| 研究生: |
張政駙 Chang, Cheng-Fu |
|---|---|
| 論文名稱: |
考慮不確定參數之芳香烴族化學品供應鏈生產規劃策略 Optimal Planning Strategies for the Supply Chains of Light Aromatic Compounds with Uncertain Parameters |
| 指導教授: |
張珏庭
Chang, Chuei-Tin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 混整數數學規劃 、供應鏈 、轉化型煉油廠 、隨機規劃模式 |
| 外文關鍵詞: | Stochastic Programming, Supply Chain, Conversion Refinery, MILP |
| 相關次數: | 點閱:65 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的主要目的是發展轉化型煉油廠中的五項芳香烴族化學品(即苯、甲苯、混合二甲苯、對位二甲苯與鄰位二甲苯)的供應鏈生產規劃模式。我們首先發展出一個確定性的數學規劃模式,其中包含相互關聯的反應程序模組、分離程序模組與儲槽模組,可在固定的供應量或需求量限制下決定出多個時期的最佳原物料採購量、中間油料庫存量、各單元煉量以及產品庫存量。接下來我們進一步將前述模式修改成具有不確定參數的隨機性規劃模式,利用此模式可發展包括原油供應與客戶需求不穩定情況下的生產規劃策略;此外我們還引入可用度的概念,據以訂定出生產工場出現非預期停俥時所需因應的生產規劃以及維修排程策略。最後,我們將所建立芳香烴族化學品供應鏈的不確定性數學規劃模式應用在幾個實際上可能發生的情境上。
The scope of this study aims at the supply chain of five main products in a typical conversion refinery, i.e., benzene, toluene, mix-xylene, ortho-xylene, and para-xylene. A deterministic mixed integer linear program (MILP), which includes a large number of interconnected reaction models, separation models, and storage models, has been constructed first under given amounts of raw-material supplies and product demands to coordinate various planning tasks for optimizing the supply-chains performance. The deterministic MILP model can be solved to determine the proper procurement strategy of raw-material and products, throughput of processing units, and the inventories of intermediates and final products, etc. The above-mentioned deterministic model has also been modified into a stochastic one to take into account of uncertain feed supplies and product demands. Furthermore, by incorporating the concept of availability, the optimal planning and maintenance strategies can be devised when the risk of unexpected shutdown is significant. Several realistic case studies have been adopted in this work to demonstrate the utility of proposed approach.
[1] Beamon, B. M. “ Supply chain design and analysis: models and methods.” International Journal on Production Economics, 55: 281-294, 1998.
[2] Lee, H.; Pinto, J. M.; Grossmann, I. E., and Park, S. “ Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management. ” Industrial and Engineering Chemistry Research, 35:1630-1641, 1996.
[3] Iyer, R. R.; Grossmann, I. E.; Vasantharajan, S., and Cullick, A. S. “ Optimal planning and scheduling of offshore oil field infrastructure investment and operations. ” Industrial and Engineering Chemistry Research, 37:1380-1397, 1998.
[4] Zhang, N., and Zhu, X. X., “ A novel modelling and decomposition strategy for overall refinery optimization. ” Computers & Chemical Engineering, 24:1543- 1548, 2000.
[5] Paolucci, M.; Sacile, R., and Boccalatte, A. “ Allocating crude oil supply to port and refinery tanks: A simulation-based decision support system. ” Decision Support Systems, 33:39-54, 2002.
[6] Göthe-Lundgren, M.; Lundren, J. T., and Persson, J. A. “ An optimization model for refinery production scheduling. ” International Journal on Production Economics, 78:255-270, 2002.
[7] Más, R.,and Pinto, J. M. “ A mixed-integer optimization strategy for oil supply in distribution complexes. ” Optimization and Engineering, 4:23-64, 2003.
[8] Neiro, S. M. S.,and Pinto, J. M. “ A general modeling framework for the operational planning of petroleum supply chain. ” Computers & Chemical Engineering, 28:871-896, 2004.
[9] Chopra, S.,and Meindl, P. Supply Chain Management-Strategy, Planning and Operation; 2nd ed., Pearson Education, Inc., Upper Saddle River, New Jersey, 2004.
[10] COSP http://stoprog.org/index.html?spintroduction.html/
[11] Dantzig G. B. “ Linear programming under uncertainty. ” Management Science, 1:197-206, 1955.
[12] Beale. E. M. “ On minimizing a convex function subject to linear inequalities. ” Journal of the Royal Statistical Society, 17B:173-184, 1955.
[13] Gupta, A., Maranas, C.D., “ A two-stage modelling and solution framework for multisite midterm planning under demand uncertainty. ” Industrial and Engineering Chemistry Research, 39:3799–3813, 2000.
[14] Guillen, G., F. D. Mele, M. J. Bagajewicz, A. E.,and, L. Puigjaner, “ Multiobjective supply chain design under uncertainty. ” Chemical Engineering Science, 60:1535-1553, 2005.
[15] Liu, M. L., and Sahinidis, N. V., “ Optimization in process planning under uncertainty. ” Industrial & Engineering Chemistry Research, 35:4154-4165, 1996.
[16] Escudero L.F. , Alonso-Ayuso A., and Garín A. “ An approach for strategic supply chain planning under uncertainty based on stochastic 0-1 programming. ” Journal of Global Optimization, 26:97-124, 2004.
[17] Petkov, S. B., Maranas, C. D., “ Multiperiod planning and scheduling of multipurpose batch plants under demand uncertainty. ” Industrial and Engineering Chemistry Research, 36: 4864–4881, 1997.
[18] Darinka Dentcheva, “ Optimization models with probabilistic constraints. ” Probabilistic and Randomized Methods for Design under Uncertainty, Springer London, partI: 49-97, 2006.
[19] American Petroleum Institute http://www.api.org/
[20] 經濟部能源局http://www.moeaboe.gov.tw/
[21] Dempster M. A. H., Fisher M. L., Jansen L., Lageweg B. J., Lenstra J. K., and Rinooy Kan A. H. G.. “Analytical evaluation of hierarchical planning systems.” Operations Research, 29:707-716, 1981.
[22] Lenstra J. K., Rinooy Kan A. H. G., and Stougie L. “A framework for the probabilistic analysis of hierarchical planning systems.” Technical report, Mathematisch Centrum, University of Amsterdam, 1983.
[23] Birge J. R. “Decomposition and partitioning method for multistage stochastic linear program.” Operations Research, 33:989-1007, 1985.
[24] Rockafellar R. T. and Wets R. J. B. “ Scenarios and policy aggregation in optimization and uncertainty. ” Mathematics of Operations Research, 16(1):119-147, 1991.
[25] Eppen G. D., Martin R. K., and Schrage L. “ A scenario approach to capacity planning. ” Operations Research, 37:517-527,1989.
[26] Kallberg J. G., White R.W., and Ziemba W. T. “ Short term financial planning under uncertainty. ” Management Science, 28:670-682, 1982.
[27] Pereira M. V. F. and Pinto L. M. V. G. “ Multi-stage stochastic optimization applied to energy planning. ” Mathematical Programming, 52:359-375, 1991.
[28] Kuo, T.H., and Chang, C. T. “ Optimal planning strategy for the supply chains of light aromatic compounds in petrochemical industries. ” Computer & Chemical Engineering, 32:1147-1166, 2008.
[29] Ebeling, C.E., An Introduction to Reliability and Maintainability Engineering, McGraw-Hill, New York, 1997.
[30] Hoyland, A., and Rausand M., System Reliability Theory: Models and Statistical Methods, John Wiley & Sons, New York, 1994.