| 研究生: |
柯莎拉 Sarah, Marvina |
|---|---|
| 論文名稱: |
不同型態的聚苯胺-二氧化錳奈米複合材料
之合成及其應用於過氧化氫感測 Polyaniline-manganese dioxide nanocomposites with different morphologies and the application in hydrogen peroxide sensor |
| 指導教授: |
溫添進
Wen, Ten-chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 聚苯胺-二氧化錳奈米複合物 、界面聚合 、過氧化氫感測器 |
| 外文關鍵詞: | Polyaniline–manganese dioxide (PANI-MnO2) nanoc, Hydrogen peroxide sensor, Interfacial polymerization |
| 相關次數: | 點閱:75 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是藉由合成條件的改變來製備不同型態的聚苯胺-二氧化錳奈米複合物,並且探討不同型態的複合物於過氧化氫感測之研究。首先,利用界面聚合的方式,透過水相中氧化劑(高錳酸鉀)和摻雜酸(鹽酸)濃度的改變,以製備出不同型態的聚苯胺-二氧化錳奈米複合物。藉由反應前後水相的酸鹼值(pH值)改變,推測其可能的機制,並利用掃描式電子顯微鏡(SEM)、背向散射影像分析(BEI)、穿透式電子顯微鏡(TEM)、傅立葉紅外線光譜(FTIR)和X光繞射分析(XRD)證實,當反應前後酸鹼值改變不大即在較低的酸鹼值下,聚苯胺-二氧化錳奈米複合物呈現聚苯胺將二氧化錳粒子包覆住的情況,其結構為α型態(α-MnO2);反之,聚苯胺-二氧化錳奈米複合材料則呈現奈米棒狀或球狀的複合物,其結構為β型態(β-MnO2)。此外,透過循環伏安法得知不同型態的聚苯胺-二氧化錳奈米複合物具有不同的電化學行為,因此衍伸出不同的應用,在此本論文將其應用於過氧化氫感測的研究。從循環伏安法及定電位法的研究,觀察到不同型態的聚苯胺-二氧化錳奈米複合物對於過氧化氫的氧化展現出不同的電化學行為。聚苯胺將二氧化錳粒子包覆住的複合物,由於聚苯胺扮演保護二氧化錳粒子的角色,可以避免因過氧化氫氧化,造成電極表面局部酸鹼值下降,而導致二氧化錳溶解,影響其催化能力。故此材料和奈米棒狀或球狀的複合物相比,則具有較高的反應電流、較快的反應時間和較佳的穩定度;其靈敏度為4.28 × 105 μA M-1 cm-2,偵測極限為2.09 x 10-7 M。
Different morphologies of polyaniline–manganese dioxide (PANI-MnO2) nanocomposites have been designed using interfacial polymerization by controlling the KMnO4 and HCl concentrations in aqueous phase. The formation mechanisms of PANI-MnO2 nanocomposites were proposed from pH changes during synthesis. SEM, BEI, TEM and FTIR are used to verify the mechanisms; collaborating PANI covered the MnO2 particulate at lower pH and a nanorods and nanoparticles mixture at higher pH in aqueous phase. α-MnO2 and β-MnO2 were obtained at constant and increased pHs, respectively, evidently. Cyclic voltammetric studies show that different morphologies of nanocomposites lead to different electrochemical behaviors. The results suggest that various morphologies might conduct our synthesized materials to their suitable applications, which one of them is hydrogen peroxide (H2O2) sensors. Through cyclic voltammetric and amperometric method, the electrochemical behaviors of PANI-MnO2 nanocomposites with different morphologies towards H2O2 oxidation have been compared. PANI-MnO2 nanocomposite which PANI-covered MnO2 morphology showed higher current response, better stability, and faster response time in the presence of H2O2 than the mixture of nanorods and nanoparticles morphology of PANI-MnO2. It has been suggested that PANI nanofibers in PANI-covered MnO2 was able to protect MnO2 from dissolving due to the decreasing of pH locally on the electrode surface. Hence, PANI-covered MnO2 nanocomposite also shows a sensitivity of 4.28 × 105 μA M-1 cm-2 and detection limit of 2.09 x 10-7 M that can be compared to the other H2O2 sensors applying MnO2-based electrodes.
[1] M. S. Freund and B. A. Deore, "Self-Doped Conducting Polymers". 2007, West Sussex: John Wiley & Sons, Ltd.
[2] R. Menon and A. Mukherjee, "Polyaniline Fractal Nanocomposites", Encyclopedia of Nanoscience and Nanotechnology, 8, 715 (2004).
[3] R. Gangopadhyay and A. De, "Conducting Polymer nanocomposites", in Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, HS Nalwa, Editor. 2003, American Scientific Publishers. p. 217.
[4] J. Li, "Nanocomposites", in Handbook of nanophase and nanostructured materials, ZL Wang, Y Liu, and Z Zhang, Editors. 2003, Kluwer academic/Plenum publisher: New york. p. 69.
[5] D. W. Hatchett and M. Josowicz, "Composites of intrinsically conducting polymers as sensing nanomaterials", Chem. Rev., 108, 746 (2008).
[6] A. D. Pomogailo and V. N. Kestelman, "Metallopolymer Nanocomposites". Material science, ed. PR Hull, PJ Parisi, J Professor R.M. Osgood, and P HansWarlimont. Vol. 81. 2005, New York: Springer Berlin Heidelberg.
[7] A. H. Gemeay, R. G. El-Sharkawy, I. A. Mansour, and A. B. Zaki, "Preparation and characterization of polyaniline/manganese dioxide composites and their catalytic activity", J. Colloid and Interface Sci., 308, 385 (2007).
[8] J. X. Huang and R. B. Kaner, "The intrinsic nanofibrillar morphology of polyaniline", Chem. Commun., 367 (2006).
[9] S. K. Pillalamarri, F. D. Blum, A. T. Tokuhiro, and M. F. Bertino, "One-pot synthesis of polyaniline - Metal nanocomposites", Chem. Mat., 17, 5941 (2005).
[10] M. R. Karim, K. T. Lim, C. J. Lee, T. I. Bhuiyan, H. J. Kim, L. S. Park, and M. S. Lee, "Synthesis of core-shell silver-polyaniline nanocomposites by gamma Radiolysis method", J. Polym. Sci. Pol. Chem., 45, 5741 (2007).
[11] R. Gangopadhyay and A. De, "Conducting polymer nanocomposites: a brief overview", Chem. Mat., 12, 2064 (2000).
[12] J. X. Huang and R. B. Kaner, "A general chemical route to polyaniline nanofibers", J. Am. Chem. Soc., 126, 851 (2004).
[13] S. Jana, S. Praharaj, S. Panigrahi, S. Basu, S. Pande, C. H. Chang, and T. Pal, "Light-induced hydrolysis of nitriles by photoproduced alpha-MnO2 nanorods on polystyrene beads", Org. Lett., 9, 2191 (2007).
[14] G. L. Wang, B. Tang, L. H. Zhuo, J. C. Ge, and M. Xue, "Facile and selected-control synthesis of beta-MnO2 nanorods and their magnetic properties", Eur. J. Inorg. Chem., 2313 (2006).
[15] J. Besenhard and W. InterScience, "Handbook of battery materials". 1999: Wiley-vch New York.
[16] X. Wang and Y. D. Li, "Selected-control hydrothermal synthesis of alpha- and beta-MnO2 single crystal nanowires", J. Am. Chem. Soc., 124, 2880 (2002).
[17] Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, "Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures", Adv. Funct. Mater., 16, 549 (2006).
[18] W. N. Li, J. K. Yuan, X. F. Shen, S. Gomez-Mower, L. P. Xu, S. Sithambaram, M. Aindow, and S. L. Suib, "Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials", Adv. Funct. Mater., 16, 1247 (2006).
[19] X. Wang and Y. D. Li, "Synthesis and formation mechanism of manganese dioxide nanowires/nanorods", Chem.-Eur. J., 9, 300 (2003).
[20] K. R. Prasad and N. Miura, "Polyaniline-MnO2 composite electrode for high energy density electrochemical capacitor", Electrochem. Solid State Lett., 7, A425 (2004).
[21] F. J. Liu, "Electrodeposition of manganese dioxide in three-dimensional poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonic acid)-polyaniline for supercapacitor", J. Power Sources, 182, 383 (2008).
[22] A. H. Gemeay, I. A. Mansour, R. G. El-Sharkawy, and A. B. Zaki, "Preparation and characterization of polyaniline/manganese dioxide composites via oxidative polymerization: Effect of acids", Eur. Polym. J., 41, 2575 (2005).
[23] C. Z. Yuan, L. H. Su, B. Gao, and X. G. Zhang, "Enhanced electrochemical stability and charge storage of MnO2/carbon nanotubes composite modified by polyaniline coating layer in acidic electrolytes", Electrochim. Acta, 53, 7039 (2008).
[24] R. Mazeikiene and A. Malinauskas, "Electrochemical behaviour of polyaniline film polymerized by the use of a chemical oxidation step", Electrochim. Acta, 41, 1587 (1996).
[25] L. J. Sun and X. X. Liu, "Electrodepositions and capacitive properties of hybrid films of polyaniline and manganese dioxide with fibrous morphologies", Eur. Polym. J., 44, 219 (2008).
[26] L. J. Sun, X. X. Liu, K. K. T. Lau, L. Chen, and W. M. Gu, "Electrodeposited hybrid films of polyaniline and manganese oxide in nanofibrous structures for electrochemical supercapacitor", Electrochim. Acta, 53, 3036 (2008).
[27] Z. H. Zhou, N. C. Cai, and Y. H. Zhou, "Capacitive of characteristics of manganese oxides and polyaniline composite thin film deposited on porous carbon", Mater. Chem. Phys., 94, 371 (2005).
[28] Y. G. Wang, W. Wu, L. Cheng, P. He, C. X. Wang, and Y. Y. Xia, "A polyaniline-intercalated layered manganese oxide nanocomposite prepared by an inorganic/organic interface reaction and its high electrochemical performance for Li storage", Adv. Mater., 20, 2166 (2008).
[29] X. Zhang, L. Y. Ji, S. C. Zhang, and W. S. Yang, "Synthesis of a novel polyaniline-intercalated layered manganese oxide nanocomposite as electrode material for electrochemical capacitor", J. Power Sources, 173, 1017 (2007).
[30] J. W. Long, C. P. Rhodes, A. L. Young, and D. R. Rolison, "Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical proton gates: Making mesoporous MnO2 nanoarchitectures stable in acid electrolytes", Nano Lett., 3, 1155 (2003).
[31] L. Blum and P. Coulet, "Biosensor principles and applications". 1991: CRC Press.
[32] J. Jang, "Conducting polymer nanomaterials and their applications", Emissive Materials: Nanomaterials, 199, 189 (2006).
[33] H. P. Wong, B. C. Dave, F. Leroux, J. Harreld, B. Dunn, and L. F. Nazar, "Synthesis and characterization of polypyrrole vanadium pentoxide nanocomposite aerogels", J. Mater. Chem., 8, 1019 (1998).
[34] K. Jurewicz, S. Delpeux, V. Bertagna, F. Beguin, and E. Frackowiak, "Supercapacitors from nanotubes/polypyrrole composites", Chem. Phys. Lett., 347, 36 (2001).
[35] Q. Zhou and C. M. Li, "In situ AFM study of the electropolymerization of polypyrrole/gold nanocomposite", 2006 IEEE Conference on Emerging Technologies - Nanoelectronics, 404 (2006).
[36] A. J. Miller, R. A. Hatton, and S. R. P. Silva, "Water-soluble multiwall-carbon-nanotube-polythiophene composite for bilayer photovoltaics", Appl. Phys. Lett., 89, 3 (2006).
[37] Z. P. Zhang, F. Wang, F. E. Chen, and G. Q. Shi, "Preparation of polythiophene coated gold nanoparticles", Mater. Lett., 60, 1039 (2006).
[38] S. A. Chen and W. G. Fang, Electrically conductive polyaniline poly(vinyl alcohol) composite films - physical-properties and morphological structures, Macromolecules, 24, 1242 (1991).
[39] J. Zhang, L. B. Kong, B. Wang, Y. C. Luo, and L. Kang, "In-situ electrochemical polymerization of multi-walled carbon nanotube/polyaniline composite films for electrochemical supercapacitors", Synth. Met., 159, 260 (2009).
[40] A. Olad and A. Rashidzadeh, "Preparation and anticorrosive properties of PANI/Na-MMT and PANI/o-MMT nanocomposites", Prog. Org. Coat., 62, 293 (2008).
[41] E. C. Rios, A. V. Rosario, R. M. Q. Mello, and L. Micaroni, "Poly(3-methylthiophene)/MnO2 composite electrodes as electrochemical capacitors", J. Power Sources, 163, 1137 (2007).
[42] L. H. Zhang, Y. M. Zhai, N. Gao, D. Wen, and S. J. Dong, "Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film", Electrochem. Commun., 10, 1524 (2008).
[43] W. Owpradit and B. Jongsomjit, "A comparative study on synthesis of LLDPE/TiO2 nanocomposites using different TiO2 by in situ polymerization with zirconocene/dMMAO catalyst", Mater. Chem. Phys., 112, 954 (2008).
[44] L. M. Huang, G. C. Huang, and T. C. Wen, "Role of anions in the polymerization of 2,5-dimethoxyaniline in the presence of poly(styrene sulfonic acid)", J. Polym. Sci. Pol. Chem., 44, 6624 (2006).
[45] A. Moussard, J. Brenet, F. Jolas, M. Pourbaix, and J. V. Muylder, "Manganese", in Atlas of Electrochemical Equilibria In Aqueous Solutions, M Pourbaix, Editor. 1974, national Association of Corrosion Engineers: Texas. p. 286.
[46] C. P. L. Rubinger, R. Faez, L. C. Costa, C. R. Martins, and R. M. Rubinger, "Dielectric properties of PANI/PSS blends obtained by in situ polymerization technique", Polym. Bull., 60, 379 (2008).
[47] Z. M. Zhang, Z. X. Wei, and M. X. Wan, "Nanostructures of polyaniline doped with inorganic acids", Macromolecules, 35, 5937 (2002).
[48] Y. Liu, M. Zhang, J. H. Zhang, and Y. T. Qian, "A simple method of fabricating large-area alpha-MnO2 nanowires and nanorods", J. Solid State Chem., 179, 1757 (2006).
[49] N. Kijima, H. Yasuda, T. Sato, and Y. Yoshimura, "Preparation and characterization of open tunnel oxide alpha-MnO2 precipitated by ozone oxidation", J. Solid State Chem., 159, 94 (2001).
[50] T. D. Xiao, P. R. Strutt, M. Benaissa, H. Chen, and B. H. Kear, "Synthesis of high active-site density nanofibrous MnO2-base materials with enhanced permeabilities", Nanostructured Mats., 10, 1051 (1998).
[51] S. Bakardjieva, P. Bezdicka, T. Grygar, and P. Vorm, "Reductive dissolution of microparticulate manganese oxides", J. Solid State Electrochem., 4, 306 (2000).
[52] C. A. Amarnath, S. Palaniappan, P. Rannou, and A. Pron, "Acacia stabilized polyaniline dispersions: preparation, properties and blending with poly(vinyl alcohol)", Thin Solid Films, 516, 2928 (2008).
[53] P. S. Rao, S. Subrahmanya, and D. N. Sathyanarayana, "Water-soluble conductive blends of polyaniline and poly(vinyl alcohol) synthesized by two emulsion pathways", J. Appl. Polym. Sci., 98, 583 (2005).
[54] S. J. Yao, J. H. Xu, Y. Wang, X. X. Chen, Y. X. Xu, and S. S. Hu, "A highly sensitive hydrogen peroxide amperometric sensor based on MnO2 nanoparticles and dihexadecyl hydrogen phosphate composite film", Anal. Chim. Acta, 557, 78 (2006).
[55] J. Chen, W. D. Zhang, and J. S. Ye, "Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite", Electrochem. Commun., 10, 1268 (2008).
[56] C. E. Langley, B. Sljukic, C. E. Banks, and R. G. Compton, "Manganese dioxide graphite composite electrodes: Application to the electroanalysis of hydrogen peroxide, ascorbic acid and nitrite", Anal. Sci., 23, 165 (2007).
[57] M. S. Karamoy, C. C. Chin, C. T. Kuei, and W. T. Chin, Controlling morphologies of PANI-MnO2 nanocomposites with different KMnO4 and HCl concentrations
2009: Tainan. (unpublished)
[58] E. Kazimierska, M. Muchindu, A. Morrin, E. Iwuoha, M. R. Smyth, and A. J. Killard, "The Fabrication of Structurally Multiordered Polyaniline Films and Their Application in Electrochemical Sensing and Biosensing", Electroanalysis, 21, 595 (2009).
[59] S. J. Yao, S. Yuan, J. H. Xu, Y. Wang, J. L. Luo, and S. S. Hu, "A hydrogen peroxide sensor based on colloidal MnO2/Na-montmorillonite", Appl. Clay Sci., 33, 35 (2006).
[60] T. Cottineau, M. Toupin, T. Delahaye, T. Brousse, and D. Belanger, "Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors", Appl. Phys. A-Mater. Sci. Process., 82, 599 (2006).
[61] Y. H. Lin, X. L. Cui, and L. Y. Li, "Low-potential amperometric determination of hydrogen peroxide with a carbon paste electrode modified with nanostructured cryptomelane-type manganese oxides", Electrochem. Commun., 7, 166 (2005).
[62] L. Zhang, Z. Fang, Y. Ni, and G. Zhao, "Direct electrocatalytic oxidation of hydrogen peroxide based on nafion and microsphere MnO2 modified glass carbon electrode", Int. J. Electrochem. Sci., 4, 407 (2009).