簡易檢索 / 詳目顯示

研究生: 曾瑄維
Tseng, Hsuan-Wei
論文名稱: 探究SlSWEET5b單糖卸載的功能及對番茄花粉與果實發育的影響
Investigate the function of SlSWEET5b in hexose unloading and effect on pollen and fruit development in tomato
指導教授: 郭瑋君
Guo, Woei-Jiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技與產業科學系
Department of Biotechnology and Bioindustry Sciences
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 98
中文關鍵詞: SWEET糖轉運蛋白番茄花粉花與花粉之發育
外文關鍵詞: SWEET, sugar transporter, Solanum lycopersicum, flower and pollen development
相關次數: 點閱:96下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 花的發育決定番茄果實的產量,其中糖卸載量為花發育的關鍵,但是糖被運輸至
    番茄花的分子機制仍未知。SWEET 糖轉運蛋白已被證實負責積儲器官中蔗糖輸
    出及分佈,其對番茄花發育中的角色值得進一步研究。qRT-PCR 結果顯示在31
    個番茄SWEET 基因中,SlSWEET5b 在花中高度表現,尤其專一表現在晚期花
    苞(7mm)的雄蕊中,in situ hybridization 分析進一步發現RNA 主要累積在花粉
    粒及韌皮部細胞,此分佈與SlSWEET5b-GUS 融合蛋白累積位置一致,顯示
    SlSWEET5b 糖轉運蛋白在花粉有絲分裂期間可能扮演糖供應的角色。GFP 融合
    蛋白分析進一步確認SlSWEET5b 表現在細胞膜,其為糖進出細胞的主要調控位
    置。酵母菌生長分析和放射性追蹤分析也證實了SlSWEET5b 對葡萄糖及果糖具
    有轉運活性。為了驗證SlSWEET5b 在植物中的功能,也利用RNAi 建立了表現
    基因沈默的番茄轉植株。觀察發現在SlSWEET5b 沉默的植物中,花粉發育畸形
    且發芽率顯著下降,而果實發育也顯著延遲使得種子總數下降。此外,
    SlSWEET5b 的下降表現也顯著提高花中細胞壁轉化酶的活性,可見SlSWEET5b
    活性也影響花粉內的糖訊息傳遞。綜合這些結果,証實SlSWEET5b 位在番茄花
    藥的韌皮部細胞及薄壁細胞的細胞膜上輸入單糖使糖卸載至花粉腔中,同時也
    位在花粉表皮細胞以輸入單糖促進花粉成熟,使得自交授粉得以成功以促使果實和種子的發育。

    Flower development determines the yield of tomato fruits, where efficient sugar unloading is critical for flower development. However, the molecular mechanism to import sugars to tomato flowers is unknown. SWEET sugar transporters have been shown to be responsible for the sucrose export and distribution in sink organs. Their role in flower development deserves further research. Here, qRT-PCR showed that SlSWEET5b was highly expressed in flowers within 31 tomato SlSWEETs, particularly in stamens of the late stage of flowers buds (7mm). In situ hybridization analysis further indicated that RNA transcripts were accumulated in pollen grains and phloem cells. The pattern was consistent with accumulation of SlSWEET5b-GUS fusion proteins, indicating that SlSWEET5b may function to supply sugars during the mitosis stage of pollen development. Expression of GFP fusion proteins indicated that SlSWEET5b mainly localized on the plasma membrane, which is the major location to regulate sugar transport. The yeast growth assay and radiotracer analyses further confirmed the transport activity of SlSWEET5b to glucose and fructose. To verify SlSWEET5b function, knock-down transgenic tomato plants carrying the RNAi construct were generated. In SlSWEET5b-silenced plants, pollens were abnormal and pollen germination rate was greatly reduced. The fruit development was greatly delayed and total seed numbers were dramatically reduced. Moreover, reduced expression of SlSWEET5b significantly increased activities of cell wall invertase, indicating that SlSWEET5b transport activity affects sugar signaling pathway. Combining these results, we showed that SlSWEET5b located on the plasms membrane of phloem cells and parenchyma cells of tomato anthers to mediate sugar unloading into the pollen cavity and pollens. These sugars enable pollen maturation and make pollination successful to promote the development of fruits and seeds.

    目錄 中文摘要 .................................................................................................. I 英文摘要 ................................................................................................. II 誌謝 ....................................................................................................... VI 目錄 ...................................................................................................... VII 表目錄 ..................................................................................................... X 圖目錄 ................................................................................................... XI 縮寫表 ................................................................................................. XIII 一、研究背景 .......................................................................................... 1 1-1 番茄的作物生產及瓶頸 (The production and bottleneck of tomato) ..................................................................................... 1 1-2 糖對花發育的重要性 (The importance of sugars in flower development) ............................................................................ 1 1-3 糖類於植物體內的運輸 (The mechanism of sugar transport in plants) ................................................................................... 3 1-4 花中的糖轉運 (Sugar transport in flowers) ........................... 5 1-5 SWEET 糖轉運蛋白之功能 (Function of SWEET sugar transporter) ............................................................................... 7 1-6 SWEET 糖轉運蛋白於番茄中的發現 (Researches about SWEET sugar transporters in tomato) ..................................... 8 1-7 研究目的 (Aims) .................................................................... 9 二、材料與方法 .................................................................................... 10 2-1 植物與栽種方法 (Plant materials and cultivation VIII methods) ................................................................................ 10 2-2 RNA 萃取與反轉錄 (RNA extraction and reverse transcription) .......................................................................... 11 2-3 即時定量計聚合酶連鎖反應 (Real-time quantitative polymerase chain reaction) .................................................... 12 2-4 建立GUS reporter 轉殖株 (Establishment of SlSWEET5b GUS reporter transgenic line) ................................................ 13 2-5 GFP 融合蛋白的表現觀察 (Observation of the GFP fusion protein) ................................................................................... 16 2-6 酵母菌互補生長分析 (Yeast complementation growth assay) ..................................................................................... 19 2-7 碳十四放射性同位素標定追蹤分析 (C14 radiotracer analysis) .................................................................................. 23 2-8 RNAi 轉殖株篩選與繁殖 (Screening and propagation of RNAi transgenic plants) ......................................................... 24 2-9 RNAi 轉殖株生長觀察 ( Growth analysis of RNAi transgenic plants) .................................................................. 24 2-10 轉化酶活性分析 (Invertase activity analysis) ...................... 27 2-11 建立SlSWEET5b OE 轉植株 (construction of overexpression plants) .......................................................... 27 2-12 病毒誘導基因靜默 (Virus-induced gene silencing) ............ 28 三、結果 ................................................................................................ 31 3-1 SlSWEET5b 在番茄花中RNA 的表現分佈 (RNA expression of SlSWEET5b in tomato flowers) ......................................... 31 3-2 SlSWEET5b-GUS 融合蛋白組織專一性表現 (Tissue IX specific expression patterns of SlSWEET5b-GUS fusion proteins) .................................................................................. 33 3-3 SlSWEET5b-GFP 融合蛋白細胞表現 (Subcellular localization of SlSWEET5b) ................................................. 35 3-4 糖轉運活性分析 (Sugar transport analysis) ......................... 36 3-5 碳十四放射性同位素標定追蹤分析 (C14 radiotracer analysis) .................................................................................. 37 3-6 RNAi 轉殖株建構及篩選(Construction and screen of transgenic plants) ................................................................... 38 3-7 突變株性狀分析 (Phenotyping of transgenic plants ) .......... 41 3-8 建立OE 轉基因植株 (overexpression construction and establishment of transgenic plants) ........................................ 46 3-9 病毒誘導基因沈默 (Virus-induced gene silencing) ............ 47 四、討論 ................................................................................................ 48 4-1 SlSWEET5b 參與花粉成熟發育 (SlSWEET5b participates in pollen maturation and development) .................................. 48 4-2 SlSWEET5b 為細胞膜上之糖轉運蛋白 (SlSWEET5b sugar transporter function on plasma membrane) ............................ 50 4-3 SlSWEET5b 為單糖轉運蛋白 (SlSWEET5b is a monosaccharide transporter) ................................................. 50 4-4 SlSWEET5b 為花粉發育的必要機制 (SlSWEET5b is a necessary mechanism for pollen development) ..................... 51 4-5 結論(Conclusion) ................................................................... 52 參考文獻 ................................................................................................ 54 圖表 ........................................................................................................ 63 X 表目錄 表一、及時定量計聚合酶連鎖反應 (qRT-PCR) 所使用引子 .......... 64 XI 圖目錄 圖一、 SlSWEET5b 於番茄花中不同部位的表現 ..................... 65 圖二、 Clade II SWEET 基因番茄花中不同部位的表現 ........... 66 圖三、 SlSWEET5b 於番茄花不同發育時期的表現 ................. 67 圖四、 Clade II SWEET 基因於番茄花不同發育時期的表現 ... 68 圖五、 瞬時表達SlSWEET5b-GUS 複合蛋白於番茄植物 ...... 69 圖六、 SlSWEET5b-GUS 蛋白於T0 轉殖株中組織的專一性 表達 ................................................................................. 70 圖七、 SlSWEET5b-GUS 蛋白於T1 轉殖株中組織的專一性 表達 .................................................................................. 71 圖八、 組織切片分析SlSWEET5b-GUS 蛋白的專一表達 ..... 72 圖九、 SlSWEET5b-GFP 融合蛋白 於植物細胞內表現 位置 .................................................................................. 73 圖十、 酵母菌(YSL2-1)互補生長分析測試 SlSWEET5b 的 糖轉運能力(重複1) ........................................................... 74 圖十一、 酵母菌(EBY4000)互補生長分析測試 SlSWEET5b 的糖轉運能力(重複1) ....................................................... 75 圖十二、 碳十四輻射標定追蹤分析SlSWEET5b 對葡萄糖之 轉運活性 .......................................................................... 76 圖十三、 利用競爭型抑制分析SlSWEET5b 對糖之轉運 專一性 .............................................................................. 77 圖十四、 SlSWEET5b 於T0 轉殖株中之基因表現量 ................... 78 圖十五、 SlSWEET5b 於 T1 轉殖株中之基因表現量 .................. 79 圖十六、 SlSWEET5b 於 pHELL T1 轉殖株中之基因表現量 ..... 80 XII 圖十七、 不同T1 RNAi 轉殖株間之植物高度生長速率差異 ..... 81 圖十八、 SlSWEET5b-RNAi T0 轉殖株幼葉生長分析 ................ 82 圖十九、 RNAi 轉殖株花苞之生長曲線圖 .................................. 83 圖二十、 RNAi 轉殖株番茄花朵之直徑比較 .............................. 84 圖二十一、 PJH RNAi 轉殖株花粉萌發照片 ................................... 85 圖二十二、 pHELL RNAi 轉殖株花粉萌發照片 ............................. 86 圖二十三、 RNAi 轉殖株花粉管萌發比率分析 .............................. 87 圖二十四、 RNAi 轉殖株花粉活性顯微鏡照片 .............................. 88 圖二十五、 RNAi 轉殖株花粉活性比率分析 .................................. 89 圖二十六、 RNAi 轉殖株中花粉細胞核與外型之觀察 .................. 90 圖二十七、 RNAi 轉殖株花粉外表型電子顯微鏡觀察 .................. 91 圖二十八、 RNAi T0 轉殖株果實與種子生長比較 .......................... 92 圖二十九、 RNAi 轉殖株種子外觀表型紀錄 .................................. 93 圖三十、 RNAi T1 轉殖株果實與種子生長比較 .......................... 94 圖三十一、 RNAi 轉殖株轉化酶活性分析 ...................................... 95 圖三十二、 SlSWEET5b 於過表達轉殖株中的表現量 ................... 96 圖三十三、 VIGS 感染後植株觀察 .................................................... 97 圖三十四、 花粉發育過程中SlSWEET5b 所扮演的角色 模型圖 ............................................................................. 98

    行政院農業委員會農糧署 (2018)。臺閩地區農產品生產量值年報。取自
    https://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation.aspx。
    何俐萱,探討番茄 SlSWEETs 轉運蛋白對於器官中醣類的分配以及抗青
    枯病機制中所扮演的角色,國立成功大學熱帶植物科學研究所碩士論文,
    2017。
    Aluri, S., and Büttner, M. Identification and functional expression of the
    Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed
    germination and flowering. Proceedings of the National Academy of Sciences
    of the United States of America 104, 2537-2542, 2007.
    Ayre, B.G. Membrane-transport systems for sucrose in relation to whole-plant
    carbon partitioning. Molecular Plant 4, 377-394, 2011.
    Borghi, M., and Fernie, A.R. Floral metabolism of sugars and amino acids:
    implications for pollinators’ preferences and seed and fruit set. Plant
    Physiology 175, 1510-1524, 2017.
    Braun, D.M., and Slewinski, T.L. Genetic control of carbon partitioning in
    grasses: roles of sucrose transporters and tie-dyed loci in phloem loading. Plant
    Physiology 149, 71-81, 2009.
    Brooks, C., Nekrasov, V., Lippman, Z.B., and Van Eck, J. Efficient gene editing
    in tomato in the first generation using the clustered regularly interspaced short
    palindromic repeats/CRISPR-associated9 system. Plant Physiology 166, 1292-
    1297, 2014.
    Brukhin, V., Hernould, M., Gonzalez, N., Chevalier, C., and Mouras, A. Flower
    development schedule in tomato Lycopersicon esculentum cv. sweet cherry.
    Sexual Plant Reproduction 15, 311-320, 2003.
    Bürkle, L., Hibberd, J.M., Quick, W.P., Kühn, C., Hirner, B., and Frommer,
    W.B. The H+-sucrose cotransporter NtSUT1 is essential for sugar export from
    tobacco leaves. Plant Physiology 118, 59-68, 1998.
    55
    Cao, S., Yang, Z., and Zheng, Y. Sugar metabolism in relation to chilling
    tolerance of loquat fruit. Food Chemistry 136, 139-143, 2013.
    Castro, A.J., and Clément, C. Sucrose and starch catabolism in the anther of
    Lilium during its development: a comparative study among the anther wall,
    locular fluid and microspore/pollen fractions. Planta 225, 1573-1582, 2007.
    Castro, P.H., Verde, N., Lourenço, T., Magalhaes, A.P., Tavares, R.M., Bejarano,
    E.R., and Azevedo, H. SIZ1-dependent post-translational modification by
    SUMO modulates sugar signaling and metabolism in Arabidopsis thaliana.
    Plant and Cell Physiology 56, 2297-2311, 2015.
    Chen, L., Q., Hou, B., H., Lalonde, S., Takanaga, H., Hartung, M.L., Qu, X.,
    Q., Guo, W., J., Kim, J., G., Underwood, W., and Chaudhuri, B. Sugar
    transporters for intercellular exchange and nutrition of pathogens. Nature 468,
    527-532, 2010.
    Chen, L., Q., Lin, I.W., Qu, X., Q., Sosso, D., McFarlane, H.E., Londoño, A.,
    Samuels, A.L., and Frommer, W.B. A cascade of sequentially expressed sucrose
    transporters in the seed coat and endosperm provides nutrition for the
    Arabidopsis embryo. The Plant Cell 27, 607-619, 2015.
    Chen, L., Q., Qu, X., Q., Hou, B., H., Sosso, D., Osorio, S., Fernie, A.R., and
    Frommer, W.B. Sucrose efflux mediated by SWEET proteins as a key step for
    phloem transport. Science 335, 207-211, 2012.
    Cheng, J., Wang, Z., Yao, F., Gao, L., Ma, S., Sui, X., and Zhang, Z. Downregulating
    CsHT1, a cucumber pollen-specific hexose transporter, inhibits
    pollen germination, tube growth, and seed development. Plant Physiology 168,
    635-647, 2015.
    Chen, T. K., Yang, H. T., Fang, S. C., Lien, Y. C., Yang, T. T., and Ko, S. S.
    Hybrid-Cut: an improved sectioning method for recalcitrant plant tissue
    samples. Journal of Visualized Experiments 117, e54754, 2016.
    56
    Chong, J., Piron, M., C., Meyer, S., Merdinoglu, D., Bertsch, C., and Mestre, P.
    The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved
    in the interaction with Botrytis cinerea. Journal of Experimental Botany 65,
    6589-6601, 2014.
    Christiaens, A., De Keyser, E., Pauwels, E., De Riek, J., Gobin, B., and Van
    Labeke, M.C. Suboptimal light conditions influence source-sink metabolism
    during flowering. Frontiers in Plant Science 7, 249, 2016.
    Chu, Z., Yuan, M., Yao, J., Ge, X., Yuan, B., Xu, C., Li, X., Fu, B., Li, Z., and
    Bennetzen, J.L. Promoter mutations of an essential gene for pollen
    development result in disease resistance in rice. Genes and Development 20,
    1250-1255, 2006.
    Cooper, D.C. Anatomy and development of tomato flower. Botanical Gazette
    83, 399-411, 1927.
    Dinesh-Kumar, S., Anandalakshmi, R., Marathe, R., Schiff, M., and Liu, Y.
    Virus-induced gene silencing. In Plant Functional Genomics, Humana Press,
    New Jersey, 287-293, 2003.
    Doidy, J., Grace, E., Kühn, C., Simon, Plas, F., Casieri, L., and Wipf, D. Sugar
    transporters in plants and in their interactions with fungi. Trends in Plant
    Science 17, 413-422, 2012.
    Dölger, J., Rademaker, H., Liesche, J., Schulz, A., and Bohr, T. Diffusion and
    bulk flow in phloem loading: a theoretical analysis of the polymer trap
    mechanism for sugar transport in plants. Physical Review E 90, 042704, 2014.
    Dorion, S., Lalonde, S., and Saini, H.S. Induction of male sterility in wheat by
    meiotic-stage water deficit is preceded by a decline in invertase activity and
    changes in carbohydrate metabolism in anthers. Plant Physiology 111, 137-145,
    1996.
    Engel, M.L., Holmes-Davis, R., and McCormick, S. Green sperm.
    Identification of male gamete promoters in Arabidopsis. Plant Physiology 138,
    2124-2133, 2005.
    57
    Eom, J., S., Chen, L., Q., Sosso, D., Julius, B.T., Lin, I., Qu, X., Q., Braun,
    D.M., and Frommer, W.B. SWEETs, transporters for intracellular and
    intercellular sugar translocation. Current Opinion in Plant Biology 25, 53-62,
    2015.
    FAO. Food and Agriculture Organization Corporate Statistical Database. Latest
    update: 15/06/2020. http://www.fao.org/faostat/zh/#data/QC/visualize.
    Feng, C., Y., Han, J., X., Han, X., X., and Jiang, J. Genome-wide identification,
    phylogeny, and expression analysis of the SWEET gene family in tomato. Gene
    573, 261-272, 2015.
    Gear, M.L., McPhillips, M.L., Patrick, J.W., and McCurdy, D.W. Hexose
    transporters of tomato: molecular cloning, expression analysis and functional
    characterization. Plant Molecular Biology 44, 687-697, 2000.
    Gietz, R.D., and Schiestl, R.H. High-efficiency yeast transformation using the
    LiAc/SS carrier DNA/PEG method. Nature Protocols 2, 31-34, 2007.
    Giuliano, G., Bartley, G.E., and Scolnik, P.A. Regulation of carotenoid
    biosynthesis during tomato development. The Plant Cell 5, 379-387, 1993.
    Goetz, M., Guivarćh, A., Hirsche, J., Bauerfeind, M.A., González, M., C., Hyun,
    T.K., Eom, S.H., Chriqui, D., Engelke, T., and Großkinsky, D.K. Metabolic
    control of tobacco pollination by sugars and invertases. Plant Physiology 173,
    984-997, 2017.
    Guan, Y.F., Huang, X.Y., Zhu, J., Gao, J.F., Zhang, H.X., and Yang, Z.N.
    RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is
    crucial for exine pattern formation and cell integrity of microspores in
    Arabidopsis. Plant Physiology 147, 852-863, 2008.
    Guo, W.J., Nagy, R., Chen, H.Y., Pfrunder, S., Yu, Y.C., Santelia, D., Frommer,
    W.B., and Martinoia, E. SWEET17, a facilitative transporter, mediates fructose
    transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiology
    164, 777-789, 2014.
    58
    Hansen, G. The evolution of the evidence base for observed impacts of climate
    change. Current Opinion in Environmental Sustainability 14, 187-197, 2015.
    Hinojosa, L., Sanad, M.N., Jarvis, D.E., Steel, P., Murphy, K., and Smertenko,
    A. Impact of heat and drought stress on peroxisome proliferation in quinoa. The
    Plant Journal 99, 1144-1158, 2019.
    Hirose, T., Zhang, Z., Miyao, A., Hirochika, H., Ohsugi, R., and Terao, T.
    Disruption of a gene for rice sucrose transporter, OsSUT1, impairs pollen
    function but pollen maturation is unaffected. Journal of Experimental Botany
    61, 3639-3646, 2010.
    Ho, L.H., Klemens, P.A., Neuhaus, H.E., Ko, H.Y., Hsieh, S.Y., and Guo, W.J.
    Sl SWEET1a is involved in glucose import to young leaves in tomato plants.
    Journal of Experimental Botany 70, 3241-3254, 2019.
    Jin, Y., Ni, D.A., and Ruan, Y.L. Posttranslational elevation of cell wall
    invertase activity by silencing its inhibitor in tomato delays leaf senescence and
    increases seed weight and fruit hexose level. The Plant Cell 21, 2072-2089,
    2009.
    Karimi, M., Depicker, A., and Hilson, P. Recombinational cloning with plant
    gateway vectors. Plant Physiology 145, 1144-1154, 2007.
    Klemens, P.A., Patzke, K., Deitmer, J., Spinner, L., Le Hir, R., Bellini, C., Bedu,
    M., Chardon, F., Krapp, A., and Neuhaus, H.E. Overexpression of the vacuolar
    sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance
    in Arabidopsis. Plant Physiology 163, 1338-1352, 2013.
    Kuo, C., Chen, H., Shen, B., and Chen, H. Relationship between hormonal
    levels in pistils and tomato fruit-set in hot and cool seasons. Asian Vegetable
    Research and Development Center, Tainan, 1989.
    Lemoine, R., Bürkle, L., Barker, L., Sakr, S., Kühn, C., Regnacq, M., Gaillard,
    C., Delrot, S., and Frommer, W.B. Identification of a pollen-specific sucrose
    59
    transporter-like protein NtSUT3 from tobacco. Federation of European
    Biochemical Societies Letters 454, 325-330, 1999.
    Li, C., Meng, D., Pineros, M.A., Mao, Y., Dandekar, A.M., and Cheng, L. A
    sugar transporter takes up both hexose and sucrose for sorbitol-modulated in
    vitro pollen tube growth in apple. The Plant Cell 32, 449-469, 2020.
    Lin, I.W., Sosso, D., Chen, L.Q., Gase, K., Kim, S.G., Kessler, D., Klinkenberg,
    P.M., Gorder, M.K., Hou, B.H., and Qu, X.Q. Nectar secretion requires sucrose
    phosphate synthases and the sugar transporter SWEET9. Nature 508, 546-549,
    2014.
    Liu, X., Zhang, Y., Yang, C., Tian, Z., and Li, J. AtSWEET4, a hexose facilitator,
    mediates sugar transport to axial sinks and affects plant development. Scientific
    Reports 6, 1-12, 2016a.
    Liu, Y.H., Offler, C.E., and Ruan, Y.L. Cell wall invertase promotes fruit set
    under heat stress by suppressing ROS-independent cell death. Plant Physiology
    172, 163-180, 2016b.
    Lu, Y., Wei, L., and Wang, T. Methods to isolate a large amount of generative
    cells, sperm cells and vegetative nuclei from tomato pollen for “omics” analysis.
    Frontiers in Plant Science 6, 391, 2015.
    McLAUGHLIN, J.E., and Boyer, J.S. Sugar-responsive gene expression,
    invertase activity, and senescence in aborting maize ovaries at low water
    potentials. Annals of Botany 94, 675-689, 2004.
    Mesihovic, A., Iannacone, R., Firon, N., and Fragkostefanakis, S. Heat stress
    regimes for the investigation of pollen thermotolerance in crop plants. Plant
    Reproduction 29, 93-105, 2016.
    Müller, G.L., Drincovich, M.F., Andreo, C.S., and Lara, M.V. Role of
    photosynthesis and analysis of key enzymes involved in primary metabolism
    throughout the lifespan of the tobacco flower. Journal of Experimental Botany
    61, 3675-3688, 2010.
    60
    Nelson, B.K., Cai, X., and Nebenführ, A. A multicolored set of in vivo organelle
    markers for co‐localization studies in Arabidopsis and other plants. The Plant
    Journal 51, 1126-1136, 2007.
    Niewiadomski, P., Knappe, S., Geimer, S., Fischer, K., Schulz, B., Unte, U.S.,
    Rosso, M.G., Ache, P., Flügge, U.I., and Schneider, A. The Arabidopsis
    plastidic glucose 6-phosphate/phosphate translocator GPT1 is essential for
    pollen maturation and embryo sac development. The Plant Cell 17, 760-775,
    2005.
    Obermeyer, G., Fragner, L., Lang, V., and Weckwerth, W. Dynamic adaption of
    metabolic pathways during germination and growth of lily pollen tubes after
    inhibition of the electron transport chain. Plant Physiology 162, 1822-1833,
    2013.
    Pacini, E., Franchi, G., and Hesse, M. The tapetum: Its form, function, and
    possible phylogeny inEmbryophyta. Plant Systematics and Evolution 149, 155-
    185, 1985.
    Peixoto, J., Neto, C., Campos, L., Dourado, W.d.S., Nogueira, A., and
    Nascimento, A. Industrial tomato lines: morphological properties and
    productivity. Genetics and Molecular Research 16, 1-15, 2017.
    Pressman, E., Peet, M.M., and Pharr, D.M. The effect of heat stress on tomato
    pollen characteristics is associated with changes in carbohydrate concentration
    in the developing anthers. Annals of Botany 90, 631-636, 2002.
    Rao, A.V., Young, G.L., and Rao, L.G. Lycopene and tomatoes in human
    nutrition and health. Chemical Rubber Company, Florida, 2018.
    Rennie, E.A., and Turgeon, R. A comprehensive picture of phloem loading
    strategies. Proceedings of the National Academy of Sciences of the United
    States of America 106, 14162-14167, 2009.
    Rottmann, T., Fritz, C., Sauer, N., and Stadler, R. Glucose uptake via STP
    transporters inhibits in vitro pollen tube growth in a HEXOKINASE1-
    dependent manner in Arabidopsis thaliana. The Plant Cell 30, 2057-2081, 2018.
    61
    Rounds, C.M., Winship, L.J., and Hepler, P.K. Pollen tube energetics:
    respiration, fermentation and the race to the ovule. AoB Plants , 2011.
    Ruan, Y.L. Sucrose metabolism: gateway to diverse carbon use and sugar
    signaling. Annual Review of Plant Biology 65, 33-67, 2014.
    Ruan, Y.L., Jin, Y., Yang, Y.J., Li, G.J., and Boyer, J.S. Sugar input, metabolism,
    and signaling mediated by invertase: roles in development, yield potential, and
    response to drought and heat. Molecular Plant 3, 942-955, 2010.
    Sato, S., Peet, M., and Thomas, J. Physiological factors limit fruit set of tomato
    (Lycopersicon esculentum Mill.) under chronic, mild heat stress. Plant, Cell
    and Environment 23, 719-726, 2000.
    Schneidereit, A., Scholz Starke, J., and Büttner, M. Functional characterization
    and expression analyses of the glucose-specific AtSTP9 monosaccharide
    transporter in pollen of Arabidopsis. Plant Physiology 133, 182-190, 2003.
    Shen, S., Si, M., Liu, Y., Liao, S., Li, J., KARTIKA, D., and Ruan, Y.L. Cell
    wall invertase and sugar transporters are differentially activated in tomato
    styles and ovaries during pollination and fertilization. Frontiers in Plant
    Science 10, 506, 2019.
    Shen, S., Zhang, L., Liang, X.G., Zhao, X., Lin, S., Qu, L.H., Liu, Y.P., Gao,
    Z., Ruan, Y.L., and Zhou, S.L. Delayed pollination and low availability of
    assimilates are major factors causing maize kernel abortion. Journal of
    Experimental Botany 69, 1599-1613, 2018.
    Sosso, D., Luo, D., Li, Q.B., Sasse, J., Yang, J., Gendrot, G., Suzuki, M., Koch,
    K.E., McCarty, D.R., and Chourey, P.S. Seed filling in domesticated maize and
    rice depends on SWEET-mediated hexose transport. Nature Genetics 47, 1489,
    2015.
    Srivastava, A.C., Ganesan, S., Ismail, I.O., and Ayre, B.G. Functional
    characterization of the Arabidopsis AtSUC2 sucrose/H+ symporter by tissue62
    specific complementation reveals an essential role in phloem loading but not in
    long-distance transport. Plant Physiology 148, 200-211, 2008.
    Stadler, R., Truernit, E., Gahrtz, M., and Sauer, N. The AtSUC1 sucrose carrier
    may represent the osmotic driving force for anther dehiscence and pollen tube
    growth in Arabidopsis. The Plant Journal 19, 269-278, 1999.
    Truernit, E., Schmid, J., Epple, P., Illig, J., and Sauer, N. The sink-specific and
    stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene
    encoding a monosaccharide transporter by wounding, elicitors, and pathogen
    challenge. The Plant Cell 8, 2169-2182, 1996.
    Turgeon, R. The role of phloem loading reconsidered. Plant Physiology 152,
    1817-1823, 2010.
    Turnage, M.A., Muangsan, N., Peele, C.G., and Robertson, D. Geminivirusbased
    vectors for gene silencing in Arabidopsis. The Plant Journal 30, 107-114,
    2002.
    van Bel, A.J. The phloem, a miracle of ingenuity. Plant, Cell and Environment
    26, 125-149, 2003.
    Wan, H., Wu, L., Yang, Y., Zhou, G., and Ruan, Y.L. Evolution of sucrose
    metabolism: the dichotomy of invertases and beyond. Trends in Plant Science
    23, 163-177, 2018.
    Wu, F.H., Shen, S.C., Lee, L.Y., Lee, S.H., Chan, M.T., and Lin, C.S. Tape-
    Arabidopsis Sandwich-a simpler Arabidopsis protoplast isolation method.
    Plant Methods 5, 16, 2009.
    Yang, B., Sugio, A., and White, F.F. Os8N3 is a host disease-susceptibility gene
    for bacterial blight of rice. Proceedings of the National Academy of Sciences of
    the United States of America 103, 10503-10508, 2006.
    Yang, J., Luo, D., Yang, B., Frommer, W.B., and Eom, J.S. SWEET 11 and 15
    as key players in seed filling in rice. New Phytologist 218, 604-615, 2018.

    下載圖示
    2025-12-31公開
    QR CODE