簡易檢索 / 詳目顯示

研究生: 王興龍
Wang, Hsing-Lung
論文名稱: 高分子電解質於發光元件之研究
Light Emitting Devices Modified with Ionic Polymer Electrolyte
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 137
中文關鍵詞: 高分子電解質電化學發光元件高分子發光二極體
外文關鍵詞: Light-emitting Electrochemical Cell, Polymer Light Emitting Diode, Polymer Electrolyte
相關次數: 點閱:65下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以有機發光材料製作之發光元件由於可以製成質輕、低耗電、廣視角、高亮度及可饒曲之平面顯示器,在近年來廣受矚目。在本論文中首先將針對目前研究階段已被提出的幾種有機發光元件做概略性的介紹,其中對『高分子發光二極體』以及『電化學發光元件』做較詳盡的文獻回顧與發光機制介紹。
    第二章裡使用磺酸化的導電高分子以及單離子傳導性的高分子電解質分別做為電洞注入層以及電子注入層以修飾高分子發光二極體,實驗結果顯示兩者皆有降低操作電位以及增加元件發光效率的結果。第三章裡將發光高分子與單離子傳導性的高分子電解質摻混製成電化學發光元件,嘗試探討離子種類以及高分子交互摻雜形態對於不同材料摻混製成元件行為之影響,單離子傳導性高分子電解質與傳統之雙離子電解質所製做之電化學發光元件表現出迥然不同的光電性質。

    Abstract
    Light emitting devices based on organic materials are of considerable interest due to their attractive characteristics and potential applications to flat panel displays. After a brief overview of the different device construction and operating principles, two types of light emitting devices, modification of polymer light emitting diode (PLED) by inserting additional functional layer and light-emitting electrochemical cell (LEC) admixing luminescent conjugated polymers with single ion polymer electrolytes were investigated.
    In the study on modification of PLED by inserting additional functional layer, at first the sulfonated polydiphenylamine (SPDPA) was employed as hole injecting layer for poly[l-methoxy-4-(2-ethylhexyloxy-2,5-phenylene vinylene)] (MEH-PPV) based PLED. The results on SPDPA as a hole injection layer could reduce the operating voltage to 3 V. SPDPA also makes the surface of ITO as smooth and has high transparency. Additionally, a waterborne polyurethane (WPU) ionomer having two different pendant groups, sulfonate and carboxylate group, was synthesized and used as an electron injecting layer in polymer light emitting diode, PLED. MEH-PPV was used as an emitting material. For comparison, a polyurethane ionomer (PUI) with carboxylate ion alone in the pendant part was used in the device. The current (I)-voltage (V)-luminance (L) characteristics of the devices, ITO/MEH-PPV/WPU/Al, ITO/MEH-PPV/PUI/Al and ITO/MEH-PPV/Al were measured and compared. The low turn-on voltage for current and emission with WPU in the device configuration originates from the better polarization capability of sulfonate ion for lithium ion. WPU also provides improved emission performance for the device. The lowering of barrier to electron injection and higher density of electron injection cause an improved device performance with WPU. AC impedance measurements were used to monitor the frequency dependent dielectric constant and dielectric loss. The observed changes in dielectric properties corroborate with the results from I-V-L measurements.
    LECs were fabricated based on luminescent conjugated polymers, poly(p-phenylenevinylene) (PPV) and MEH-PPV, by blending with PUI and WPU. The differences in device characteristics were critically compared with traditional biionic LECs. The feasibility of a thin layer prepared by PUI with PPV for the fabrication of LEC was investigated. The observed electroluminescence (EL) at a much lower turn on voltage favors the use of PPV + PUI composite film as a light-emitting layer for LEC. Further, the utility of this blend owns superior response time and stability.
    LEC was fabricated with PPV as light emitting material and lithium ion conducting WPU as solid electrolyte. We report the current-voltage-light output characteristics, morphology and ion transport behavior of the device. Cyclic voltammetry has been performed to reveal the ionic and electronic contributions of current. The threshold voltage for electrochemical doping of PPV in ITO/WPU+PPV/Al device was evaluated. Scanning force micrograph of blend of WPU with PPV is presented. The alternating current (ac) impedance analysis was made in the frequency range 1 MHz to 1 Hz to bring out the impedance changes with applied (bias) dc potentials. Results demonstrate that WPU can be used as a single component electrolyte in LEC fabrication in contrast to two components (polymer and lithium salt) used earlier. The frequency dependent conductivity of the blend containing two different charge carrying material, a conjugated polymer, PPV and ionomer, WPU, was investigated in the frequency range of 0.1 kHz to 1000 kHz by impedance spectroscopy and compared with the individual material, PPV and WPU, respectively. Clear differences could be seen in the dependence on both real and imaginary parts of impedance between WPU, PPV and the blend film. At high frequencies (> 200 kHz), all the three materials, exhibit power law dependence. Simulation of s value through theoretical fitting reveals that s value of the blend (1.108) is in between PPV (1.289) and WPU (1.035) and signifies the mixed contribution of carrier transport of PPV and WPU in the blend. The morphology of blend as observed from AFM picture informs that WPU connects the islanded parts of PPV and provides path for carrier conduction. Results observed indicate that carrier transport operates through barrier hopping in these materials and the difference in the dependence of on in the blend is attributed from the influence of SO3- group in WPU on the carrier transport of PPV.
    A blend of lithium ion conducting WPU and MEH-PPV was used in fabricating a single layer LEC, ITO/MEH-PPV+WPU/Al. Cyclic voltammetry, ac impedance spectroscopy and atomic force microscopy were employed to characterize the current density (I)-voltage (V)-light intensity (L), ion transport and morphology of the device. This device behaves differently than conventional LEC having a biionic electrolyte with regards to direction of applied potentials. The role of ions in WPU towards electrochemical doping of MEH-PPV is explained in the background of experimental results.

    Contents Acknowledgement i Abstract ii 摘要 v Symbols and Abbreviations vi Contents ix List of Figures xii Chapter 1 Introduction 1 1-1 Organic Light Emitting Devices 1 1-1-1 Organic Electroluminescence 1 1-1-2 Classification of organic light emitting devices 3 1-1-3 Organic luminescent materials 6 1-2 Polymer Light Emitting Diode (PLED) 7 1-2-1 Single-layer Device 7 1-2-2 Multi-layer Device 10 1-3 Light-emitting Electrochemical Cell (LEC) 12 1-3-1 Development 12 1-3-2 Operation mechanism 15 1-4 Research Motivation 18 Chapter 2 Enhanced performance for Polymer Light Emitting Diode by Inserting an Additional Functional Layer 26 2-1 Introduction 26 2-2 Experimental 32 2-2-1 Synthesis of MEH-PPV 32 2-2-2 Preparation of PDPA 33 2-2-3 Preparation of PUI 34 2-2-4 Preparation of WPU 35 2-2-5 Device fabrication 36 2-2-6 Characterization of PLED device 37 2-3 Enhanced Performance for PLEDs with Sulfonated Polydiphenylamine as Hole Injecting Layer 38 2-4 Improvement of Electron Injection Efficiency in PLEDs Using WPU 41 2-5 Conclusions 45 Chapter 3 Light-emitting Electrochemical Cells Fabricated with Blends Comprising of Polymer Electrolyte and Luminescent Polymer 63 3-1 Introduction 63 3-2 Experimental 68 3-2-1 Preparation of PPV 68 3-2-2 Device assembly 69 3-2-3 Characterization of LEC 70 3-3 Results and Discussion 72 3-3-1 Blend of PUI with PPV for LEC 72 3-3-2 Blend of WPU with PPV for LEC 74 3-3-3 Frequency Dependent Conductivity of the Thin Film Blend of Electroluminescent PPV with WPU 78 3-3-4 Asymmetric Light Response in LEC with WPU and MEH-PPV 83 3-4 Conclusions 89 Chapter 4 Consolidated Conclusions 109 Appendix A Few Demonstrative Results on Assembly Failures of Light-Emitting Electrochemical Cells 112 References 124 Publication List 135 Curriculum Vitae 137

    1.J. L. Segura, Acta Polym., 49, 319 (1998).
    2.http://www.oitda.or.jp/
    3.M. Pope, H. P. Kallmann and P. Magnante, J. Chem. Phys., 38, 2042 (1963).
    4.W. Helfrich and W. G. Schneider, Phys. Rev. Lett., 14, 229 (1965).
    5.J. Kalinowski, J. Phys. D: Appl. Phys., 32, R179 (1999).
    6.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
    7.C. Adachi, T. Tsutsui and S. Saito, Appl. Phys. Lett., 56, 799 (1990).
    8.C. Adachi, S. Tokito, T. Tsutsui and S. Saito, Jpn. Appl. Phys., 28, L269 (1988).
    9.U. Mitschke and P. Bäuerle, J. Mater. Chem., 10, 1471 (2000).
    10.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, Mackay, R. H. Friend, P. L. Burns and A. B. Holmes, Nature, 347, 539 (1990).
    11.M. M. Richter, F. Fan, F. Klavetter, A. J. Heeger and A. J. Bard, Chem. Phys. Lett., 226, 115 (1994).
    12.A. J. Bard, Science, 270, 718 (1995).
    13.D. Neher, J. Grüner, V. Cimrová, W. Schmidt, R. Rulkens and U. Lauter, Polym. Adv. Technol., 9, 461 (1998).
    14.S. Karg, M. Meier, and W. RieB, J. Appl. Phys., 82, 1951 (1997).
    15.M. Meier, S. Karg, and W. RieB, J. Appl. Phys., 82, 1961 (1997).
    16.W. Brutting, M. Meier, M. Herold. S. Karg, and M. Schwoerer., Chem. Phys., 227, 243 (1998).
    17.J. Scherbel, P. H. Nguyen, G. Paasch. W. Brutting, and M. Schwoerer, J. Appl. Phys., 83, 5045 (1998).
    18.T. A. Skotheim, Handbook of Conducting Polymers, Marcel Dekker, New York (1986).
    19.J. Blochwrtz, M. Pfemer, T. Fntz, and K. Leo, Appl. Phys. Lett., 73, 729 (1998).
    20.A. Nollau, M. Pfeiffer, T. Fritz, and K. Leo, J. Appl. Phys., 87, 4340 (2000).
    21.N. Karl, Defect Control in Semiconductors, Eisevisr, Amsterdam, p.1725 (1990).
    22.H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater., 11, 605 (1999).
    23.A. Rajagopal, C. I. Wu, and A. Kahn, J. Appl. Phys., 83, 2649 (1998).
    24.Y. N. Gartstem, and E. M. Conwell, Chem. Phys. Lett., 255, 93 (1996).
    25.U. Wolf, V. I. Arkhipov, and H. Bassler, Phys. Rev. B, 59, 7507 (1999).
    26.P. M. Borsenberger, and D. S. Weiss, Organic Photoreceptors for Imaging Systems, Marcel Dskker, New York (1993).
    27.M. A. Lamport, and P. Mark, Current Injection in Solids, Academic Press, New York (1970).
    28.K. C. Kao, and W. Hwang, Electrical Transport in Solids, Pergamon Press, Oxford (1981).
    29.U. Albrecht, and H. Bassler, Chem. Phys., 199, 207 (1995).
    30.U. Albrecht, and H. Bassler, Phys. Stat. Sol. (b) 191, 455 (1995).
    31.M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett., 75, 4 (1999).
    32.T. Tsutsui, M. J. Yang, M. Yahiro, K. Nakamura, T. Watanabe, T. Tsuji, Y. Fukuda, T. Wakimoto, and S. Miyaguchi, Jpn. J. Appl. Phys., 38, L1502 (1999).
    33.W. Brütting, S. Berleb, and A. G. Mückl, Organic Electronics, 2, 1 (2001).
    34.L. S. Hung, and C. H. Chen, Mater. Sci. Eng. R, 39, 143 (2002).
    35.G. Yu and A. J. Heeger, Synth. Metals, 85, 1183 (1997).
    36.A. J. Heeger, Solid State Commun., 107, 673 (1998).
    37.Q. Pei, Y. Yang, G. Yu, Y. Cao and A. J. Heeger, Synth. Metals, 85, 1229 (1997).
    38.Q. Pei, G. Yu, C. Zhang, Y. Yang and A. J. Heeger, Science, 269, 1086 (1995).
    39.Q. Pei, Y. Yang, G. Yu, C. Zhang and A. J. Heeger, J. Am. Chem. Soc., 118, 3922 (1996).
    40.D. J. Dick, A. J. Heeger, Y. Yang and Q. Pei, Adv. Mater., 8, 985 (1996).
    41.Q. Pei and Y. Yang, Synth. Metals, 80, 131 (1996).
    42.S. Tasch, J. Gao, F. P. Wenzl, L. Holzer, G. Leising, A. J. Heeger, U. Scherf and K. Müllen, Electrochem. Solid State Lett., 2, 303 (1999).
    43.Y. Cao, G. Yu, A. J. Heeger and C. Y. Yang, Appl. Phys. Lett., 68, 3218 (1996).
    44.M. R. Andersson, G. Yu and A. J. Heeger, Synth. Met., 85, 1275 (1997).
    45.Q. Pei and Y. Yang, J. Am. Chem. Soc., 118, 7416 (1996).
    46.Y. Yang and Q. Pei, J. Appl. Phys., 81, 3294 (1997).
    47.U. Lauter, W. H. Meyer and G. Wegner, Macromolecules, 30, 2092 (1997).
    48.B. S. Chuah, D.-H. Hwang, S. T. Kim, S. C. Moratti, A. B. Holmes, J. C. de Mello and R. H. Friend, Synth. Metals, 91, 279 (1997).
    49.B. Winkler, L. Dai and A. W.-H. Mau, Chem. Mater., 11, 704 (1999)
    50.D.-H. Hwang, B. S. Chuah, X.-C. Li, S. T. Kim, S. C. Moratti, A. B. Holmes, J. C. De Mello and R. H. Friend, Macromol. Symp., 125, 111, (1997).
    51.L. Holzer, B. Winkler, F. P. Wenzl, S. Tasch, L. Dai, A. W. H. Mau and G. Leising, Synth. Metals, 100, 71 (1999).
    52.T. Johansson, W. Mammo, M. R. Andersson and O. Inganäs, Chem. Mater., 11, 3133 (1999).
    53.J. Morgado, R. H. Friend, F. Cacialli, B. S. Chuah, S. C. Moratti and A. B. Holmes, J. Appl. Phys., 86, 6392 (1999).
    54.V. Cimrová , W. Schmidt, R. Rulkens, M. Schulze, W. Meyer and D. Neher, Adv. Mater., 8, 585 (1996).
    55.G. Yu, Y. Cao, M. Andersson, J. Gao and A. J. Heeger, Adv. Mater., 10, 385 (1998).
    56.J. Gao, G. Yu and A. J. Heeger, Appl. Phys. Lett., 71, 1293 (1997).
    57.Y. Li, J. Gao, D. Wang, G. Yu, Y. Cao and A. J. Heeger, Synth. Metals, 97, 191 (1998).
    58.J. Gao, Y. Li, G. Yu and A. J. Heeger, J. Appl. Phys., 86, 4594 (1999).
    59.D. Braun, and A. J. Heeger, Appl. Phys. Lett. 58, 1982 (1991).
    60.R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund, and W. R. Salaneck, Nature (London) 397, 121 (1999).
    61.I. D. Parker, J. Appl. Phys. Lett., 58, 1982 (1991).
    62.X. Zhang, and S. A. Jenekhe, Macromolecules, 33 , 2069 (2000).
    63.D. O’Brien, M. S. Weaver, D. G. Lidzey, and D. D. C. Bradley, Appl. Phys. Lett., 69,881 (1996).
    64.Y. Yang, A. J. Heeger, Appl. Phys. Lett., 64, 1245 (1997).
    65.Y. Yang, E. Westerweele, C. Zhang, P. Smith, A. J. Heeger, J. Appl. Phys., 77, 694 (1995).
    66.J. Gao, A. J. Heeger, J. Y. Lee, C. Y. Kim, Synth. Met., 82, 221 (1996).
    67.Y. Cao, G. Yu, C. Zhang, R. Menon, A. J. Heeger, Synth. Met., 87, 171 (1997).
    68.C. Dearmitt, S. P. Armes, J. Winter, F. A. Uribe, S. Gottesfeld, C. Mombourquette, Polymer, 34, 158 (1993).
    69.J. Yue, Z. H. Wang, K. R. Cromack, A. J. Epstein, A. G. MacDiarmid, J. Am. Chem. Soc., 113, 2665 (1991).
    70.R. C. Advincula, W. Knoll, C. W. Frank, D. Roitman, R. Moon, J. Sheats, MRS Proceeding Fall (1997), Symp. J: Electrical, optical, magnetic properties of organic solid-state materials, 1.
    71.H. Jiang, Y. Geng, J. Li, X. Jing, F. Wang, Synth. Met., 84, 125 (1997).
    72.G. W. Hwang, K. Y. Wu, M. Y. Hua, H. T. Lee, S. A. Chen, Synth. Met., 92, 39 (1998).
    73.L.H. Dao, J. Guay, M. Leclerc, Synth. Met., 29, E383 (1989).
    74.J. Guay, R. Paynter, L.H. Dao, Macromolecules, 23, 3598 (1990).
    75.C. Y. Chung, T. C. Wen, A. Gopalan, Electrochim. Acta, 47, 423 (2001).
    76.U. Hayat, P.N. Bartlett, G.H. Dodd, J. Barker, J. Electroanal. Chem., 220, 287 (1987).
    77.A. Bagheri, M.R. Nateghi, A. Massoumi, Synth. Met., 97, 85 (1998).
    78.N. Comisso, S. Daolio, G. Mengoli, R. Salmaso, S. Zecchin, G. Zotti, J. Electroanal. Chem., 255, 97 (1988).
    79.H. Yang, A.J. Bard, J. Electroanal. Chem., 306, 87 (1991).
    80.J. Guay, L.H. Dao, J. Electroanal. Chem., 274, 135 (1989).
    81.H. M. Lee, K. H. Choi, D. H. Hwang, L. M. Do, T. Zyung, J. W. Lee, and J. K. Park, Appl. Phys. Lett., 72, 2382 (1998).
    82.T. W. Lee, and O. O. Park, Appl. Phys. Lett., 76, 3161 (2000).
    83.T. W. Lee, O. O. Park, L. M. Do, T. Zyung, T. Ahn, and H. K. Shim, J. Appl. Phys. 90, 2128 (2001).
    84.T. W. Lee, O. O. Park, H. M. Lee, L. M. Do, and T. Zyung, Synth. Met., 111, 225 (2000).
    85.H. M. Lee, K. H. Choi, D. H. Hwang, L. M. Do, T. Zyung, J. W. Lee, and J. K. Park, Appl. Phys. Lett., 72, 2382 (1998).
    86.T. W. Lee, and O. O. Park, Adv. Mater., 13, 1274 (2001).
    87.J. M. Burkland, J. Vac. Sci. Technol., 20, 440 (1982).
    88.P. Blood and J. W. Orton, The Electrical Characterization of Semiconductors: Majority Carriers and Electron States Techniques of Physics, Academic Press, London, 1992.
    89.C. J. F. Boéttcher and P. Bordewijk, Theory of Electric Polarization, Elsevier, Amsterdam, 1978, vols. 1 and 2.
    90.J. R. Macdonald, Impedance Spectroscopy, Wiley, NY (1987).
    91.A. K. Jonscher, Dielectric Relaxation in Solids, Chelesea Dielectrics, London (1983).
    92.I. H. Campbell, D. L. Smith, and J. P. Ferraris, Appl. Phys. Lett., 66, 3030 (1995).
    93.S. H. Kim, K. H. Choi, H. M. Lee, D. H. Hwang, L. M. Do, H. Y. Chu and T. Zyung, J. Appl. Phys., 87, 882 (2000).
    94.F. Wudl and G. Sardnov, US Patent No. 5189136 (1993).
    95.B. R. Hsieh, Y. Yu, A. C. VanLaeken and H. Lee, Macromolecules, 30, 8094 (1997).
    96.C. H. Yang, S. M. Lin and T. C. Wen, Polym. Eng. Sci., 35, 722 (1995).
    97.C. H. Yang, Y. J. Li and T. C. Wen, Ind. Eng. Chem. Res, 36, 1614 (1997).
    98.R. H. Fowler, L. Nordheim, Proc. R. Soc. London Ser., A 119, 173 (1928).
    99.S. M. Sze, Physics of Semiconductor Devices, Wiley, New York (1981).
    100.I. D. Parker, J. Appl. Phys., 75, 1656 (1994).
    101.D. L. Smith, J. Appl. Phys., 81, 2869 (1997).
    102.R.W. Lenz, C. C. Han, J. Stenger-Smith and F.E. Karasz, J. Polym. Sci.: Polym. Chem., 26, 3241 (1988).
    103.P. L. Burn, D. D. C. Bradley, R. H. Friend, D. A. Halliday, A. B. Holmes, R. W. Jackson and A. Kraft, J. Chem. Soc., Perkin Trans., 1, 3225 (1992).
    104.J. Gmeiner, S. Karg, M. Meier, W. Riess, P. Strohriegl and M. Schwoerer, Acta Polym., 44, 201 (1993).
    105.M. Herold, J. Gmeiner and M. Schwoerer, Acta Polym., 45, 392 (1994).
    106.Y. Yang and Q. Pei, Appl. Phys. Lett., 68, 2708 (1996).
    107.Y. Cao, Q. Pei, M. R. Andersson, G. Yu and A. J. Heeger, J. Electrochem. Soc., 144, L317 (1997).
    108.Y. Greenwald, F. Hide, J. Gao, F. Wudl and A. J. Heeger, J. Electrochem. Soc., 144, L70 (1997).
    109.Y. Greenwald, F. Hide and A. J. Heeger, J. Electrochem. Soc., 144, L241 (1997).
    110.Y. Li, J. Gao, G. Yu, Y. Cao and A. J. Heeger, Chem. Phys. Lett., 287, 83 (1998).
    111.I. H. Campbell, D. L. Smith, C. J. Neef and J. P. Ferraris, Appl. Phys. Lett., 72, 2565 (1998).
    112.G. Yu, Y. Cao, C. Zhang, Y. Li, J. Gao and A. J. Heeger, Appl. Phys. Lett., 73, 111 (1998).
    113.C. Yang, G. He, Q. Sun and Y. Li, Synth. Metals, 124, 449 (2001).
    114.Q. Sun, H. Wang, C. Yang, G. He and Y. Li, Synth. Metals, 128, 161 (2002).
    115.C. Yin, Y. Z. Zhao, C. Z. Yang, S. Y. Zhang, Chem. Mater., 12, 1853 (2000).
    116.Y. Li, J. Gao, G. Yu, Y. Cao and A. J. Heeger, Chem. Phys. Lett., 287, 83 (1998).
    117.M. N. Kamalasanan, N. D. Kumar, and S. Chandra, J. App. Phys., 74, 5679 (1993).
    118.R. Gangopadhyay, A. De, and S. Das, J. App. Phys., 74, 2363 (2000).
    119.C.M. Fu, C. J. Lai, J. S. Wu, J.C.A. Huang, C.-C. Wu, and, S.-G. Shyu, J. App. Phys., 89, 7702 (2001).
    120.C. M. Fu, M. L. Lin, S. K. Hsu, and Z. H. Wen, J. Magnetism and Magnetic Materials, 209, 151 (2000).
    121.S. K. Saha, T. K. Mandal, B. M. Mandal, and D. Chakravorty, J. Appl. Phys., 81, 2646 (1997).
    122.M. Herold, J. Gmeiner, W.Rieb and M. Schwoerer, Synth. Metals, 76, 109 (1996).
    123.J. Gruner, P. J. Hamer, R. H. Friend, H. J. Huber, U. Scherf and A. B. Holmes, Adv. Mater., 6, 748 (1994).
    124.U. Scherf and K. Müllen, Macromol. Chem. Rapid. Commun., 12, 489 (1991).
    125.U. Lemmer, S. Heun, R. F. Mahrt, U. Scherf, M. Hopmeier, U. Siegner, E. O. Gobel, K. Müllen and H. Bassler, Chem. Phys. Lett., 240, 373 (1995).
    126.T. Pauck, R. Hennig, M. Perner, U. Lemmer, U. Siegner, R.F. Mahrt, U. Scherf, K. Müllen, H. Bassler and E. O. Gobel, Chem. Phys. Lett., 244, 171 (1995).
    127.C. Cimsova, M. Remmers, D. Neher and G. Wegnes, Adv. Mater, 8, 146 (1996).
    128.B. Dreyfus, Macromolecules, 18, 284 (1985).
    129.A. Eisenberg, Macromolecules, 3, 147 (1970).
    130.L. Holzer, F. P. Wenzl, S. Tasch, G. Leising, B. Winkler, L. Dai and A. W. H. Mau, Appl. Phys. Lett., 75, 2014 (1999).
    131.Y. Cao, G. Yu, A. J. Heeger and C. Y. Yang, Appl. Phys. Lett., 68, 23 (1996).
    132.G. Yu, Y. Yang, Y. Cao, Q. Pei, C. Zhang and A. J. Heeger, Chem. Phys. Lett., 259, 465 (1996).
    133.K. Jonscher, Nature, 267, 673 (1977).
    134.S. R. Elliott, Adv. in Phys., 36, 135 (1987).
    135.G. E. Pike, Phys. Rev., 6, 1572 (1972).
    136.A. Hunt, J. Phys. Cond. Matter., 3, 7831 (1991).
    137.G. Yu, Y. Cao, C. Zhang, Y. Li, J. Gao and A. J. Heeger, Appl. Phys. Lett. 73, 111 (1998).
    138.T. T. Cheng and T. C. Wen, J. Electroanal. Chem., 459, 99 (1998).
    139.T. T. Cheng and T. C. Wen, Solid State Ionics, 107, 161 (1998).
    140.T. C. Wen, M. S. Wu and C. H. Yang, Macromolecules, 32, 2712 (1999).
    141.T. C. Wen, J. S. Chang and T. T. Cheng, J. Electrochem. Soc., 145, 3450 (1998).
    142.G. C. Eastmond and P. Schofield, Polymer, 38, 1753 (1997).
    143.F.P. Wenzl, C. Suess, A. Haase, P. Poelt, D. Somitsch, P. Knoll, U. Scherf and G. Leising, Thin Solid Films, 433, 263 (2003).
    144.S. Tasch, J. Gao, F. P. Wenzl, L. Holzer, G. Leising, A. J. Heeger, U. Scherf and K. Müllen, Electrochem. Solid-State Lett. 2, 303 (1999).
    145.L. F. Santos, L. M.Carvalho, F. E. G. Guimaraes, D. Goncalves and R. M. Faria, Synth. Metals, 121, 1697 (2001).
    146.Li, Y., Y. Cao, J. Gao, D. Wang, G. Yu and A. J. Heeger, Synth. Metals, 99, 243 (1999).
    147.Yang, C., G. He, R. Wang and Y. Li, J. Electroanal. Chem., 471, 32 (1999).

    下載圖示 校內:2004-08-01公開
    校外:2004-08-01公開
    QR CODE