簡易檢索 / 詳目顯示

研究生: 黎馨誼
Li, Hsin-Yi
論文名稱: 凝血酶調節素在異位性皮膚炎中的角色
The Role of Thrombomodulin in Atopic Dermatitis
指導教授: 吳華林
Wu, Hua-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 74
中文關鍵詞: 凝血酶調節素異位性皮膚炎胸腺基質淋巴生成素
外文關鍵詞: Thrombomodulin, Atopic dermatitis, Thymic stromal lymphopoietin
相關次數: 點閱:74下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 異位性皮膚炎是一種受到環境刺激物的影響,而使得表皮障壁功能變差和出現表皮粗厚增生的慢性發炎皮膚疾病。異位性皮膚炎復發率相當高,但其詳細的致敏原因並不清楚。急性期的異位性皮膚炎,原駐足在皮膚表面的樹突狀細胞會呈現過敏原給naïve CD4+ T細胞,導致第二型輔助性T (Th2)細胞的分化,同時伴隨如介白素-4 (IL-4)和介白素-13 (IL-13)等Th2細胞激素的大量分泌。前述的細胞激素可透過角質細胞的活化和高度增生來促進過敏發炎反應的持續發生。相反的,在慢性期的異位性皮膚炎,naïve CD4+ T細胞的分化會從Th2轉變成Th1細胞。凝血酶調節素屬於第一型的穿膜醣蛋白,已被證實其參與調控表皮角質細胞的分化及傷口癒合。但角質細胞表現的凝血酶調節素在異位性皮膚炎中的角色至今未明。本研究首先使用IL-4或IL-13模擬異位性皮膚炎病理狀態的方式,來探討人類角質細胞株(HaCaT)在此疾病模式下,其凝血酶調節素的表現調控。結果顯示,當受到IL-4或IL-13刺激後,凝血酶調節素蛋白的表現會隨著濃度及時間增加而上升。此表現量的增加,是經由Akt及Stat-6而非ERK活化的抑制而受到調控。此外,本研究利用雞白蛋白(OVA)作為過敏原誘導,利用反覆經皮致敏的方式,建立一個已知的異位性皮膚炎小鼠模式。在此異位性皮膚炎小鼠模式中,我們發現其經皮水分散失量(TEWL)、胸腺基質淋巴生成素(TSLP)及血清中總免疫球蛋白E (IgE)皆有增加的現象。另外,利用組織學檢測亦發現,在誘導產生異位性皮膚炎的小鼠皮膚切片中,其表皮層及真皮層有明顯增厚的現象,並伴隨著較強的凝血酶調節素表現量。為了要確認凝血酶調節素在角質細胞中表現量的增強與異位性皮膚炎的嚴重程度關係,因此,我們培育了在角質細胞特異性剔除凝血酶調節素(K5-Cre/TMflox/flox)的小鼠。利用組織學檢測發現當利用OVA誘導角質細胞凝血酶調節素缺失的小鼠(K5-Cre/TMflox/flox)產生異位性皮膚炎疾病時,其表皮層中TSLP的表現量比起野生型對照組明顯變弱。更進一步也發現,在缺失小鼠中TEWL及總IgE量降低。由此結果顯示,在角質細胞中凝血酶調節素的缺失可能會降低異位性皮膚炎病灶處發炎的情況。綜合以上結果,角質細胞表現的凝血酶調節素與異位性皮膚炎的皮膚敏感度及疾病嚴重度呈正相關,角質細胞的凝血酶調節素可能藉由引發出高度活化的免疫狀態而導致異位性皮膚炎的發生。

    Atopic dermatitis (AD), a chronic inflammatory skin disorder, results in defective skin barrier function and skin hyperplasia due to cutaneous hyperreactivity to environmental stimuli. AD can lead to significant morbidity and the reason remains unclear. In the acute phase of AD, skin-resident dendritic cells present allergens to naïve CD4+ T cells, thereby resulting in the development of T-helper 2 (Th2) cells as well as increased secretion of Th2 cytokines such as interleukin (IL)-4 and IL-13. Aforementioned cytokines trigger activation and hyperproliferation of keratinocytes, thereby promoting or sustaining allergic inflammation. In contrast, chronic AD contributes to switch of naïve CD4 T cell differentiation from Th2 to Th1. Thrombomodulin (TM), a type Ι transmembrane glycoprotein, has been demonstrated to play a role in epidermal keratinocyte differentiation and wound healing. However, the function of TM in AD is poorly investigated. In this study, we used IL-4/ IL-13 to mimic an AD-like state to investigate the regulation of TM in human keratinocyte HaCaT cells under this disease condition in vitro. We found that expression of TM was up-regulated by IL-4/ IL-13 stimulation in dose- and time-dependent manners. Furthermore, IL-4/ IL-13-induced TM expression in keratinocytes was regulated through Akt and Stat-6, but not ERK signaling pathways by using respective molecule inhibitors. In addition, we performed a well-known mouse model of AD induced by repeated epicutaneous sensitization of ovalbumin (OVA). We recapitalized AD disease phenotypes in OVA-challenged mice by observing elevated transepidermal water loss (TEWL), enhanced thymic stromal lymphopoietin (TSLP) expression and increased serum total IgE levels. Moreover, AD skin sections, compared to control ones, revealed remarkably hyperplasia of the epidermis with stronger TM expression by using histologic examination. To classify the contribution of TM in keratinocytes to the severity of AD, we established keratinocyte-specific TM deficient mice (K5-Cre/TMflox/flox mice). Histological examination revealed that the expression of TSLP, a keratinocyte-derived proinflammatory mediator, was significantly weaker in OVA-challenged K5-Cre/TMflox/flox mice than in wild type counterparts. Furthermore, levels of TEWL and serum IgE, were also decreased in OVA-challenged K5-Cre/TMflox/flox mice, suggesting the loss of TM in keratinocytes might reduce the inflammatory status in AD lesions. In conclusion, my data suggested that TM expression in keratinocytes is positively correlated with skin sensitization strength and AD severity. Keratinocytic TM might provoke a hyperactive immune status in the pathogenesis of AD.

    中文摘要 II ABSTRACT III ACKNOWLEDGEMENT IV CONTENTS V LIST OF FIGURES VII ABBREVIATION VIII INSTRUMENTS XI REAGENTS AND CHEMICALS XIII INTRODUCTION 1 I. SKIN STRUCTURE AND ATOPIC DERMATITIS 1 II. THE ROLE OF KERATINOCYTES IN AD DEVELOPMENT 2 III. THROMBOMODULIN 3 IV. ROLE OF TM IN KERATINOCYTES 4 V. RELATIONSHIP BETWEEN TM AND AD 5 SPECIFIC AIMS 6 MATERIALS AND METHODS 7 I. CELL CULTURE 7 II. SIRNA KNOCK DOWN OF TM IN HACAT 10 III. WESTERN BLOTTING 11 IV. TM EXPRESSION ON HACAT UNDER CYTOKINE STIMULATION 18 V. IL-4/IL-13-RELATED INTRACELLULAR SIGNALING PATHWAYS 19 VI. OVALBUMIN (OVA)-INDUCED ATOPIC DERMATITIS (AD) IN MICE 21 VII. MEASUREMENT OF TRANSEPIDERMAL WATER LOSS (TEWL) 22 VIII. ANIMAL 23 IX. ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA) ANALYSIS OF SERUM IGE IN OVA-INDUCED AD MICE 27 X. HEMATOXYLIN AND EOSIN STAIN (PARAFFIN) 29 XI. IMMUNOHISTOCHEMICAL STAINING (PARAFFIN) 30 XII. IMMUNOFLUORESCENT STAINING (PARAFFIN) 33 RESULTS 35 I EXPRESSION OF TM IS UP-REGULATED IN HUMAN KERATINOCYTE HACAT CELLS UNDER AD DISEASE CONDITION IN VITRO. 35 II IL-4/ IL-13-INDUCED TM EXPRESSION IN KERATINOCYTES WAS REGULATED THROUGH AKT AND STAT-6 SIGNALING PATHWAYS 35 III A MURINE MODEL OF AD WAS PERFORMED AND EVALUATED BY SOME CLINICAL BIOMARKERS 36 IV STRONGER TM EXPRESSION WAS DETECTED IN THE EPIDERMIS OF OVA-CHALLENGED MICE 38 V KERATINOCYTIC TM MIGHT PROVOKE A HYPERACTIVE IMMUNE STATUS IN THE PATHOGENESIS OF AD 38 CONCLUSION 40 DISCUSSION 41 REFERENCES 45 FIGURES 52 APPENDIXES 72

    1. Abeyama, K., Stern, D. M., Ito, Y., Kawahara, K., Yoshimoto, Y., Tanaka, M., Uchimura, T., Ida, N., Yamazaki, Y., Yamada, S., et al. (2005). The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. The Journal of clinical investigation 115, 1267-1274.
    2. Akira, S. (1999). Functional roles of STAT family proteins: lessons from knockout mice. Stem cells (Dayton, Ohio) 17, 138-146.
    3. Arima, K., Ohta, S., Takagi, A., Shiraishi, H., Masuoka, M., Ontsuka, K., Suto, H., Suzuki, S., Yamamoto, K., Ogawa, M., et al. (2015). Periostin contributes to epidermal hyperplasia in psoriasis common to atopic dermatitis. Allergology international : official journal of the Japanese Society of Allergology 64, 41-48.
    4. Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V., and Wolf, R. (2012). Structure and function of the epidermis related to barrier properties. Clinics in dermatology 30, 257-262.
    5. Bernard, F. X., Morel, F., Camus, M., Pedretti, N., Barrault, C., Garnier, J., and Lecron, J. C. (2012). Keratinocytes under Fire of Proinflammatory Cytokines: Bona Fide Innate Immune Cells Involved in the Physiopathology of Chronic Atopic Dermatitis and Psoriasis. Journal of allergy 2012, 718725.
    6. Bhattacharjee, A., Shukla, M., Yakubenko, V. P., Mulya, A., Kundu, S., and Cathcart, M. K. (2013). IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free radical biology & medicine 54, 1-16.
    7. Bieber, T. (2008). Atopic dermatitis. The New England journal of medicine 358, 1483-1494.
    8. Blann, A. D., and Lip, G. Y. (1998). The endothelium in atherothrombotic disease: assessment of function, mechanisms and clinical implications. Blood coagulation & fibrinolysis : an international journal in haemostasis and thrombosis 9, 297-306.
    9. Boffa, M. C. (1996). Considering cellular thrombomodulin distribution and its modulating factors can facilitate the use of plasma thrombomodulin as a reliable endothelial marker? Haemostasis 26 Suppl 4, 233-243.
    10. Bretschneider, E., Uzonyi, B., Weber, A. A., Fischer, J. W., Pape, R., Lotzer, K., and Schror, K. (2007). Human vascular smooth muscle cells express functionally active endothelial cell protein C receptor. Circulation research 100, 255-262.
    11. Carson, C. G. (2013). Risk factors for developing atopic dermatitis. Danish medical journal 60, B4687.
    12. Cheng, T. L., Lai, C. H., Chen, P. K., Cho, C. F., Hsu, Y. Y., Wang, K. C., Lin, W. L., Chang, B. I., Liu, S. K., Wu, Y. T., et al. (2015). Thrombomodulin promotes diabetic wound healing by regulating toll-like receptor 4 expression. The Journal of investigative dermatology 135, 1668-1675.
    13. Cheng, T. L., Wu, Y. T., Lai, C. H., Kao, Y. C., Kuo, C. H., Liu, S. L., Hsu, Y. Y., Chen, P. K., Cho, C. F., Wang, K. C., et al. (2013). Thrombomodulin regulates keratinocyte differentiation and promotes wound healing. The Journal of investigative dermatology 133, 1638-1645.
    14. Cheng, T. L., Wu, Y. T., Lin, H. Y., Hsu, F. C., Liu, S. K., Chang, B. I., Chen, W. S., Lai, C. H., Shi, G. Y., and Wu, H. L. (2011). Functions of rhomboid family protease RHBDL2 and thrombomodulin in wound healing. The Journal of investigative dermatology 131, 2486-2494.
    15. Conway, E. M., Nowakowski, B., and Steiner-Mosonyi, M. (1992). Human neutrophils synthesize thrombomodulin that does not promote thrombin-dependent protein C activation. Blood 80, 1254-1263.
    16. Cork, M. J., Danby, S. G., Vasilopoulos, Y., Hadgraft, J., Lane, M. E., Moustafa, M., Guy, R. H., Macgowan, A. L., Tazi-Ahnini, R., and Ward, S. J. (2009). Epidermal barrier dysfunction in atopic dermatitis. The Journal of investigative dermatology 129, 1892-1908.
    17. David, M., Ford, D., Bertoglio, J., Maizel, A. L., and Pierre, J. (2001). Induction of the IL-13 receptor alpha2-chain by IL-4 and IL-13 in human keratinocytes: involvement of STAT6, ERK and p38 MAPK pathways. Oncogene 20, 6660-6668.
    18. Di Meglio, P., Perera, G. K., and Nestle, F. O. (2011). The multitasking organ: recent insights into skin immune function. Immunity 35, 857-869.
    19. Esche, C., de Benedetto, A., and Beck, L. A. (2004). Keratinocytes in atopic dermatitis: inflammatory signals. Current allergy and asthma reports 4, 276-284.
    20. Esmon, C. T. (1989). The roles of protein C and thrombomodulin in the regulation of blood coagulation. The Journal of biological chemistry 264, 4743-4746.
    21. Fuchs, E. (1995). Keratins and the skin. Annual review of cell and developmental biology 11, 123-153.
    22. Genovese, A., Detoraki, A., Granata, F., Galdiero, M. R., Spadaro, G., and Marone, G. (2012). Angiogenesis, lymphangiogenesis and atopic dermatitis. Chemical immunology and allergy 96, 50-60.
    23. Glatzer, F., Gschwandtner, M., Ehling, S., Rossbach, K., Janik, K., Klos, A., Baumer, W., Kietzmann, M., Werfel, T., and Gutzmer, R. (2013). Histamine induces proliferation in keratinocytes from patients with atopic dermatitis through the histamine 4 receptor. The Journal of allergy and clinical immunology 132, 1358-1367.
    24. Guttman-Yassky, E., Nograles, K. E., and Krueger, J. G. (2011a). Contrasting pathogenesis of atopic dermatitis and psoriasis--part I: clinical and pathologic concepts. The Journal of allergy and clinical immunology 127, 1110-1118.
    25. Guttman-Yassky, E., Nograles, K. E., and Krueger, J. G. (2011b). Contrasting pathogenesis of atopic dermatitis and psoriasis--part II: immune cell subsets and therapeutic concepts. The Journal of allergy and clinical immunology 127, 1420-1432.
    26. Healy, A. M., Rayburn, H. B., Rosenberg, R. D., and Weiler, H. (1995). Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proceedings of the National Academy of Sciences of the United States of America 92, 850-854.
    27. Huang, H. C., Shi, G. Y., Jiang, S. J., Shi, C. S., Wu, C. M., Yang, H. Y., and Wu, H. L. (2003). Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. The Journal of biological chemistry 278, 46750-46759.
    28. Huang, T., Lin, X., Meng, X., and Lin, M. (2014). Phosphoinositide-3 kinase/protein kinase-B/mammalian target of rapamycin pathway in psoriasis pathogenesis. A potential therapeutic target? Acta dermato-venereologica 94, 371-379.
    29. Isermann, B., Hendrickson, S. B., Zogg, M., Wing, M., Cummiskey, M., Kisanuki, Y. Y., Yanagisawa, M., and Weiler, H. (2001). Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. The Journal of clinical investigation 108, 537-546.
    30. Ishii, H., and Majerus, P. W. (1985). Thrombomodulin is present in human plasma and urine. The Journal of clinical investigation 76, 2178-2181.
    31. Ito, T., Wang, Y. H., Duramad, O., Hori, T., Delespesse, G. J., Watanabe, N., Qin, F. X., Yao, Z., Cao, W., and Liu, Y. J. (2005). TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. The Journal of experimental medicine 202, 1213-1223.
    32. Jariwala, S. P., Abrams, E., Benson, A., Fodeman, J., and Zheng, T. (2011). The role of thymic stromal lymphopoietin in the immunopathogenesis of atopic dermatitis. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology 41, 1515-1520.
    33. Jin, H., He, R., Oyoshi, M., and Geha, R. S. (2009). Animal models of atopic dermatitis. The Journal of investigative dermatology 129, 31-40.
    34. Kim, B. E., and Leung, D. Y. (2012). Epidermal barrier in atopic dermatitis. Allergy, asthma & immunology research 4, 12-16.
    35. Koziel, J., and Potempa, J. (2013). Protease-armed bacteria in the skin. Cell and tissue research 351, 325-337.
    36. Kuo, I. H., Yoshida, T., De Benedetto, A., and Beck, L. A. (2013). The cutaneous innate immune response in patients with atopic dermatitis. The Journal of allergy and clinical immunology 131, 266-278.
    37. LaPorte, S. L., Juo, Z. S., Vaclavikova, J., Colf, L. A., Qi, X., Heller, N. M., Keegan, A. D., and Garcia, K. C. (2008). Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132, 259-272.
    38. Leung, D. Y., Boguniewicz, M., Howell, M. D., Nomura, I., and Hamid, Q. A. (2004). New insights into atopic dermatitis. The Journal of clinical investigation 113, 651-657.
    39. Li, Y. H., Kuo, C. H., Shi, G. Y., and Wu, H. L. (2012). The role of thrombomodulin lectin-like domain in inflammation. Journal of biomedical science 19, 34.
    40. Liang, C. C., You, L. R., Chang, J. L., Tsai, T. F., and Chen, C. M. (2009). Transgenic mice exhibiting inducible and spontaneous Cre activities driven by a bovine keratin 5 promoter that can be used for the conditional analysis of basal epithelial cells in multiple organs. Journal of biomedical science 16, 2.
    41. Liu, Y. J. (2006). Thymic stromal lymphopoietin: master switch for allergic inflammation. The Journal of experimental medicine 203, 269-273.
    42. Ma, C. Y., Shi, G. Y., Shi, C. S., Kao, Y. C., Lin, S. W., and Wu, H. L. (2012). Monocytic thrombomodulin triggers LPS- and gram-negative bacteria-induced inflammatory response. Journal of immunology (Baltimore, Md : 1950) 188, 6328-6337.
    43. Madonna, S., Scarponi, C., Pallotta, S., Cavani, A., and Albanesi, C. (2012). Anti-apoptotic effects of suppressor of cytokine signaling 3 and 1 in psoriasis. Cell death & disease 3, e334.
    44. Maruyama, I., Bell, C. E., and Majerus, P. W. (1985). Thrombomodulin is found on endothelium of arteries, veins, capillaries, and lymphatics, and on syncytiotrophoblast of human placenta. The Journal of cell biology 101, 363-371.
    45. McCachren, S. S., Diggs, J., Weinberg, J. B., and Dittman, W. A. (1991). Thrombomodulin expression by human blood monocytes and by human synovial tissue lining macrophages. Blood 78, 3128-3132.
    46. Mizutani, H., Hayashi, T., Nouchi, N., Ohyanagi, S., Hashimoto, K., Shimizu, M., and Suzuki, K. (1994). Functional and immunoreactive thrombomodulin expressed by keratinocytes. The Journal of investigative dermatology 103, 825-828.
    47. Mueller, T. D., Zhang, J. L., Sebald, W., and Duschl, A. (2002). Structure, binding, and antagonists in the IL-4/IL-13 receptor system. Biochimica et biophysica acta 1592, 237-250.
    48. Na, K., Yoo, H. S., Zhang, Y. X., Choi, M. S., Lee, K., Yi, T. G., Song, S. U., and Jeon, M. S. (2014). Bone marrow-derived clonal mesenchymal stem cells inhibit ovalbumin-induced atopic dermatitis. Cell death & disease 5, e1345.
    49. Nutten, S. (2015). Atopic dermatitis: global epidemiology and risk factors. Annals of nutrition & metabolism 66 Suppl 1, 8-16.
    50. Owen, W. G., and Esmon, C. T. (1981). Functional properties of an endothelial cell cofactor for thrombin-catalyzed activation of protein C. The Journal of biological chemistry 256, 5532-5535.
    51. Oyoshi, M. K., He, R., Kumar, L., Yoon, J., and Geha, R. S. (2009). Cellular and molecular mechanisms in atopic dermatitis. Advances in immunology 102, 135-226.
    52. Peterson, J. J., Rayburn, H. B., Lager, D. J., Raife, T. J., Kealey, G. P., Rosenberg, R. D., and Lentz, S. R. (1999). Expression of thrombomodulin and consequences of thrombomodulin deficiency during healing of cutaneous wounds. The American journal of pathology 155, 1569-1575.
    53. Raife, T. J., Lager, D. J., Madison, K. C., Piette, W. W., Howard, E. J., Sturm, M. T., Chen, Y., and Lentz, S. R. (1994). Thrombomodulin expression by human keratinocytes. Induction of cofactor activity during epidermal differentiation. The Journal of clinical investigation 93, 1846-1851.
    54. Schultz Larsen, F., Diepgen, T., and Svensson, A. (1996). The occurrence of atopic dermatitis in north Europe: an international questionnaire study. Journal of the American Academy of Dermatology 34, 760-764.
    55. Sehra, S., Bruns, H. A., Ahyi, A. N., Nguyen, E. T., Schmidt, N. W., Michels, E. G., von Bulow, G. U., and Kaplan, M. H. (2008). IL-4 is a critical determinant in the generation of allergic inflammation initiated by a constitutively active Stat6. Journal of immunology (Baltimore, Md : 1950) 180, 3551-3559.
    56. Shi, C. S., Shi, G. Y., Hsiao, H. M., Kao, Y. C., Kuo, K. L., Ma, C. Y., Kuo, C. H., Chang, B. I., Chang, C. F., Lin, C. H., et al. (2008). Lectin-like domain of thrombomodulin binds to its specific ligand Lewis Y antigen and neutralizes lipopolysaccharide-induced inflammatory response. Blood 112, 3661-3670.
    57. Sivaprasad, U., Kinker, K. G., Ericksen, M. B., Lindsey, M., Gibson, A. M., Bass, S. A., Hershey, N. S., Deng, J., Medvedovic, M., and Khurana Hershey, G. K. (2015). SERPINB3/B4 contributes to early inflammation and barrier dysfunction in an experimental murine model of atopic dermatitis. The Journal of investigative dermatology 135, 160-169.
    58. Spergel, J. M., and Paller, A. S. (2003). Atopic dermatitis and the atopic march. The Journal of allergy and clinical immunology 112, S118-127.
    59. Tanaka, A., Ishii, H., Hiraishi, S., Kazama, M., and Maezawa, H. (1991). Increased thrombomodulin values in plasma of diabetic men with microangiopathy. Clinical chemistry 37, 269-272.
    60. Tracy, P. B. (1988). Regulation of thrombin generation at cell surfaces. Seminars in thrombosis and hemostasis 14, 227-233.
    61. Weiler, H., and Isermann, B. H. (2003). Thrombomodulin. Journal of thrombosis and haemostasis : JTH 1, 1515-1524.
    62. Wills-Karp, M., and Finkelman, F. D. (2008). Untangling the complex web of IL-4- and IL-13-mediated signaling pathways. Science signaling 1, pe55.
    63. Yamanaka, K., and Mizutani, H. (2011). The role of cytokines/chemokines in the pathogenesis of atopic dermatitis. Current problems in dermatology 41, 80-92.
    64. Yoo, J., Omori, M., Gyarmati, D., Zhou, B., Aye, T., Brewer, A., Comeau, M. R., Campbell, D. J., and Ziegler, S. F. (2005). Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. The Journal of experimental medicine 202, 541-549.
    65. Yoshijima, S., Kojima, T., Sasai, M., Hattori, K., Taniuchi, S., and Kobayashi, Y. (2001). Plasma thrombomodulin levels in children with atopic dermatitis. Acta paediatrica (Oslo, Norway : 1992) 90, 130-132.
    66. Zhang, Y., Matsuo, H., and Morita, E. (2006). Increased production of vascular endothelial growth factor in the lesions of atopic dermatitis. Archives of dermatological research 297, 425-429.

    無法下載圖示 校內:2021-07-14公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE