簡易檢索 / 詳目顯示

研究生: 王家俊
Wang, Chia-Chun
論文名稱: 以射頻磁控濺鍍法成長摻雜氫之氧化鋅薄膜
Growth of Hydrogen Doped Zinc Oxide Thin Film by RF Magnetron Sputtering
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 76
中文關鍵詞: 氧化鋅間隙氫透明導電膜間隙鋅氧空缺
外文關鍵詞: transparent conducting oxide, interstitial zinc, oxygen vacancy, zinc oxide, interstitial hydrogen
相關次數: 點閱:83下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以射頻磁控濺鍍法成長摻雜氫之氧化鋅薄膜,研究主要分為兩大方向:(一)探討摻雜氫之氧化鋅薄膜中,導電性提高之原因;(二)於低溫下成長一具備低電阻率且高透光性之摻雜氫的氧化鋅薄膜。
    實驗結果證實了氫摻雜確實可大幅地提升氧化鋅薄膜電性,並間接證實於未含摻雜物之氧化鋅薄膜中,成長環境中微量氫的摻入為造成氧化鋅導電度提高之原因,而非形成氧空缺或間隙鋅所致。此外,研究中將探討四項參數對摻雜氫之氧化鋅薄膜各項特性影響,其結論歸納如下:第一,過低的氫氣流量將造成摻雜量過低;而過高的氫氣流量則將對電子產生散射效應,因此有一最適當氫氣流量值;第二,愈低的成長壓力有助於氫的摻雜,提高薄膜導電性;第三,當基板溫度愈低時愈有利於氫的摻雜;第四,射頻功率對氫解離率、濺鍍率與薄膜結晶性會有影響,在85W時可成長一電阻率較低之薄膜。
    在研究中,以氫氣組成比為40%、壓力為2 mtorr、溫度為150度C以及射頻功率為85W時,所成長之摻雜氫之氧化鋅薄膜其電阻率為7.06x10^(-4) Ω-cm ,對可見光穿透率在80% 以上,其電阻率為目前所有文獻中報導之最低值。

    Radio-frequency magnetron sputtering method has been employed to deposit hydrogen doped zinc oxide. The mechanism of doping by incorporating hydrogen in zinc oxide was studied. Besides, attempts have been made to deposit at low temperature the hydrogen doped zinc oxide film with high conductivity and high transparancy in visible light range.
    Hydrogen incorporation was demonstrated to be able to enhance the conductivity of zinc oxide significantly. Since hydrogen is ubiquitous and very difficult to be removed from the growth environment, the so-called undoped zinc oxide has low conductivity due to unintentional doping of hydrogen. Various properties of hydrogen doped zinc oxide were studied by varying the deposition conditions. An optimum hydrogen exists to minimize the resistivity of the doped zinc oxide film. When the hydrogen composition in the plasma is too low, the carrier concentration in zinc oxide film becomes low. When the hydrogen composition is too high, the donors in the zinc oxide film will induce electron scattering by the ionized impurities. Therefore, an optimum hydrogen composition exists. Lower deposition pressure facilitates the incorporation of hydrogen in the zinc oxide film, thus increasing the conductivity. Besides, low temperature deposition facilitates the hydrogen doping. Since radio-frequency power affects the degree of ionization of hydrogen in the plasma, the sputtering yield and the crystallization process, 85W is found to be the optimum power to obtain a high conductivity zinc oxide film.
    The hydrogen-doped zinc oxide film in our studies can exhibit an average transmittance of above 80% in visible light range and a resistivity of 7.06x10^(-4) Ω-cm , which is the lowest value ever reported for zinc oxide.

    中文摘要 Ⅰ 英文摘要 Ⅱ 總目錄 Ⅳ 表目錄 Ⅸ 圖目錄 Ⅹ 第一章 緒論 1 1-1研究動機與目的...................... 1 1-2透明導電膜........................... 2 1-2-1 前言 1-2-2 種類 1-2-3 製備方法 1-3氧化鋅薄膜........................... 6 1-3-1 文獻回顧 1-3-2 摻雜氫之氧化鋅薄膜 1-3-3 應用 第二章 理論基礎 10 2-1濺鍍原理............................. 10 2-1-1 二極濺鍍 2-1-2 偏壓濺鍍 2-1-3 磁控濺鍍 2-1-4 射頻濺鍍 2-2電漿理論............................. 17 2-3薄膜沉積理論......................... 19 2-3-1 沉積現象 2-3-2 薄膜表面及截面型態結構 第三章 實驗參數與研究方法 23 3-1實驗步驟與分析流程................... 23 3-2儀器設備............................. 24 3-2-1 設備圖 3-2-2 射頻電源系統 3-2-3 流量控制系統 3-3實驗材料............................. 26 3-3-1 靶材 3-3-2 工作氣體 3-3-3 基板 3-4實驗參數............................. 27 3-5分析儀器............................. 28 3-5-1 膜厚分析儀器 3-5-2 電性分析儀器 3-5-3 表面分析儀器 3-5-4 結構分析儀器 3-5-5 光學性質分析儀器 第四章 結果與討論 32 4-1前言與薄膜之電性均勻性探討........... 32 4-2氫氣分率之影響....................... 34 4-2-1 前言 4-2-2 膜厚分析 4-2-3 電性分析 4-2-4 晶體結構分析 4-2-5 表面形態分析 4-2-6 光學性質分析 4-2-7 總結 4-3成長壓力之影響....................... 44 4-3-1 前言 4-3-2 膜厚分析 4-3-3 電性分析 4-3-4 晶體結構分析 4-3-5 表面形態分析 4-3-6 光學性質分析 4-3-7 總結 4-4基板溫度之影響....................... 52 4-4-1 前言 4-4-2 膜厚分析 4-4-3 電性分析 4-4-4 晶體結構分析 4-4-5 表面形態分析 4-4-6 光學性質分析 4-4-7 總結 4-5射頻功率之影響....................... 61 4-5-1 前言 4-5-2 膜厚分析 4-5-3 電性分析 4-5-4 晶體結構分析 4-5-5 表面形態分析 4-5-6 光學性質分析 4-5-7 總結 第五章 結論 71 第六章 參考文獻 73 自述 76

    [1] C. G. Van de Walle, Phys. Rev. Lett. 85, 1012 (2000).
    [2] S. Y. Myong and K. S. Lim, Appl. Phys. Lett. 82, 3026 (2003).
    [3] 楊明輝, 工業材料, 179期, (民國90年), 134.
    [4] 許國銓, 材料與社會, 84 期, (民82), 110.
    [5] L. Davis, Thin Solid Films 236, 1 (1993).
    [6] H. W. Lehmann and R. Widmer, Thin Solid Films 27, 359 (1975).
    [7] E. Shanthi and K. L. Chopra, J. Appl. Phys. 53, 1615 (1982).
    [8] C. Eberspacher and R. H. Bube, Thin Solid Films 136, 1 (1986).
    [9] J. Hu and R. G. Gordon, J. Appl. Phys. 71, 880 (1992).
    [10] H. U. Habermeier, Thin Solid Films 80, 157 (1981).
    [11] F. Furusaki and K. Kodaira, J. of the Ceramic Society of
    Japan 102, 200 (1994).
    [12] M. H. Sukkar and H. L. Tuller, in Advances in Ceramics,
    edited by M. F. Yan and A. H. Heuer, (American Ceramic Society,
    Columbus, 1982), Vol. 7, p. 71.
    [13] K. I. Hagemark, J. Solid State Chem. 16, 293 (1976).
    [14] J. S. Choi and C. H. Yo, J. Phys. Chem. Solids 37, 1149 (1976).
    [15] A. W. Sleight and R. Wang, in Solid-State Chemistry of
    Inorganic Materials, edited by P. K. Davies, A. Jacobson,
    C. C. Torardi, and T. A. Vanderah MRS Symposia Proceedings No. 453,
    (Materials Research Society, Pittsburgh, 1997), pp. 323-330.
    [16] G. D. Mahan, J. Appl. Phys. 54, 3825 (1983).
    [17] J. W. Hoffman and I. Lauder, Trans. Faraday Soc. 66, 2346 (1970).
    [18] E. Ziegler, A. Heinrich, H. Oppermann, and G. Stover, Phys.
    Status Solidi A 66, 635 (1981).
    [19] M. D. McCluskey and K. G. Lynn, App. Phys. Lett. 81, 3807 (2002).
    [20] E. V. Lavrov, C. G. Van de Walle and R. Helbig, Phys. Rev. B 66, 165205
    (2002).
    [21] D. M. Hofmann, Albrecht Hofstaetter and P. G. Baranov, Phys. Rev. Lett.
    88, 045504-1(2002).
    [22] 楊錦章譯,"基礎濺鍍電漿",電子發展月刊,第68期,p.13 (1963).
    [23] J. G. Ryan and S. Robers, Thin Solid Films 153, 329 (1987).
    [24] H. Kashani, Journal of Material Science Letters 18, 1043 (1999).
    [25] C. G. Van de Walle and J. Neugebauer, Nature 423, 626 (2003).
    [26] Brian Chapman, Glow Discharge Processes (John Wiley & Sons, 1980), p.119.
    [27] Y. E. Lee, J. B. Lee and H. J. Kim, J. Vac. Sci. Technol. A 14, 1943
    (1996).
    [28] J. B. Lee, S. H. Kwak and H. J. Kim, Thin Solid Film 423, 262 (2003).
    [29] P. S. Xu, Y. M. Sun, and H. B. Pan, Nuclear Instruments and Methods in
    Physics Research B 199, 286 (2003).
    [30] T. Sinno, C. Minarini, and A. Salluzzo, Solid State Phenomena 67, 249
    (1999).
    [31] E. Burstein, Phys. Rev. 93, 632 (1954).
    [32] A. Hollander, and M. R. Wertheimer, J. Vac. Sci. Technol. A. 12, 879
    (1994).
    [33] K. B. Sundaram, and A. Khan, Thin Solid Film 295, 87 (1997).
    [34] T. Hada, K. Wasa, and J. Hayakawa, Thin Solid Film 7, 135(1971).
    [35] G. Fang, D. Li, and B. L. Yao, J. Phys. D 35, 3096 (2002).

    下載圖示 校內:2006-07-08公開
    校外:2006-07-08公開
    QR CODE