| 研究生: |
蔡勝斌 Tsai, Sheng-Pin |
|---|---|
| 論文名稱: |
以Thermosynechococcus sp. CL-1應用於固碳、乙炔雌二醇降解、類胡蘿蔔素產能研究 Thermosynechococcus sp. CL-1 applied to CO2 fixation, 17α-ethinylestradiol degradation, carotenoids production |
| 指導教授: |
朱信
Chu, Hsin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 藍綠菌 、Thermosynechococcus sp. CL-1 、乙炔雌二醇 、二氧化碳 、類胡蘿蔔素 |
| 外文關鍵詞: | cyanobacterium, Thermosynechococcus sp. CL-1, 17α-ethinylestradiol, carbon dioxide, carotenoids |
| 相關次數: | 點閱:132 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類活動的激增導致一連串的廢水處理議題,其中有些化學物質能干擾人類或野生生物的內分泌系統而被列舉為環境賀爾蒙。天然雌激素或是合成雌激素是主要干擾人類雌性荷爾蒙的來源並且存在與水體中,藉由食物鏈的傳遞累積影響。乙炔雌二醇主要用於口服避孕藥的成分,是雌激素中干擾活性最強的一種,其他雌激素有雌二醇與雌酮等。
利用微藻或光合藍綠菌去除環境賀爾蒙的方法已經有一段時間的研究,Thermosynechococcus sp. CL-1 (TCL-1) 是本實驗室中研究多年之菌種,並且證明能有效吸收二氧化碳同時產出高價值生質副產物如類胡蘿蔔素,其中包括玉米黃素以及β胡蘿蔔素。本實驗中,利用TCL-1去除模擬廢水中乙炔雌二醇,並分析乙炔雌二醇降解機制、二氧化碳吸收速率及類胡蘿蔔素之產出。
研究結果顯示,在前四個小時的培養中,乙炔雌二醇會吸附在TCL-1的細胞的表面,直到TCL-1顯著生長時,生物降解的增加導致所吸附之乙炔雌二醇隨之減少。由於細胞中並未發現累積於細胞體內之乙炔雌二醇,因此我們可以推斷乙炔雌二醇的降解主要是經由吸附於細胞後,細胞表面酵素的作用而被生物降解。
在不同濃度的乙炔雌二醇實驗中,發現毒物刺激所引起的的效應顯現在TCL-1的生長表現上。低濃度的條件下,1 mg/L乙炔雌二醇會刺激TCL-1的成長,導致更高的生質體產率以及乙炔雌二醇降解的效率,同時激發抗氧化反應使類胡蘿蔔素的產能增加;較高濃度的條件下,5 以及 10 mg/L乙炔雌二醇的濃度則會抑制TCL-1的生長,使生質體產率以及乙炔雌二醇降解效率降低,同時導致類胡蘿蔔素的產能減少。光照則是另一非常重要的影響因素,不只藉由光降解去除乙炔雌二醇,同時也影響生質體以及類胡蘿蔔素的產率。低光照500 µE/m2/s的情況下,乙炔雌二醇的去除主要藉由吸附在TCL-1表面,有限的生長無法對乙炔雌二醇進行生物降解。最適合類胡蘿蔔速生長之光照約為1,000 µE/m2/s,在提供適當生長之光源的情況下同時避免過強的光照導致類胡蘿蔔素的衰減。另外在初始氮源濃度的抑制上,可以促進TCL-1的生長以及乙炔雌二醇的降解以及類胡蘿蔔素的產率。2,000 µE/m2/s光照以及5.8 mM的氮源可以得到最佳的生質體產率、比生長速率以及二氧化碳吸收效率,分別是76.1 ± 6.6 mg/L/h, 0.028 /h 及 113.08 mg/L/h。最高的乙炔雌二醇去除效率主要發生在1 mg/L乙炔雌二醇的條件下,去除率以及降解常數分別為 82.3 ± 6.5 % 及 0.1384 /h。最高的類胡蘿蔔素的產率發生在1 mg/L乙炔雌二醇的條件下,其玉米黃素以及β胡蘿蔔素的產率分別為 0.039以及0.47 mg/L/h。
Booming human activities lead to a consequence of wastewater treatment issues, some of the chemical compounds have been listed as environmental hormones which interfere endocrine system to human and wildlife animal. Natural or synthetic estrogens cause the feminization through the water medium and spread along with the food chain. 17α-ethinylestradiol (EE2) is a synthetic estrogen used mainly in oral contraceptives which has the strongest estrogenic activities among other natural estrogens such as estradiol and estrone.
Using microalgae or cyanobacteria to biodegrade these environmental hormones in wastewater had been developed recent years. Thermosynechococcus sp. CL-1 (TCL-1) is a species of cyanobacteria studied many years in our lab, which have been proved to have stong ability to utilize carbon dioxide and produce valuable bio-products such as carotenoids including zeaxanthin and β-carotene at the same time. In this study, TCL-1 was utilized to treat a simulated wastewater to treat with EE2 addition to see the removal rate and mechanism of EE2 along with the analysis of CO2 fixation and carotenoids production.
The results show that in the first four hours of TCL-1 cultivation with EE2 addition, EE2 is mainly adsorbed on the TCL-1’s surface. After TCL-1 grows significantly, EE2 content on the cell surface begin to decline because EE2 is biodegraded. Very few of EE2 accumulated inside the cell has been found, it is suggested that EE2 is mainly degraded by extracellular enzyme after its adsorption on the cell surface.
Hormesis have been investigated during the experiment with different initial EE2 concentrations. The results show that with lower EE2 concentration, 1 mg/L of EE2 stimulates the growth of TCL-1 leading to a higher biomass productivity, higher EE2 removal and also excites antioxidant response to carotenoids productivity. Higher EE2 concentration such as 5 and 10 mg/L EE2 leads to lower biomass productivity, EE2 removal rate and also decreases carotenoids productivity. Light is another important factor that not only contributes the photodegradation of EE2, but also plays an important role on biomass productivity and carotenoids productivity. Under lower light intensity, EE2 is mainly removed by bio-adsorption through the end of cultivation. The biodegradation can’t be initiated after the adsorption of EE2 due to limited light for biomass productivity. While under 1,000 µE/m2/s light intensity, it provides higher carotenoids productivity because of preventing excess photodamage. Besides, limited nitrate concentration also improves the growth of TCL-1, removal of EE2 and carotenoids productivity. The highest biomass production, specific growth rate and carbon dioxide fixation appear at 2,000 µE/m2/s light intensity with 5.8 mM initial nitrate concentration which are 76.1 ± 6.6 mg/L/h, 0.028 /h and 113.08 mg/L/h, respectively. The highest EE2 removal efficiency appears in 1 mg/L of EE2 addition, which EE2 removal and degradation kinetic constant are 82.3 ± 6.5% and 0.1384 /h, respectively. The highest carotenoids productivity appears at 1 mg/L of EE2 addition, the productivities of zeaxanthin and β-carotene are 0.039 and 0.47 mg/L/h, respectively.
Adams, W.W., Demmig-Adams, B., and Lange, O.L., 1993. Carotenoid composition and metabolism in green and blue-green algal lichens in the field. Oecologia 94(4):576-584.
Andersen, H., Siegrist, H., Halling-Sørensen, B., and Ternes, T.A., 2003. Fate of estrogens in a municipal sewage treatment plant. Environmental science & technology 37(18):4021-4026.
Aris, A.Z., Shamsuddin, A.S., and Praveena, S.M., 2014. Occurrence of 17alpha-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. Environ Int 69:104-119.
Aydin, E., and Talinli, I., 2013. Analysis, occurrence and fate of commonly used pharmaceuticals and hormones in the Buyukcekmece Watershed, Turkey. Chemosphere 90(6):2004-2012.
Badger, M.R., 1987. The CO<inf>2</inf>-concentrating mechanism in aquatic phototrophs. The Biochemistry of Plants: A Comprehensive Treatise 10:219-274.
Balaguer, P., François, F., Comunale, F., Fenet, H., Boussioux, A.-M., Pons, M., Nicolas, J.-C., and Casellas, C., 1999. Reporter cell lines to study the estrogenic effects of xenoestrogens. Science of The Total Environment 233(1):47-56.
Beacham, T.A., Sweet, J.B., and Allen, M.J., 2017. Large scale cultivation of genetically modified microalgae: A new era for environmental risk assessment. Algal Research 25:90-100.
Berardi, S., Drouet, S., Francas, L., Gimbert-Surinach, C., Guttentag, M., Richmond, C., Stoll, T., and Llobet, A., 2014. Molecular artificial photosynthesis. Chem Soc Rev 43(22):7501-7519.
Berera, R., Van Stokkum, I.H.M., Kennis, J.T.M., Grondelle, R.v., and Dekker, J.P., 2010. The light-harvesting function of carotenoids in the cyanobacterial stress-inducible IsiA complex. Chemical Physics 373(1):65-70.
Berges, J.A., Charlebois, D.O., Mauzerall, D.C., and Falkowski, P.G., 1996. Differential Effects of Nitrogen Limitation on Photosynthetic Efficiency of Photosystems I and II in Microalgae. Plant Physiology 110(2):689-696.
Bergman, Å., Heindel, J.J., Kasten, T., Kidd, K.A., Jobling, S., Neira, M., Zoeller, R.T., Becher, G., Bjerregaard, P., Bornman, R., Brandt, I., Kortenkamp, A., Muir, D., Drisse, M.-N.B., Ochieng, R., Skakkebaek, N.E., Byléhn, A.S., Iguchi, T., Toppari, J., and Woodruff, T.J., 2013. The Impact of Endocrine Disruption: A Consensus Statement on the State of the Science. Environmental Health Perspectives 121(4):a104-a106.
Bergman A, H.J., Jobling S, Kidd KA, Zoeller RT, WHO/UNEP 2013. <Endocrine Disrupting Chemicals 2012.pdf>. 296.
Bethlenfalvay, G.J., and Phillips, D.A., 1977. Effect of Light Intensity on Efficiency of Carbon Dioxide and Nitrogen Reduction in Pisum sativum L. Plant Physiology 60(6):868-871.
Boelee, N.C., Temmink, H., Janssen, M., Buisman, C.J.N., and Wijffels, R.H., 2011. Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research 45(18):5925-5933.
Cabello, J., Toledo-Cervantes, A., Sánchez, L., Revah, S., and Morales, M., 2015. Effect of the temperature, pH and irradiance on the photosynthetic activity by Scenedesmus obtusiusculus under nitrogen replete and deplete conditions. Bioresource Technology 181:128-135.
Cai, X., Ye, J., Sheng, G., and Liu, W., 2009. Time-dependent degradation and toxicity of diclofop-methyl in algal suspensions. Environmental Science and Pollution Research 16(4):459-465.
Calabrese, E.J., and Baldwin, L.A., 2003. Hormesis: The Dose-Response Revolution. Annual Review of Pharmacology and Toxicology 43(1):175-197.
Caldwell, D.J., Mastrocco, F., Hutchinson, T.H., Länge, R., Heijerick, D., Janssen, C., Anderson, P.D., and Sumpter, J.P., 2008. Derivation of an Aquatic Predicted No-Effect Concentration for the Synthetic Hormone, 17α-Ethinyl Estradiol. Environmental Science & Technology 42(19):7046-7054.
Cerón-García, M.C., González-López, C.V., Camacho-Rodríguez, J., López-Rosales, L., García-Camacho, F., and Molina-Grima, E., 2018. Maximizing carotenoid extraction from microalgae used as food additives and determined by liquid chromatography (HPLC). Food Chemistry 257:316-324.
Chekroun, K.B., Sánchez, E., and Baghour, M., 2014. The role of algae in bioremediation of organic pollutants. Volume 1.
Chen, C.-Y., Wen, T.-Y., Wang, G.-S., Cheng, H.-W., Lin, Y.-H., and Lien, G.-W., 2007. Determining estrogenic steroids in Taipei waters and removal in drinking water treatment using high-flow solid-phase extraction and liquid chromatography/tandem mass spectrometry. Science of The Total Environment 378(3):352-365.
Chen, C.-Y., Zhao, X.-Q., Yen, H.-W., Ho, S.-H., Cheng, C.-L., Lee, D.-J., Bai, F.-W., and Chang, J.-S., 2013. Microalgae-based carbohydrates for biofuel production. Biochemical Engineering Journal 78:1-10.
Chen, C.Y., and Durbin, E., 1994. Effects of pH on the growth and carbon uptake of marine phytoplankton. Volume 109.
Chen, H.-H.
2009 以藍綠菌Thermosynechococcus sp CL-1固碳與生質潛能組成分析之研究.
Chen, H., and Jiang, J.G., 2011. Toxic effects of chemical pesticides (trichlorfon and dimehypo) on Dunaliella salina. Chemosphere 84(5):664-670.
Chen, K.Y., and Chou, P.H., 2016. Detection of endocrine active substances in the aquatic environment in southern Taiwan using bioassays and LC-MS/MS. Chemosphere 152:214-220.
Chen, T.S., Chen Tc Fau - Yeh, K.-J.C., Yeh Kj Fau - Chao, H.-R., Chao Hr Fau - Liaw, E.-T., Liaw Et Fau - Hsieh, C.-Y., Hsieh Cy Fau - Chen, K.-C., Chen Kc Fau - Hsieh, L.-T., Hsieh Lt Fau - Yeh, Y.-L., and Yeh, Y.L., 2010. High estrogen concentrations in receiving river discharge from a concentrated livestock feedlot. (1879-1026 (Electronic)).
Cheng, J., Huang, Y., Feng, J., Sun, J., Zhou, J., and Cen, K., 2013. Improving CO2 fixation efficiency by optimizing Chlorella PY-ZU1 culture conditions in sequential bioreactors. Bioresource Technology 144:321-327.
Cheng, J., Ye, Q., Li, K., Liu, J., and Zhou, J., 2018. Removing ethinylestradiol from wastewater by microalgae mutant Chlorella PY-ZU1 with CO2 fixation. Bioresource Technology 249:284-289.
Cheng, J., Ye, Q., Yang, Z., Yang, W., Zhou, J., and Cen, K., 2017. Microstructure and antioxidative capacity of the microalgae mutant Chlorella PY-ZU1 during tilmicosin removal from wastewater under 15% CO2. Journal of Hazardous Materials 324:414-419.
Chia, S.R., Ong, H.C., Chew, K.W., Show, P.L., Phang, S.-M., Ling, T.C., Nagarajan, D., Lee, D.-J., and Chang, J.-S., 2017. Sustainable approaches for algae utilisation in bioenergy production. Renewable Energy.
Chimchirian, R.F., Suri, R.P., and Fu, H., 2007. Free synthetic and natural estrogen hormones in influent and effluent of three municipal wastewater treatment plants. Water Environment Research 79(9):969-974.
Chowdhury, R.R., Charpentier, P.A., and Ray, M.B., 2011. Photodegradation of 17β-estradiol in aquatic solution under solar irradiation: Kinetics and influencing water parameters. Journal of Photochemistry and Photobiology A: Chemistry 219(1):67-75.
Clara, M., Kreuzinger, N., Strenn, B., Gans, O., and Kroiss, H., 2005. The solids retention time—a suitable design parameter to evaluate the capacity of wastewater treatment plants to remove micropollutants. Water Research 39(1):97-106.
Colman, J.R., Baldwin, D., Johnson, L.L., and Scholz, N.L., 2009. Effects of the synthetic estrogen, 17α-ethinylestradiol, on aggression and courtship behavior in male zebrafish (Danio rerio). Aquatic toxicology 91(4):346-354.
Combalbert, S., and Hernandez-Raquet, G., 2010. Occurrence, fate, and biodegradation of estrogens in sewage and manure. (1432-0614 (Electronic)).
Craggs, R.J., Adey, W.H., Jenson, K.R., St. John, M.S., Green, F.B., and Oswald, W.J., 1996. Phosphorus removal from wastewater using an algal turf scrubber. Water Science and Technology 33(7):191-198.
Da Silva Vaz, B., Costa, J.A., and De Morais, M.G., 2016. CO2 Biofixation by the Cyanobacterium Spirulina sp. LEB 18 and the Green Alga Chlorella fusca LEB 111 Grown Using Gas Effluents and Solid Residues of Thermoelectric Origin. Appl Biochem Biotechnol 178(2):418-429.
De-Bashan, L.E., and Bashan, Y., 2010. Immobilized microalgae for removing pollutants: Review of practical aspects. Bioresource Technology 101(6):1611-1627.
De Godos, I., Arbib, Z., Lara, E., and Rogalla, F., 2016. Evaluation of High Rate Algae Ponds for treatment of anaerobically digested wastewater: Effect of CO2 addition and modification of dilution rate. Bioresource Technology 220:253-261.
De Mes, T., Zeeman, G., and Lettinga, G., 2005. Occurrence and Fate of Estrone, 17β-estradiol and 17α-ethynylestradiol in STPs for Domestic Wastewater. Reviews in Environmental Science and Bio/Technology 4(4):275.
De Wilt, A., Butkovskyi, A., Tuantet, K., Leal, L.H., Fernandes, T.V., Langenhoff, A., and Zeeman, G., 2016. Micropollutant removal in an algal treatment system fed with source separated wastewater streams. Journal of Hazardous Materials 304:84-92.
Del Rio, D., Stewart, A.J., and Pellegrini, N., 2005. A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases 15(4):316-328.
Demirbas, A., and Fatih Demirbas, M., 2011. Importance of algae oil as a source of biodiesel. Energy Conversion and Management 52(1):163-170.
Deodutta Roy, M.P.C., 1997. Biochemical and Molecular Changes at the Cellular Level in Response to Exposure to Environmental Estrogen-Like Chemicals. Journal of Toxicology and Environmental Health 50(1):1-30.
Depka, B., Jahns, P., and Trebst, A., 1998. β-Carotene to zeaxanthin conversion in the rapid turnover of the D1 protein of photosystem II. FEBS Letters 424(3):267-270.
Derosa, C., Richter, P., Pohl, H., and Jones, D.E., 1998. Environmental exposures that affect the endocrine system: public health implications. J Toxicol Environ Health B Crit Rev 1(1):3-26.
Dotan, P., Godinger, T., Odeh, W., Groisman, L., Al-Khateeb, N., Rabbo, A.A., Tal, A., and Arnon, S., 2016. Occurrence and fate of endocrine disrupting compounds in wastewater treatment plants in Israel and the Palestinian West Bank. Chemosphere 155:86-93.
Duchoud, F., Chuang, D.S.W., and Liao, J.C., 2017. Cyanobacteria as a Host Organism. In Industrial Biotechnology. Pp. 581-604: Wiley-VCH Verlag GmbH & Co. KGaA.
Dutta, K., Daverey, A., and Lin, J.-G., 2014. Evolution retrospective for alternative fuels: First to fourth generation. Renewable Energy 69:114-122.
Edgar, 2017. <CO2_and_GHG_emissions_of_all_world_countries_booklet_online.pdf>.
El-Sheekh, M., and Hamouda, R., 2014. Biodegradation of crude oil by some cyanobacteria under heterotrophic conditions. Desalination and Water Treatment 52(7-9):1448-1454.
Faraloni, C., and Torzillo, G., 2017. Synthesis of Antioxidant Carotenoids in Microalgae in Response to Physiological Stress. In Carotenoids.
Farrelly, D.J., Everard, C.D., Fagan, C.C., and Mcdonnell, K.P., 2013. Carbon sequestration and the role of biological carbon mitigation: A review. Renewable and Sustainable Energy Reviews 21:712-727.
Feng, Y., Zhang, Z., Gao, P., Su, H., Yu, Y., and Ren, N., 2010. Adsorption behavior of EE2 (17α-ethinylestradiol) onto the inactivated sewage sludge: Kinetics, thermodynamics and influence factors. Journal of Hazardous Materials 175(1):970-976.
Fernandez, M.P., Ikonomou, M.G., and Buchanan, I., 2007. An assessment of estrogenic organic contaminants in Canadian wastewaters. Science of The Total Environment 373(1):250-269.
Fernández-Sevilla, J.M., Acién Fernández, F.G., and Molina Grima, E., 2010. Biotechnological production of lutein and its applications. Applied Microbiology and Biotechnology 86(1):27-40.
Fitzgerald, G.P., Gerloff, G.C., and Skoog, F., 1952. Studies on Chemicals with Selective Toxicity to Blue-Green Algae. Sewage and Industrial Wastes 24(7):888-896.
Foo, S.C., Yusoff, F.M., Ismail, M., Basri, M., Yau, S.K., Khong, N.M.H., Chan, K.W., and Ebrahimi, M., 2017. Antioxidant capacities of fucoxanthin-producing algae as influenced by their carotenoid and phenolic contents. Journal of Biotechnology 241:175-183.
Froehner, S., Machado, K.S., Stefan, E., Bleninger, T., Da Rosa, E.C., and De Castro Martins, C., 2012. Occurrence of selected estrogens in mangrove sediments. Marine Pollution Bulletin 64(1):75-79.
Fu, W., Guðmundsson, Ó., Paglia, G., Herjólfsson, G., Andrésson, Ó.S., Palsson, B.Ø., and Brynjólfsson, S., 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Applied Microbiology and Biotechnology 97(6):2395-2403.
Gañán, J., Pérez-Quintanilla, D., Morante-Zarcero, S., and Sierra, I., 2013. Comparison of different mesoporous silicas for off-line solid phase extraction of 17β-estradiol from waters and its determination by HPLC-DAD. Journal of Hazardous Materials 260:609-617.
Gao, J., and Chi, J., 2015. Biodegradation of phthalate acid esters by different marine microalgal species. Marine Pollution Bulletin 99(1):70-75.
Gao, Q.T., Wong, Y.S., and Tam, N.F.Y., 2011. Removal and biodegradation of nonylphenol by different Chlorella species. Marine Pollution Bulletin 63(5):445-451.
Gee, R.H., Rockett, L.S., and Rumsby, P.C., 2015. Considerations of Endocrine Disrupters in Drinking Water. In Endocrine Disruption and Human Health. Pp. 319-341.
Gong, M., and Bassi, A., 2016. Carotenoids from microalgae: A review of recent developments. Biotechnology Advances 34(8):1396-1412.
Grudzinski, W., Krzeminska, I., Luchowski, R., Nosalewicz, A., and Gruszecki, W.I., 2016. Strong-light-induced yellowing of green microalgae Chlorella: A study on molecular mechanisms of the acclimation response. Algal Research 16:245-254.
Guedes, A.C., Amaro, H.M., and Malcata, F.X., 2011. Microalgae as Sources of Carotenoids. Marine Drugs 9(4):625-644.
Hagemann, M., and Hess, W.R., 2018. Systems and synthetic biology for the biotechnological application of cyanobacteria. Current Opinion in Biotechnology 49:94-99.
Hamid, H., and Eskicioglu, C., 2012. Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix. Water Res 46(18):5813-5833.
Han, D., and Currell, M.J., 2017. Persistent organic pollutants in China's surface water systems. Sci Total Environ 580:602-625.
Hanselman, T.A., Graetz, D.A., and Wilkie, A.C., 2003. Manure-Borne Estrogens as Potential Environmental Contaminants: A Review. Environmental Science & Technology 37(24):5471-5478.
Haritash, A.K., and Kaushik, C.P., 2009. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazardous Materials 169(1):1-15.
Hashimoto, H., Sugai, Y., Uragami, C., Gardiner, A.T., and Cogdell, R.J., 2015. Natural and artificial light-harvesting systems utilizing the functions of carotenoids. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 25:46-70.
Hays, S.G., and Ducat, D.C., 2015. Engineering cyanobacteria as photosynthetic feedstock factories. Photosynthesis Research 123(3):285-295.
Heath, R.L., and Packer, L., 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of biochemistry and biophysics 125(1):189-198.
Heldt, H.-W., and Piechulla, B., 2011. 6 - The Calvin cycle catalyzes photosynthetic CO2 assimilation. In Plant Biochemistry (Fourth Edition). Pp. 163-191. San Diego: Academic Press.
Helmenstine, A.M., Ph.D, 2017. Calvin Cycle Steps and Diagram.
Hohmann-Marriott, M.F., and Blankenship, R.E., 2011. Evolution of photosynthesis. (1545-2123 (Electronic)).
Hom-Diaz, A., Llorca, M., Rodríguez-Mozaz, S., Vicent, T., Barceló, D., and Blánquez, P., 2015. Microalgae cultivation on wastewater digestate: β-estradiol and 17α-ethynylestradiol degradation and transformation products identification. Journal of Environmental Management 155:106-113.
Houser, J.B., Venable, M.E., Sakamachi, Y., Hambourger, M.S., Herrin, J., and Tuberty, S.R., 2014. Wastewater Remediation Using Algae Grown on a Substrate for Biomass and Biofuel Production. Journal of Environmental Protection 05(10):895-904.
Hsieh, C.Y., Liaw, E.T., and Fan, K.M., 2015. Removal of veterinary antibiotics, alkylphenolic compounds, and estrogens from the Wuluo constructed wetland in southern Taiwan. Journal of Environmental Science and Health, Part A 50(2):151-160.
Hsueh, H.T., Chu, H., and Chang, C.C., 2007a. Identification and Characteristics of a Cyanobacterium Isolated from a Hot Spring with Dissolved Inorganic Carbon. Environmental Science & Technology 41(6):1909-1914.
Hsueh, H.T., Chu, H., and Yu, S.T., 2007b. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 66(5):878-886.
Hsueh, H.T., Chu, H., and Yu, S.T., 2007c. A batch study on the bio-fixation of carbon dioxide in the absorbed solution from a chemical wet scrubber by hot spring and marine algae. Chemosphere 66(5):878-886.
Hsueh, H.T., Li, W.J., Chen, H.H., and Chu, H., 2009. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta. J Photochem Photobiol B 95(1):33-39.
Huang, J.J., Lin, S., Xu, W., and Cheung, P.C.K., 2017. Occurrence and biosynthesis of carotenoids in phytoplankton. Biotechnology Advances 35(5):597-618.
Iea, 2016. Key World Energy Statistics 2016. IEA.
Iea, O., 2006. Energy technology perspectives, 2006 scenarios & strategies to 2050 : in support of the G8 Plan of Action. Paris : OECD/IEA, 2006.
Ipcc, 2013. CLIMATE CHANGE 2013 The Physical Science Basis Summary for Policymakers.
Ito, A., Mensah, L., Cartmell, E., and Lester, J.N., 2016. Removal of steroid estrogens from municipal wastewater in a pilot scale expanded granular sludge blanket reactor and anaerobic membrane bioreactor. Environmental Technology 37(3):415-421.
Iwona, S., Kamil, Z., Sławomir, W., and Jan, C., 2017. Endocrine-disrupting chemicals—Mechanisms of action on male reproductive system. Toxicology and Industrial Health 33(7):601-609.
J.G.J. Olivier, K.M.S., J.A.H.W. Peters, 2017. <Trends in global CO2 and total greenhouse gas emissions_summary.pdf>.
Jarošová, B., Erseková, A., Hilscherová, K., Loos, R., Gawlik, B.M., Giesy, J.P., and Bláha, L., 2014. Europe-wide survey of estrogenicity in wastewater treatment plant effluents: the need for the effect-based monitoring. Environmental Science and Pollution Research 21(18):10970-10982.
Johnson, I., and Harvey, P., 2002. Study on the scientific evaluation of 12 substances in the context of endocrine disrupter priority list of actions. European Commission WRc-NSF Ref: UC 6052.
Keith Cowan, A., and Tarasenko, O., 2010. Bio-Refineries: Bioprocess Technologies for Waste-Water Treatment, Energy and Product Valorization. Pp. 80-86.
Khanal, S.K., Xie, B., Thompson, M.L., Sung, S., Ong, S.-K., and Van Leeuwen, J., 2006. Fate, Transport, and Biodegradation of Natural Estrogens in the Environment and Engineered Systems. Environmental Science & Technology 40(21):6537-6546.
Khoubnasabjafari, M., Ansarin, K., and Jouyban, A., 2016. Critical review of malondialdehyde analysis in biological samples. Current Pharmaceutical Analysis 12(1):4-17.
Kim, S., Lee, Y., and Hwang, S.-J., 2013. Removal of nitrogen and phosphorus by Chlorella sorokiniana cultured heterotrophically in ammonia and nitrate. International Biodeterioration & Biodegradation 85:511-516.
Kitaya, Y., Xiao, L., Masuda, A., Ozawa, T., Tsuda, M., and Omasa, K., 2008. Effects of temperature, photosynthetic photon flux density, photoperiod and O2 and CO2 concentrations on growth rates of the symbiotic dinoflagellate, Amphidinium sp. Journal of Applied Phycology 20(5):737-742.
Kumar, A., Ergas, S., Yuan, X., Sahu, A., Zhang, Q., Dewulf, J., Malcata, F.X., and Van Langenhove, H., 2010. Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends in Biotechnology 28(7):371-380.
Kumar, K., Dasgupta, C.N., Nayak, B., Lindblad, P., and Das, D., 2011. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresource Technology 102(8):4945-4953.
Kumar, M., Sundaram, S., Gnansounou, E., Larroche, C., and Thakur, I.S., 2018. Carbon dioxide capture, storage and production of biofuel and biomaterials by bacteria: A review. Bioresource Technology 247:1059-1068.
Kumar, P., Year. of Conference of Conference. Privacy policies and their lack of clear disclosure regarding the life cycle of user information. AAAI Fall Symposium - Technical Report, 2016. Vol. FS-16-01 - FS-16-05, pp. 249-256.
Kurade, M.B., Kim, J.R., Govindwar, S.P., and Jeon, B.-H., 2016. Insights into microalgae mediated biodegradation of diazinon by Chlorella vulgaris: Microalgal tolerance to xenobiotic pollutants and metabolism. Algal Research 20:126-134.
Lai, K.M., Johnson, K.L., Scrimshaw, M.D., and Lester, J.N., 2000. Binding of Waterborne Steroid Estrogens to Solid Phases in River and Estuarine Systems. Environmental Science & Technology 34(18):3890-3894.
Lai, K.M., Scrimshaw, M.D., and Lester, J.N., 2002. Prediction of the bioaccumulation factors and body burden of natural and synthetic estrogens in aquatic organisms in the river systems. Science of The Total Environment 289(1):159-168.
Lamers Packo, P., Van De Laak Carlien, C.W., Kaasenbrood Petrouchka, S., Lorier, J., Janssen, M., De Vos Ric, C.H., Bino Raoul, J., and Wijffels René, H., 2010. Carotenoid and fatty acid metabolism in light‐stressed Dunaliella salina. Biotechnology and Bioengineering 106(4):638-648.
Lange, A., Paull, G.C., Coe, T.S., Katsu, Y., Urushitani, H., Iguchi, T., and Tyler, C.R., 2009. Sexual Reprogramming and Estrogenic Sensitization in Wild Fish Exposed to Ethinylestradiol. Environmental Science & Technology 43(4):1219-1225.
Lapointe, B.E., and Tenore, K.R., 1981. Experimental outdoor studies with Ulva fasciata Delile. I. Interaction of light and nitrogen on nutrient uptake, growth, and biochemical composition. Journal of Experimental Marine Biology and Ecology 53(2-3):135-152.
Larsson, D.G.J., Adolfsson-Erici, M., Parkkonen, J., Pettersson, M., Berg, A.H., Olsson, P.E., and Förlin, L., 1999. Ethinyloestradiol — an undesired fish contraceptive? Aquatic toxicology 45(2):91-97.
Leung, D.Y.C., Caramanna, G., and Maroto-Valer, M.M., 2014. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews 39:426-443.
Levitan, O., Dinamarca, J., Hochman, G., and Falkowski, P.G., 2014. Diatoms: a fossil fuel of the future. Trends in Biotechnology 32(3):117-124.
Li, J., Jiang, L., Liu, X., and Lv, J., 2013. Adsorption and aerobic biodegradation of four selected endocrine disrupting chemicals in soil–water system. International Biodeterioration & Biodegradation 76:3-7.
Li, Y., Zhou, W., Hu, B., Min, M., Chen, P., and Ruan Roger, R., 2012. Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains Chlorella kessleri and Chlorella protothecoide cultivated in highly concentrated municipal wastewater. Biotechnology and Bioengineering 109(9):2222-2229.
Liu, J.W., Weinbauer, M., Maier, C., Dai, M., and Gattuso, J.-P., 2010a. Effect of ocean acidification on microbial diversity, and on microbe-driven biogeochemistry and ecosystem functioning. Volume 61.
Liu, X.L., Wu, F., and Deng, N.S., 2003. Photodegradation of 17α-ethynylestradiol in aqueous solution exposed to a high-pressure mercury lamp (250 W). Environmental Pollution 126(3):393-398.
Liu, Y., Guan, Y., Gao, Q., Tam, N.F., and Zhu, W., 2010b. Cellular responses, biodegradation and bioaccumulation of endocrine disrupting chemicals in marine diatom Navicula incerta. Chemosphere 80(5):592-599.
Liu, Z., Li, G., Long, C., Xu, J., Cen, J., and Yang, X., 2018. The antioxidant activity and genotoxicity of isogarcinol. Food Chemistry 253:5-12.
Lykkesfeldt, J., and Svendsen, O., 2007. Oxidants and antioxidants in disease: Oxidative stress in farm animals. Veterinary Journal 173(3):502-511.
Maes, H.M., Maletz, S.X., Ratte, H.T., Hollender, J., and Schaeffer, A., 2014. Uptake, Elimination, and Biotransformation of 17α-Ethinylestradiol by the Freshwater Alga Desmodesmus subspicatus. Environmental Science & Technology 48(20):12354-12361.
Mao, F., He, Y., Kushmaro, A., and Gin, K.Y.-H., 2017. Effects of benzophenone-3 on the green alga Chlamydomonas reinhardtii and the cyanobacterium Microcystis aeruginosa. Aquatic toxicology 193:1-8.
Mcintosh, K., Smith, A., Young, L., Leitch, M., Tiwari, A., Reddy, C., O’neil, G., Liberatore, M., Chandler, M., and Baki, G., 2018. Alkenones as a Promising Green Alternative for Waxes in Cosmetics and Personal Care Products. Cosmetics 5(2):34.
Meng, S., Song, C., Fan, L., Qiu, L., Chen, J., and Xu, P., 2014. Pollution of environmental endocrine disrupting chemicals (EDCs) in water and its adverse reproductive effect on fish. Agricultural Science & Technology 15(3):463.
Miller, A.G., Espie, G.S., and Canvin, D.T., 1990. Physiological aspects of CO2 and HCO3− transport by cyanobacteria: a review. Canadian Journal of Botany 68(6):1291-1302.
Minguez-Mosquera, M.I., and Hornero-Mendez, D., 1993. Separation and quantification of the carotenoid pigments in red peppers (Capsicum annuum L.), paprika, and oleoresin by reversed-phase HPLC. Journal of Agricultural and Food Chemistry 41(10):1616-1620.
Minhas, A.k., Hodgson, P., Barrow, C., and Adholeya, A., 2016. A Review on the Assessment of Stress conditions for Simultaneous Production of Microalgal Lipids and Carotenoids. Frontiers in Microbiology 7.
Miyamoto, K., Food, and Nations, A.O.o.t.U., 1997. Renewable Biological Systems for Alternative Sustainable Energy Production. Food and Agriculture Organization of the United Nations.
Moncada, J., Jaramillo, J.J., Higuita, J.C., Younes, C., and Cardona, C.A., 2013. Production of Bioethanol Using Chlorella vulgaris Cake: A Technoeconomic and Environmental Assessment in the Colombian Context. Industrial & Engineering Chemistry Research 52(47):16786-16794.
Nakicenovic, N., Alcamo, J., Grubler, A., Riahi, K., Roehrl, R., Rogner, H.-H., and Victor, N., 2000. Special Report on Emissions Scenarios (SRES), A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Namsaraev, Z.B., Gotovtsev, P.M., Komova, A.V., and Vasilov, R.G., 2018. Current status and potential of bioenergy in the Russian Federation. Renewable and Sustainable Energy Reviews 81:625-634.
Nehrenheim, E., 2018. Introduction to Renewable Energy A2 - Dellasala, Dominick A. In Encyclopedia of the Anthropocene. M.I. Goldstein, ed. Pp. 405-406. Oxford: Elsevier.
Noaa, 2015. State of the Climate: Global Climate Report for Annual 2014, .
Noaaesrl, 2017. Trends in Atmospheric Carbon Dioxide.
Noppe, H., Verslycke, T., De Wulf, E., Verheyden, K., Monteyne, E., Van Caeter, P., Janssen, C.R., and De Brabander, H.F., 2007. Occurrence of estrogens in the Scheldt estuary: A 2-year survey. Ecotoxicology and Environmental Safety 66(1):1-8.
Nurdogan, Y., and Oswald, W.J., 1995. Enhanced nutrient removal in high-rate ponds. Water Science and Technology 31(12):33-43.
Olguín, E.J., and Sánchez-Galván, G., 2012. Heavy metal removal in phytofiltration and phycoremediation: the need to differentiate between bioadsorption and bioaccumulation. New Biotechnology 30(1):3-8.
Oliver, J.W.K., and Atsumi, S., 2014. Metabolic design for cyanobacterial chemical synthesis. Photosynthesis Research 120(3):249-261.
Parmar, A., Singh, N.K., Pandey, A., Gnansounou, E., and Madamwar, D., 2011. Cyanobacteria and microalgae: A positive prospect for biofuels. Bioresource Technology 102(22):10163-10172.
Peng, F.-Q., Ying, G.-G., Yang, B., Liu, S., Lai, H.-J., Liu, Y.-S., Chen, Z.-F., and Zhou, G.-J., 2014. Biotransformation of progesterone and norgestrel by two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa): Transformation kinetics and products identification. Chemosphere 95:581-588.
Perron, M.C., and Juneau, P., 2011. Effect of endocrine disrupters on photosystem II energy fluxes of green algae and cyanobacteria. Environ Res 111(4):520-529.
Pessoa, G.P., De Souza, N.C., Vidal, C.B., Alves, J.A.C., Firmino, P.I.M., Nascimento, R.F., and Dos Santos, A.B., 2014. Occurrence and removal of estrogens in Brazilian wastewater treatment plants. Science of The Total Environment 490:288-295.
Peterson, E.W., and Hanna, L.A., 2016. Estrogen reduction in a coupled wetland and ground water flow-through system.
Pillon, A., Servant, N., Vignon, F., Balaguer, P., and Nicolas, J.-C., 2005. In vivo bioluminescence imaging to evaluate estrogenic activities of endocrine disrupters. Analytical Biochemistry 340(2):295-302.
Pilon, L., Berberoğlu, H., and Kandilian, R., 2011. Radiation transfer in photobiological carbon dioxide fixation and fuel production by microalgae. Journal of Quantitative Spectroscopy and Radiative Transfer 112(17):2639-2660.
Prasad, P.V.V., Thomas, J.M.G., and Narayanan, S., 2017. Global Warming Effects. In Encyclopedia of Applied Plant Sciences. Pp. 289-299.
Přibyl, P., Pilný, J., Cepák, V., and Kaštánek, P., 2016. The role of light and nitrogen in growth and carotenoid accumulation in Scenedesmus sp. Algal Research 16:69-75.
Purdom, C.E., Hardiman, P.A., Bye, V.V.J., Eno, N.C., Tyler, C.R., and Sumpter, J.P., 1994. Estrogenic Effects of Effluents from Sewage Treatment Works. Chemistry and Ecology 8(4):275-285.
Quintana, N., Van Der Kooy, F., Van De Rhee, M.D., Voshol, G.P., and Verpoorte, R., 2011. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 91(3):471-490.
Raines, C.A., 2003. The Calvin cycle revisited. Photosynthesis Research 75(1):1-10.
Ramanna, L., Rawat, I., and Bux, F., 2017. Light enhancement strategies improve microalgal biomass productivity. Renewable and Sustainable Energy Reviews 80:765-773.
Rizwan, M., Lee, J.H., and Gani, R., 2015. Optimal design of microalgae-based biorefinery: Economics, opportunities and challenges. Applied Energy 150:69-79.
Robinson, B.J., and Hellou, J., 2009. Biodegradation of endocrine disrupting compounds in harbour seawater and sediments. Science of The Total Environment 407(21):5713-5718.
Rodriguez-Concepcion, M., Avalos, J., Bonet, M.L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., Limon, M.C., Meléndez-Martínez, A.J., Olmedilla-Alonso, B., Palou, A., Ribot, J., Rodrigo, M.J., Zacarias, L., and Zhu, C., 2018. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research 70:62-93.
Rosa, G.M.d., Moraes, L., Cardias, B.B., Souza, M.d.R.A.Z.d., and Costa, J.A.V., 2015. Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresource Technology 192:321-327.
Ruksrithong, C., and Phattarapattamawong, S., 2017. Removals of Estrone and 17β-Estradiol by Microalgae Cultivation: Kinetics and Removal Mechanisms.
Schagerl, M., and Müller, B., 2006. Acclimation of chlorophyll a and carotenoid levels to different irradiances in four freshwater cyanobacteria. Journal of Plant Physiology 163(7):709-716.
Segmuller, B.E., Armstrong, B.L., Dunphy, R., and Oyler, A.R., 2000. Identification of autoxidation and photodegradation products of ethynylestradiol by on-line HPLC–NMR and HPLC–MS. Journal of Pharmaceutical and Biomedical Analysis 23(5):927-937.
Segner, H., Navas, J.M., Schäfers, C., and Wenzel, A., 2003. Potencies of estrogenic compounds in in vitro screening assays and in life cycle tests with zebrafish in vivo. Ecotoxicology and Environmental Safety 54(3):315-322.
Seo, Y.H., Cho, C., Lee, J.-Y., and Han, J.-I., 2014. Enhancement of growth and lipid production from microalgae using fluorescent paint under the solar radiation. Bioresource Technology 173:193-197.
Sforza, E., Simionato, D., Giacometti, G.M., Bertucco, A., and Morosinotto, T., 2012. Adjusted Light and Dark Cycles Can Optimize Photosynthetic Efficiency in Algae Growing in Photobioreactors. PLOS ONE 7(6):e38975.
Shareef, A., Angove, M.J., Wells, J.D., and Johnson, B.B., 2006. Aqueous Solubilities of Estrone, 17β-Estradiol, 17α-Ethynylestradiol, and Bisphenol A. Journal of Chemical & Engineering Data 51(3):879-881.
Shimizu, I., Yoshikawa, H., Kamochi, M., and Nakayama, Y., 2012. Gender difference in alcoholic liver disease. INTECH Open Access Publisher.
Shuba, Eyasu S., and Kifle, D., 2018. Microalgae to biofuels: ‘Promising’ alternative and renewable energy, review. Renewable and Sustainable Energy Reviews 81:743-755.
Shue, M.F., Chen Fa Fau - Chen, T.-C., and Chen, T.C., 2010. Total estrogenic activity and nonylphenol concentration in the Donggang River, Taiwan. (1573-2959 (Electronic)).
Silva, C.P., Otero, M., and Esteves, V., 2012. Processes for the elimination of estrogenic steroid hormones from water: A review. Environmental Pollution 165:38-58.
Singh, S.P., Azua, A., Chaudhary, A., Khan, S., Willett, K.L., and Gardinali, P.R., 2010. Occurrence and distribution of steroids, hormones and selected pharmaceuticals in South Florida coastal environments. Ecotoxicology 19(2):338-350.
Skotnicka-Pitak, J., Garcia, E.M., Pitak, M., and Aga, D.S., 2008. Identification of the transformation products of 17α-ethinylestradiol and 17β-estradiol by mass spectrometry and other instrumental techniques. TrAC Trends in Analytical Chemistry 27(11):1036-1052.
Sodré, F.F., Pescara, I.C., Montagner, C.C., and Jardim, W.F., 2010. Assessing selected estrogens and xenoestrogens in Brazilian surface waters by liquid chromatography–tandem mass spectrometry. Microchemical Journal 96(1):92-98.
Sornalingam, K., Mcdonagh, A., and Zhou, J.L., 2016. Photodegradation of estrogenic endocrine disrupting steroidal hormones in aqueous systems: Progress and future challenges. Science of The Total Environment 550:209-224.
Srinivasan, R., Mageswari, A., Subramanian, P., Suganthi, C., Chaitanyakumar, A., Aswini, V., and Gothandam, K.M., 2018. Bicarbonate supplementation enhances growth and biochemical composition of Dunaliella salina V-101 by reducing oxidative stress induced during macronutrient deficit conditions. Scientific Reports 8(1):6972.
Su, C.M., Hsueh, H.T., Chen, H.H., and Chu, H., 2012. Effects of dissolved inorganic carbon and nutrient levels on carbon fixation and properties of Thermosynechococcus sp. in a continuous system. Chemosphere 88(6):706-711.
Su, C.M., Hsueh, H.T., Ying Li, T., Che Huang, L., Ling Chu, Y., Ming Tseng, C., and Chu, H., 2013. Effects of light availability on the biomass production, CO2 fixation, and bioethanol production potential of Thermosynechococcus CL-1. Volume 145.
Suganya, T., Varman, M., Masjuki, H.H., and Renganathan, S., 2016. Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach. Renewable and Sustainable Energy Reviews 55:909-941.
Sumpter, J.P., and Johnson, A.C., 2005. Lessons from Endocrine Disruption and Their Application to Other Issues Concerning Trace Organics in the Aquatic Environment. Environmental Science & Technology 39(12):4321-4332.
Takeuchi, T., Utsunomiya, K., Kobayashi, K., Owada, M., and Karube, I., 1992. Carbon dioxide fixation by a unicellular green alga Oocystis sp. Journal of Biotechnology 25(3):261-267.
Taylor, K.L., Brackenridge, A.E., Vivier, M.A., and Oberholster, A., 2006. High-performance liquid chromatography profiling of the major carotenoids in Arabidopsis thaliana leaf tissue. Journal of Chromatography A 1121(1):83-91.
Thorpe, K.L., Cummings, R.I., Hutchinson, T.H., Scholze, M., Brighty, G., Sumpter, J.P., and Tyler, C.R., 2003. Relative Potencies and Combination Effects of Steroidal Estrogens in Fish. Environmental Science & Technology 37(6):1142-1149.
Tyler, C.R., Spary, C., Gibson, R., Santos, E.M., Shears, J., and Hill, E.M., 2005. Accounting for Differences in Estrogenic Responses in Rainbow Trout (Oncorhynchus mykiss: Salmonidae) and Roach (Rutilus rutilus: Cyprinidae) Exposed to Effluents from Wastewater Treatment Works. Environmental Science & Technology 39(8):2599-2607.
~beda, B., Gálvez, J.Á., Michel, M., and Bartual, A., 2017. Microalgae cultivation in urban wastewater: Coelastrum cf. pseudomicroporum as a novel carotenoid source and a potential microalgae harvesting tool. Bioresource Technology 228:210-217.
Vadiveloo, A., Moheimani, N.R., Cosgrove, J.J., Bahri, P.A., and Parlevliet, D., 2015. Effect of different light spectra on the growth and productivity of acclimated Nannochloropsis sp. (Eustigmatophyceae). Algal Research 8:121-127.
Vethaak, A.D., Lahr, J., Schrap, S.M., Belfroid, A.C., Rijs, G.B., Gerritsen, A., De Boer, J., Bulder, A.S., Grinwis, G.C., and Kuiper, R.V., 2005. An integrated assessment of estrogenic contamination and biological effects in the aquatic environment of The Netherlands. Chemosphere 59(4):511-524.
Wahidin, S., Idris, A., and Shaleh, S.R.M., 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresource Technology 129:7-11.
Wan, J., Guo, P., and Zhang, S., 2014. Response of the cyanobacterium Microcystis flos-aquae to levofloxacin. Environmental Science and Pollution Research 21(5):3858-3865.
Wang, B., Li, Y., Wu, N., and Lan, C.Q., 2008. CO2 bio-mitigation using microalgae. Applied Microbiology and Biotechnology 79(5):707-718.
Wetzel, R.G., 2001. 3 - RIVERS AND LAKES—THEIR DISTRIBUTION, ORIGINS, AND FORMS. In Limnology (Third Edition). Pp. 15-42. San Diego: Academic Press.
Xin, L., Hong-Ying, H., Ke, G., and Ying-Xue, S., 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology 101(14):5494-5500.
Xiong, J.-Q., Kurade, M.B., Abou-Shanab, R.A.I., Ji, M.-K., Choi, J., Kim, J.O., and Jeon, B.-H., 2016. Biodegradation of carbamazepine using freshwater microalgae Chlamydomonas mexicana and Scenedesmus obliquus and the determination of its metabolic fate. Bioresource Technology 205:183-190.
Xiong, J.Q., Kurade, M.B., and Jeon, B.H., 2018. Can Microalgae Remove Pharmaceutical Contaminants from Water? Trends Biotechnol 36(1):30-44.
Xu, N.J., and Zhang, X.C., 2001. Effect of temperature, light intensity and pH on the growth and fatty acid compositions of ellipsoidion sp. J Ocean Univ Qingdao 31:541-547.
Yan, X., Xu, X., Wang, M., Wang, G., Wu, S., Li, Z., Sun, H., Shi, A., and Yang, Y., 2017. Climate warming and cyanobacteria blooms: Looks at their relationships from a new perspective. Water Research 125:449-457.
Yang, Y., and Weathers, P., 2015. Red light and carbon dioxide differentially affect growth, lipid production, and quality in the microalga, Ettlia oleoabundans. Applied Microbiology and Biotechnology 99(1):489-499.
Ye, L., Zhao, B., Hu, G., Chu, Y., and Ge, R.-S., 2011. Inhibition of human and rat testicular steroidogenic enzyme activities by bisphenol A. Toxicology Letters 207(2):137-142.
Ying, G.-G., Kookana, R.S., Kumar, A., and Mortimer, M., 2009. Occurrence and implications of estrogens and xenoestrogens in sewage effluents and receiving waters from South East Queensland. Science of The Total Environment 407(18):5147-5155.
Yonny, M.E., García, E.M., López, A., Arroquy, J.I., and Nazareno, M.A., 2016. Measurement of malondialdehyde as oxidative stress biomarker in goat plasma by HPLC-DAD. Microchemical Journal 129:281-285.
Yoon, K., Kwack, S.J., Kim, H.S., and Lee, B.M., 2014. Estrogenic endocrine-disrupting chemicals: molecular mechanisms of actions on putative human diseases. J Toxicol Environ Health B Crit Rev 17(3):127-174.
Yu, Y., Zhou, Y., Wang, Z., Torres, O.L., Guo, R., and Chen, J., 2017. Investigation of the removal mechanism of antibiotic ceftazidime by green algae and subsequent microbic impact assessment. Sci Rep 7(1):4168.
Zhang, P., Li, Z., Lu, L., Xiao, Y., Liu, J., Guo, J., and Fang, F., 2017. Effects of stepwise nitrogen depletion on carotenoid content, fluorescence parameters and the cellular stoichiometry of Chlorella vulgaris. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 181:30-38.
Zhang, Y., Habteselassie, M.Y., Resurreccion, E.P., Mantripragada, V., Peng, S., Bauer, S., and Colosi, L.M., 2014. Evaluating removal of steroid estrogens by a model alga as a possible sustainability benefit of hypothetical integrated algae cultivation and wastewater treatment systems. ACS Sustainable Chemistry & Engineering 2(11):2544-2553.
Zheng, W., Li, X., Yates, S.R., and Bradford, S.A., 2012. Anaerobic transformation kinetics and mechanism of steroid estrogenic hormones in dairy lagoon water. Environmental science & technology 46(10):5471-5478.
Zhou, W., Wang, J., Chen, P., Ji, C., Kang, Q., Lu, B., Li, K., Liu, J., and Ruan, R., 2017. Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renewable and Sustainable Energy Reviews 76:1163-1175.
Zhou, X., Lian, Z., Wang, J., Tan, L., and Zhao, Z., 2011. Distribution of Estrogens Along Licun River in Qingdao, China. Procedia Environmental Sciences 10:1876-1880.
Zhou, Y., Zha, J., Xu, Y., Lei, B., and Wang, Z., 2012. Occurrences of six steroid estrogens from different effluents in Beijing, China. Environmental monitoring and assessment 184(3):1719-1729.
Zwir-Ferenc, A., and Biziuk, M., 2006. Solid phase extraction technique - Trends, opportunities and applications. Volume 15.
校內:立即公開