簡易檢索 / 詳目顯示

研究生: 蘇柏仁
Su, Po-Jen
論文名稱: 新螢光粉薄膜應用在薄膜覆晶式晶圓級晶片尺寸封裝
A new phosphor thin film applied on Thin-Film-Flip-Chip Wafer-Level-Chip-Scale-Package
指導教授: 張守進
Chang, Shoot-Jinn
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系碩士在職專班
Department of Electrical Engineering (on the job class)
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 50
中文關鍵詞: 螢光粉薄膜薄膜覆晶晶片尺寸封裝晶圓封裝
外文關鍵詞: Phosphor thin film, thin-film-flip-chip, Chip scale package, wafer level package
相關次數: 點閱:78下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提供了一個新型態的薄膜覆晶式晶圓級及晶片尺寸封裝,搭配厚度30um,不同堆積密度及不同折射率矽膠的新螢光粉薄膜。利用螢光薄膜層層堆疊在單顆晶片尺寸封裝的方式來研究其光特性。相對穿透藍光輻射強度隨著螢光層厚度增加而降低至一飽和值,而相對穿透螢光粉輻射強度則是隨著螢光層厚度增加而增加至一飽和值。堆積密度增加亦降低了相對穿透藍光輻射強度,同時相對穿透螢光粉輻射強度也增加了。具有較高堆積密度的螢光粉薄膜,其相對穿透螢光粉輻射強度隨著厚度增加,在飽和之後會開始下降。螢光粉的輻射轉換效率, 1.41折射率矽膠的螢光粉薄膜從一開始的66%~68%隨著厚度增加開始往下掉,而1.54折射率矽膠的螢光粉薄膜則從64%~69%隨著厚度增加往下掉。但是,1.41折射率矽膠的螢光粉薄膜,其輻射轉換效率掉的速度較1.54折射率矽膠的螢光粉薄膜為快。螢光粉薄膜發光效率(lm / O.W.)具有和相對穿透螢光粉輻射強度相同的趨勢,隨著螢光層厚度增加而增加至一飽和值,具有較高堆積密度的螢光粉薄膜,其相對穿透螢光粉輻射強度隨著厚度增加,在飽和之後會開始下降。1.54折射率矽膠的螢光粉薄膜之飽和發光效率約為240 lm/O.W.,高於1.41折射率矽膠的螢光粉薄膜之飽和發光效率,225 lm/O.W. ~ 230 lm/O.W.。然而,對於螢光粉堆積密度超過60%,厚度約30um的螢光粉薄膜來說,1.41和1.54折射率矽膠的發光效率幾乎相同,約230 lm / O.W.。最後,厚度30um和76um的1.41折射率螢光粉薄膜及厚度32um和108um的1.54折射率螢光粉薄膜之發光角色均勻性將被進一步量測。越薄的螢光粉膜厚度,其du’v’則越小,代表越好的發光角色均勻性。從研究來看,厚度30um,螢光粉堆積密度大於60%的1.41折射率螢光粉薄膜較適合晶圓級晶片尺寸封裝,因其較佳的角度色均勻性及相對於較接近1.54折射率螢光粉薄膜的發光效率,最重要的是通常1.41折射率矽膠較1.54折射率矽膠擁有較好的信賴性,更適於晶片尺寸的封裝。

    In this paper, a new type of thin-film-flip-chip wafer-level-chip-scale-package with phosphor thin film has been presented. Phosphor films of 30um thickness with different packing density were used for packaging and the optical characteristics with increasing thickness by piling up phosphor sheet on one single chip-scale-packaging were studied. The relative transmitted blue power decreases and the relative transmitted phosphor emission power increases as film thickness increases or packing density increases as well, both reaching a saturated value. For higher packing density, the relative transmitted phosphor emission power also starts to drop after saturation. The radiative conversion efficiency of the phosphor films, starting from 66%~68% for 1.41 refractive index silicone and 64%~69% for 1.54 refractive index silicone, decreases as the film thickness increases. However, radiative conversion efficiency of phosphor films with 1.41 refractive index silicone drops more quickly than 1.54 refractive index silicone. The tendency of radiative efficacy is similar to the relative transmitted phosphor emission power. the radiative efficacy increases and reaches a saturated value as phosphor film thickness increases. For higher packing density, the radiative efficacy also starts to drop after saturation with increasing film thickness. The saturated efficacy value of the phosphor films with 1.54 refractive index silicone, which is about 240 lm / O.W., is higher than that with 1.41 refractive index silicone, which is about 225 lm / O.W. to 230 lm / O.W. However, for the highest packing density, said above 60%, and the thinnest film thickness, said 30um, the phosphor film with 1.41 refractive index silicone has almost the same radiative efficacy, which is 230 lm / O.W., as 1.54 refractive index silicone. Finally, the ACU of phosphor films with 1.41 refractive index silicone, 30um and 76um film thickness, and phosphor films with 1.54 refractive index silicone, 32um and 108um film thickness, was measured. For thinner phosphor film thickness, delta u’v’ of view angle is lower. From the study, a phosphor film with 1.41 refractive index silicone of high packing density, said >60%, and thin film thickness, said 30um, is more suitable for the thin-film-flip-chip wafer-level-chip-scale-package, because it has high radiative efficacy close to that of 1.54 refractive index silicone, and better angle of color uniformity, furthermore, the 1.41 refractive index silicone usually having better reliability than 1.54 refractive index.

    目錄 摘要 I Abstract IV Table Caption IX Figure Caption X Chapter 1 Background 1 1.1 Introduction 1 1.2 Phosphor coating method 5 1.3 Research Motivation 7 Chapter 2 Experiment Process 9 2.1 Thin-Film-Flip-Chip Wafer Preparation 9 2.2 Phosphor Film Preparation 11 2.3 Wafer-Level-Chip-Scale-Package Process 13 2.4 Experiment Design 16 Chapter 3 Result and Discussion 19 3.1 Relative transmitted blue power and relative transmitted phosphor emission power 19 3.2 Radiative conversion efficiency and radiative efficacy versus film thickness 23 3.3 Angle of color uniformity 27 Chapter 4 Conclusion 31 4.1 Conclusions 31 4.2 Future works 32 Reference 34

    Reference
    1. Round, H.J., A note on carborundum. A note on carborundum, 1907. 49(No.6): p. pp. 309.
    2. Schubert, E.F., Light-Emitting Diodes 2nd Edition ed. 2006: Cambridge University Press, New York.
    3. Nick Holonyak Jr., S.F.B., COHERENT (VISIBLE) LIGHT EMISSION FROM Ga(As1−x P x ) JUNCTIONS. Appl. Phys. Lett., 1962. 1.
    4. Zhao, P. and H. Zhao, Analysis of light extraction efficiency enhancement for thin-film-flip-chip InGaN quantum wells light-emitting diodes with GaN micro-domes. Opt Express, 2012. 20 Suppl 5: p. A765-76.
    5. Steigerwald, D.A., J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, P.S. Martin, and S.L. Rudaz, Illumination with solid state lighting technology. IEEE Journal of Selected Topics in Quantum Electronics, 2002. 8(2): p. 310-320.
    6. Bernardini, F., V. Fiorentini, and D. Vanderbilt, Spontaneous polarization and piezoelectric constants of III-V nitrides. Physical Review B, 1997. 56(16): p. R10024-R10027.
    7. Amano, H., M. Kito, K. Hiramatsu, and I. Akasaki, P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI). Japanese Journal of Applied Physics, 1989. 28(Part 2, No. 12): p. L2112-L2114.
    8. Ziegler, G., P. Lanig, D. Theis, and C. Weyrich, Single crystal growth of SiC substrate material for blue light emitting diodes. IEEE Transactions on Electron Devices, 1983. 30(4): p. 277-281.
    9. Sharma, R., P.M. Pattison, H. Masui, R.M. Farrell, T.J. Baker, B.A. Haskell, F. Wu, S.P. DenBaars, J.S. Speck, and S. Nakamura, Demonstration of a semipolar (1013) InGaN∕GaN green light emitting diode. Applied Physics Letters, 2005. 87(23): p. 231110.
    10. Park, E.-H., J. Jang, S. Gupta, I. Ferguson, C.-H. Kim, S.-K. Jeon, and J.-S. Park, Air-voids embedded high efficiency InGaN-light emitting diode. Applied Physics Letters, 2008. 93(19): p. 191103.
    11. Li, Y.L., Y.R. Huang, and Y.H. Lai, Efficiency droop behaviors of InGaN∕GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness. Applied Physics Letters, 2007. 91(18): p. 181113.
    12. Gardner, N.F., J.C. Kim, J.J. Wierer, Y.C. Shen, and M.R. Krames, Polarization anisotropy in the electroluminescence of m-plane InGaN–GaN multiple-quantum-well light-emitting diodes. Applied Physics Letters, 2005. 86(11): p. 111101.
    13. Funato, M., M. Ueda, Y. Kawakami, Y. Narukawa, T. Kosugi, M. Takahashi, and T. Mukai, Blue, Green, and Amber InGaN/GaN Light-Emitting Diodes on Semipolar {11-22} GaN Bulk Substrates. Japanese Journal of Applied Physics, 2006. 45(No. 26): p. L659-L662.
    14. Edmond, J., A. Abare, M. Bergman, J. Bharathan, K. Lee Bunker, D. Emerson, K. Haberern, J. Ibbetson, M. Leung, P. Russel, and D. Slater, High efficiency GaN-based LEDs and lasers on SiC. Journal of Crystal Growth, 2004. 272(1-4): p. 242-250.
    15. Dmitriev, V., K. Irvine, G. Bulman, J. Edmond, A. Zubrilov, V. Nikolaev, I. Nikitina, D. Tsvetkov, A. Babanin, A. Sitnikova, Y. Musikhin, and N. Bert, Growth and characterization of GaN layers on SiC substrates. Journal of Crystal Growth, 1996. 166(1-4): p. 601-606.
    16. Choi, H.W., C. Liu, E. Gu, G. McConnell, J.M. Girkin, I.M. Watson, and M.D. Dawson, GaN micro-light-emitting diode arrays with monolithically integrated sapphire microlenses. Applied Physics Letters, 2004. 84(13): p. 2253.
    17. Chen, Y., R. Schneider, S.Y. Wang, R.S. Kern, C.H. Chen, and C.P. Kuo, Dislocation reduction in GaN thin films via lateral overgrowth from trenches. Applied Physics Letters, 1999. 75(14): p. 2062.
    18. Bell, A., R. Liu, F.A. Ponce, H. Amano, I. Akasaki, and D. Cherns, Light emission and microstructure of Mg-doped AlGaN grown on patterned sapphire. Applied Physics Letters, 2003. 82(3): p. 349.
    19. Leem, D.-S., T. Lee, and T.-Y. Seong, Enhancement of the light output of GaN-based light-emitting diodes with surface-patterned ITO electrodes by maskless wet-etching. Solid-State Electronics, 2007. 51(5): p. 793-796.
    20. Wierer, J.J., D.A. Steigerwald, M.R. Krames, J.J. O’Shea, M.J. Ludowise, G. Christenson, Y.C. Shen, C. Lowery, P.S. Martin, S. Subramanya, W. Götz, N.F. Gardner, R.S. Kern, and S.A. Stockman, High-power AlGaInN flip-chip light-emitting diodes. Applied Physics Letters, 2001. 78(22): p. 3379.
    21. Wei-Chih, L., P.H. Chen, L.C. Chang, K. Cheng-Huang, S. Jinn-Kong, C.J. Tun, and S.C. Shei, GaN-Based LEDs With Mesh ITO p-Contact and Nanopillars. IEEE Photonics Technology Letters, 2009. 21(18): p. 1293-1295.
    22. Hwu, F.-S., J.-C. Chen, S.-H. Tu, G.-J. Sheu, H.-I. Chen, and J.-K. Sheu, A Numerical Study of Thermal and Electrical Effects in a Vertical LED Chip. Journal of The Electrochemical Society, 2010. 157(1): p. H31.
    23. Chen, J.-C., G.-J. Sheu, F.-S. Hwu, H.-I. Chen, J.-K. Sheu, T.-X. Lee, and C.-C. Sun, Electrical-optical analysis of a GaN/sapphire LED chip by considering the resistivity of the current-spreading layer. Optical Review, 2010. 16(2): p. 213-215.
    24. Sun, C.-C., W.-T. Chien, I. Moreno, C.-C. Hsieh, and Y.-C. Lo, Analysis of the far-field region of LEDs. Optics Express, 2009. 17(16): p. 13918.
    25. Sun, C.-C., C.-Y. Chen, H.-Y. He, C.-C. Chen, W.-T. Chien, T.-X. Lee, and T.-H. Yang, Precise optical modeling for silicate-based white LEDs. Optics Express, 2008. 16(24): p. 20060.
    26. Kim, J.H., J.H. Choi, and M.W. Shin, Thermal and Optical Performance of a Light-Emitting-Diode Metal Package With an Integrated Reflector and Heat Spreader Structure. Journal of Display Technology, 2013. 9(10): p. 794-799.
    27. Krames, M.R., O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, and M.G. Craford, Status and Future of High-Power Light-Emitting Diodes for Solid-State Lighting. Journal of Display Technology, 2007. 3(2): p. 160-175.
    28. Narukawa, Y., J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, and T. Mukai, Ultra-High Efficiency White Light Emitting Diodes. Japanese Journal of Applied Physics, 2006. 45(No. 41): p. L1084-L1086.
    29. Yamada, M., T. Mitani, Y. Narukawa, S. Shioji, I. Niki, S. Sonobe, K. Deguchi, M. Sano, and T. Mukai, InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode. Japanese Journal of Applied Physics, 2002. 41(Part 2, No. 12B): p. L1431-L1433.
    30. Shen, Y.C., J.J. Wierer, M.R. Krames, M.J. Ludowise, M.S. Misra, F. Ahmed, A.Y. Kim, G.O. Mueller, J.C. Bhat, S.A. Stockman, and P.S. Martin, Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes. Applied Physics Letters, 2003. 82(14): p. 2221.
    31. Markov, L.K., I.P. Smirnova, A.S. Pavlyuchenko, M.V. Kukushkin, E.D. Vasil’eva, A.E. Chernyakov, and A.S. Usikov, Comparison of the properties of AlGaInN light-emitting diode chips of vertical and flip-chip design using silicon as the a submount. Semiconductors, 2013. 47(3): p. 409-414.
    32. Haerle, V., B. Hahn, S. Kaiser, A. Weimar, S. Bader, F. Eberhard, A. Plössl, and D. Eisert, High brightness LEDs for general lighting applications Using the new ThinGaN™-Technology. phys. stat. sol. (a), 2004. 201(12): p. 2736-2739.
    33. Morita, D., M. Yamamoto, K. Akaishi, K. Matoba, K. Yasutomo, Y. Kasai, M. Sano, S.-i. Nagahama, and T. Mukai, Watt-Class High-Output-Power 365 nm Ultraviolet Light-Emitting Diodes. Japanese Journal of Applied Physics, 2004. 43(9A): p. 5945-5950.
    34. Shchekin, O.B., J.E. Epler, T.A. Trottier, T. Margalith, D.A. Steigerwald, M.O. Holcomb, P.S. Martin, and M.R. Krames, High performance thin-film flip-chip InGaN–GaN light-emitting diodes. Applied Physics Letters, 2006. 89(7): p. 071109.
    35. Lin, H.T., C.H. Tien, C.P. Hsu, and R.H. Horng, White thin-film flip-chip LEDs with uniform color temperature using laser lift-off and conformal phosphor coating technologies. Opt Express, 2014. 22(26): p. 31646-53.
    36. Lee, K.H., S.H. Kim, W.-S. Lim, J.-O. Song, and J.-H. Ryou, Visible Light-Emitting Diodes With Thin-Film-Flip- Chip-Based Wafer-Level Chip-Scale Package Technology Using Anisotropic Conductive Film Bonding. IEEE Electron Device Letters, 2015. 36(7): p. 702-704.
    37. Liu, Z., S. Liu, K. Wang, and X. Luo, Optical Analysis of Phosphor's Location for High-Power Light-Emitting Diodes. IEEE Transactions on Device and Materials Reliability, 2009. 9(1): p. 65-73.
    38. Renyong, Y., J. Shangzhong, C. Songyuan, and L. Pei, Effect of the Phosphor Geometry on the Luminous Flux of Phosphor-Converted Light-Emitting Diodes. IEEE Photonics Technology Letters, 2010. 22(23): p. 1765-1767.
    39. Nguyen The, T., Y. Jiun Pyng, and F.G. Shi, Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED. Journal of Lightwave Technology, 2009. 27(22): p. 5145-5150.
    40. Tran, N.T. and F.G. Shi, Studies of Phosphor Concentration and Thickness for Phosphor-Based White Light-Emitting-Diodes. Journal of Lightwave Technology, 2008. 26(21): p. 3556-3559.
    41. Sommer, C., F.-P. Wenzl, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and G. Leising, Tailoring of the Color Conversion Elements in Phosphor-Converted High-Power LEDs by Optical Simulations. IEEE Photonics Technology Letters, 2008. 20(9): p. 739-741.
    42. Liu, Z.-Y., S. Liu, K. Wang, and X.-B. Luo, Studies on Optical Consistency of White LEDs Affected by Phosphor Thickness and Concentration Using Optical Simulation. IEEE Transactions on Components and Packaging Technologies, 2010. 33(4): p. 680-687.
    43. Sommer, C., J.R. Krenn, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and F.P. Wenzl, The Effect of the Phosphor Particle Sizes on the Angular Homogeneity of Phosphor-Converted High-Power White LED Light Sources. IEEE Journal of Selected Topics in Quantum Electronics, 2009. 15(4): p. 1181-1188.
    44. Shuai, Y., Y. He, N.T. Tran, and F.G. Shi, Angular CCT Uniformity of Phosphor Converted White LEDs: Effects of Phosphor Materials and Packaging Structures. IEEE Photonics Technology Letters, 2011. 23(3): p. 137-139.
    45. Hu, R., X. Luo, and S. Liu, Study on the Optical Properties of Conformal Coating Light-Emitting Diode by Monte Carlo Simulation. IEEE Photonics Technology Letters, 2011. 23(22): p. 1673-1675.
    46. Yum, J.-h., S.-Y. Seo, S. Lee, and Y.-E. Sung, Y[sub 3]Al[sub 5]O[sub 12]:Ce[sub 0.05] Phosphor Coatings on Gallium Nitride for White Light Emitting Diodes. Journal of The Electrochemical Society, 2003. 150(2): p. H47.
    47. Yang, L., S. Wang, Z. Lv, and S. Liu, Color deviation controlling of phosphor conformal coating by advanced spray painting technology for white LEDs. Appl Opt, 2013. 52(10): p. 2075-9.
    48. Talbot, J.B. and J. McKittrick, Review—Electrophoretic Deposition of Phosphors for Solid-State Lighting. ECS Journal of Solid State Science and Technology, 2015. 5(1): p. R3107-R3120.
    49. Yang, L., M. Chen, Z. Lv, S. Wang, X. Liu, and S. Liu, Preparation of a YAG:Ce phosphor glass by screen-printing technology and its application in LED packaging. Opt Lett, 2013. 38(13): p. 2240-3.
    50. Kewei, C., Z. Rong, and S.W.R. Lee, Integration of phosphor printing and encapsulant dispensing processes for wafer level LED array packaging. 2010: p. 1386-1392.
    51. Narendran, N., Y. Gu, J.P. Freyssinier-Nova, and Y. Zhu, Extracting phosphor-scattered photons to improve white LED efficiency. physica status solidi (a), 2005. 202(6): p. R60-R62.
    52. Liu, Z., S. Liu, K. Wang, and X. Luo, Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging. Appl Opt, 2010. 49(2): p. 247-57.
    53. Sommer, C., F. Reil, J.R. Krenn, P. Hartmann, P. Pachler, H. Hoschopf, and F.P. Wenzl, The Impact of Light Scattering on the Radiant Flux of Phosphor-Converted High Power White Light-Emitting Diodes. Journal of Lightwave Technology, 2011. 29(15): p. 2285-2291.

    無法下載圖示 校內:2021-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE