing. In Plant Functional Genomics, Humana Press,
New Jersey, 287-293, 2003.
Doidy, J., Grace, E., Kühn, C., Simon, Plas, F., Casieri, L., and Wipf, D. Sugar
transporters in plants and in their interactions with fungi. Trends in Plant
Science 17, 413-422, 2012.
Dölger, J., Rademaker, H., Liesche, J., Schulz, A., and Bohr, T. Diffusion and
bulk flow in phloem loading: a theoretical analysis of the polymer trap
mechanism for sugar transport in plants. Physical Review E 90, 042704, 2014.
Dorion, S., Lalonde, S., and Saini, H.S. Induction of male sterility in wheat by
meiotic-stage water deficit is preceded by a decline in invertase activity and
changes in carbohydrate metabolism in anthers. Plant Physiology 111, 137-145,
1996.
Engel, M.L., Holmes-Davis, R., and McCormick, S. Green sperm.
Identification of male gamete promoters in Arabidopsis. Plant Physiology 138,
2124-2133, 2005.
57
Eom, J., S., Chen, L., Q., Sosso, D., Julius, B.T., Lin, I., Qu, X., Q., Braun,
D.M., and Frommer, W.B. SWEETs, transporters for intracellular and
intercellular sugar translocation. Current Opinion in Plant Biology 25, 53-62,
2015.
FAO. Food and Agriculture Organization Corporate Statistical Database. Latest
update: 15/06/2020. http://www.fao.org/faostat/zh/#data/QC/visualize.
Feng, C., Y., Han, J., X., Han, X., X., and Jiang, J. Genome-wide identification,
phylogeny, and expression analysis of the SWEET gene family in tomato. Gene
573, 261-272, 2015.
Gear, M.L., McPhillips, M.L., Patrick, J.W., and McCurdy, D.W. Hexose
transporters of tomato: molecular cloning, expression analysis and functional
characterization. Plant Molecular Biology 44, 687-697, 2000.
Gietz, R.D., and Schiestl, R.H. High-efficiency yeast transformation using the
LiAc/SS carrier DNA/PEG method. Nature Protocols 2, 31-34, 2007.
Giuliano, G., Bartley, G.E., and Scolnik, P.A. Regulation of carotenoid
biosynthesis during tomato development. The Plant Cell 5, 379-387, 1993.
Goetz, M., Guivarćh, A., Hirsche, J., Bauerfeind, M.A., González, M., C., Hyun,
T.K., Eom, S.H., Chriqui, D., Engelke, T., and Großkinsky, D.K. Metabolic
control of tobacco pollination by sugars and invertases. Plant Physiology 173,
984-997, 2017.
Guan, Y.F., Huang, X.Y., Zhu, J., Gao, J.F., Zhang, H.X., and Yang, Z.N.
RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is
crucial for exine pattern formation and cell integrity of microspores in
Arabidopsis. Plant Physiology 147, 852-863, 2008.
Guo, W.J., Nagy, R., Chen, H.Y., Pfrunder, S., Yu, Y.C., Santelia, D., Frommer,
W.B., and Martinoia, E. SWEET17, a facilitative transporter, mediates fructose
transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology
164, 777-789, 2014.
58
Hansen, G. The evolution of the evidence base for observed impacts of climate
change. Current Opinion in Environmental Sustainability 14, 187-197, 2015.
Hinojosa, L., Sanad, M.N., Jarvis, D.E., Steel, P., Murphy, K., and Smertenko,
A. Impact of heat and drought stress on peroxisome proliferation in quinoa. The
Plant Journal 99, 1144-1158, 2019.
Hirose, T., Zhang, Z., Miyao, A., Hirochika, H., Ohsugi, R., and Terao, T.
Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen
function but pollen maturation is unaffected. Journal of Experimental Botany
61, 3639-3646, 2010.
Ho, L.H., Klemens, P.A., Neuhaus, H.E., Ko, H.Y., Hsieh, S.Y., and Guo, W.J.
Sl SWEET1a is involved in glucose import to young leaves in tomato plants.
Journal of Experimental Botany 70, 3241-3254, 2019.
Jin, Y., Ni, D.A., and Ruan, Y.L. Posttranslational elevation of cell wall
invertase activity by silencing its inhibitor in tomato delays leaf senescence and
increases seed weight and fruit hexose level. The Plant Cell 21, 2072-2089,
2009.
Karimi, M., Depicker, A., and Hilson, P. Recombinational cloning with plant
gateway vectors. Plant Physiology 145, 1144-1154, 2007.
Klemens, P.A., Patzke, K., Deitmer, J., Spinner, L., Le Hir, R., Bellini, C., Bedu,
M., Chardon, F., Krapp, A., and Neuhaus, H.E. Overexpression of the vacuolar
sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance
in Arabidopsis. Plant Physiology 163, 1338-1352, 2013.
Kuo, C., Chen, H., Shen, B., and Chen, H. Relationship between hormonal
levels in pistils and tomato fruit-set in hot and cool seasons. Asian Vegetable
Research and Development Center, Tainan, 1989.
Lemoine, R., Bürkle, L., Barker, L., Sakr, S., Kühn, C., Regnacq, M., Gaillard,
C., Delrot, S., and Frommer, W.B. Identification of a pollen-specific sucrose
59
transporter-like protein NtSUT3 from tobacco. Federation of European
Biochemical Societies Letters 454, 325-330, 1999.
Li, C., Meng, D., Pineros, M.A., Mao, Y., Dandekar, A.M., and Cheng, L. A
sugar transporter takes up both hexose and sucrose for sorbitol-modulated in
vitro pollen tube growth in apple. The Plant Cell 32, 449-469, 2020.
Lin, I.W., Sosso, D., Chen, L.Q., Gase, K., Kim, S.G., Kessler, D., Klinkenberg,
P.M., Gorder, M.K., Hou, B.H., and Qu, X.Q. Nectar secretion requires sucrose
phosphate synthases and the sugar transporter SWEET9. Nature 508, 546-549,
2014.
Liu, X., Zhang, Y., Yang, C., Tian, Z., and Li, J. AtSWEET4, a hexose facilitator,
mediates sugar transport to axial sinks and affects plant development. Scientific
Reports 6, 1-12, 2016a.
Liu, Y.H., Offler, C.E., and Ruan, Y.L. Cell wall invertase promotes fruit set
under heat stress by suppressing ROS-independent cell death. Plant Physiology
172, 163-180, 2016b.
Lu, Y., Wei, L., and Wang, T. Methods to isolate a large amount of generative
cells, sperm cells and vegetative nuclei from tomato pollen for “omics” analysis.
Frontiers in Plant Science 6, 391, 2015.
McLAUGHLIN, J.E., and Boyer, J.S. Sugar-responsive gene expression,
invertase activity, and senescence in aborting maize ovaries at low water
potentials. Annals of Botany 94, 675-689, 2004.
Mesihovic, A., Iannacone, R., Firon, N., and Fragkostefanakis, S. Heat stress
regimes for the investigation of pollen thermotolerance in crop plants. Plant
Reproduction 29, 93-105, 2016.
Müller, G.L., Drincovich, M.F., Andreo, C.S., and Lara, M.V. Role of
photosynthesis and analysis of key enzymes involved in primary metabolism
throughout the lifespan of the tobacco flower. Journal of Experimental Botany
61, 3675-3688, 2010.
60
Nelson, B.K., Cai, X., and Nebenführ, A. A multicolored set of in vivo organelle
markers for co‐localization studies in Arabidopsis and other plants. The Plant
Journal 51, 1126-1136, 2007.
Niewiadomski, P., Knappe, S., Geimer, S., Fischer, K., Schulz, B., Unte, U.S.,
Rosso, M.G., Ache, P., Flügge, U.I., and Schneider, A. The Arabidopsis
plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for
pollen maturation and embryo sac development. The Plant Cell 17, 760-775,
2005.
Obermeyer, G., Fragner, L., Lang, V., and Weckwerth, W. Dynamic adaption of
metabolic pathways during germination and growth of lily pollen tubes after
inhibition of the electron transport chain. Plant Physiology 162, 1822-1833,
2013.
Pacini, E., Franchi, G., and Hesse, M. The tapetum: Its form, function, and
possible phylogeny inEmbryophyta. Plant Systematics and Evolution 149, 155-
185, 1985.
Peixoto, J., Neto, C., Campos, L., Dourado, W.d.S., Nogueira, A., and
Nascimento, A. Industrial tomato lines: morphological properties and
productivity. Genetics and Molecular Research 16, 1-15, 2017.
Pressman, E., Peet, M.M., and Pharr, D.M. The effect of heat stress on tomato
pollen characteristics is associated with changes in carbohydrate concentration
in the developing anthers. Annals of Botany 90, 631-636, 2002.
Rao, A.V., Young, G.L., and Rao, L.G. Lycopene and tomatoes in human
nutrition and health. Chemical Rubber Company, Florida, 2018.
Rennie, E.A., and Turgeon, R. A comprehensive picture of phloem loading
strategies. Proceedings of the National Academy of Sciences of the United
States of America 106, 14162-14167, 2009.
Rottmann, T., Fritz, C., Sauer, N., and Stadler, R. Glucose uptake via STP
transporters inhibits in vitro pollen tube growth in a HEXOKINASE1-
dependent manner in Arabidopsis thaliana. The Plant Cell 30, 2057-2081, 2018.
61
Rounds, C.M., Winship, L.J., and Hepler, P.K. Pollen tube energetics:
respiration, fermentation and the race to the ovule. AoB Plants , 2011.
Ruan, Y.L. Sucrose metabolism: gateway to diverse carbon use and sugar
signaling. Annual Review of Plant Biology 65, 33-67, 2014.
Ruan, Y.L., Jin, Y., Yang, Y.J., Li, G.J., and Boyer, J.S. Sugar input, metabolism,
and signaling mediated by invertase: roles in development, yield potential, and
response to drought and heat. Molecular Plant 3, 942-955, 2010.
Sato, S., Peet, M., and Thomas, J. Physiological factors limit fruit set of tomato
(Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, Cell
and Environment 23, 719-726, 2000.
Schneidereit, A., Scholz Starke, J., and Büttner, M. Functional characterization
and expression analyses of the glucose-specific AtSTP9 monosaccharide
transporter in pollen of Arabidopsis. Plant Physiology 133, 182-190, 2003.
Shen, S., Si, M., Liu, Y., Liao, S., Li, J., KARTIKA, D., and Ruan, Y.L. Cell
wall invertase and sugar transporters are differentially activated in tomato
styles and ovaries during pollination and fertilization. Frontiers in Plant
Science 10, 506, 2019.
Shen, S., Zhang, L., Liang, X.G., Zhao, X., Lin, S., Qu, L.H., Liu, Y.P., Gao,
Z., Ruan, Y.L., and Zhou, S.L. Delayed pollination and low availability of
assimilates are major factors causing maize kernel abortion. Journal of
Experimental Botany 69, 1599-1613, 2018.
Sosso, D., Luo, D., Li, Q.B., Sasse, J., Yang, J., Gendrot, G., Suzuki, M., Koch,
K.E., McCarty, D.R., and Chourey, P.S. Seed filling in domesticated maize and
rice depends on SWEET-mediated hexose transport. Nature Genetics 47, 1489,
2015.
Srivastava, A.C., Ganesan, S., Ismail, I.O., and Ayre, B.G. Functional
characterization of the Arabidopsis AtSUC2 sucrose/H+ symporter by tissue62
specific complementation reveals an essential role in phloem loading but not in
long-distance transport. Plant Physiology 148, 200-211, 2008.
Stadler, R., Truernit, E., Gahrtz, M., and Sauer, N. The AtSUC1 sucrose carrier
may represent the osmotic driving force for anther dehiscence and pollen tube
growth in Arabidopsis. The Plant Journal 19, 269-278, 1999.
Truernit, E., Schmid, J., Epple, P., Illig, J., and Sauer, N. The sink-specific and
stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene
encoding a monosaccharide transporter by wounding, elicitors, and pathogen
challenge. The Plant Cell 8, 2169-2182, 1996.
Turgeon, R. The role of phloem loading reconsidered. Plant Physiology 152,
1817-1823, 2010.
Turnage, M.A., Muangsan, N., Peele, C.G., and Robertson, D. Geminivirusbased
vectors for gene silencing in Arabidopsis. The Plant Journal 30, 107-114,
2002.
van Bel, A.J. The phloem, a miracle of ingenuity. Plant, Cell and Environment
26, 125-149, 2003.
Wan, H., Wu, L., Yang, Y., Zhou, G., and Ruan, Y.L. Evolution of sucrose
metabolism: the dichotomy of invertases and beyond. Trends in Plant Science
23, 163-177, 2018.
Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T., and Lin, C.S. Tape-
Arabidopsis Sandwich-a simpler Arabidopsis protoplast isolation method.
Plant Methods 5, 16, 2009.
Yang, B., Sugio, A., and White, F.F. Os8N3 is a host disease-susceptibility gene
for bacterial blight of rice. Proceedings of the National Academy of Sciences of
the United States of America 103, 10503-10508, 2006.
Yang, J., Luo, D., Yang, B., Frommer, W.B., and Eom, J.S. SWEET 11 and 15
as key players in seed filling in rice. New Phytologist 218, 604-615, 2018.