| 研究生: |
吳婉瑜 Wu, Wan-Yu |
|---|---|
| 論文名稱: |
剩餘 C 頻段頻譜規劃供第五代行動通信系統之評估 Assessment of Spectrum Planning for the Remaining C-band for the Fifth Generation Mobile Communication System |
| 指導教授: |
陳文字
Chen, Wen-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 電信管理研究所 Institute of Telecommunications Management |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | 第五代行動通信系統 、衛星固定服務 、點對點微波通信 、C 頻段 、頻譜整備 |
| 外文關鍵詞: | 5G, fixed-satellite service, point-to-point microwave link, c-band, spectrum planning |
| 相關次數: | 點閱:99 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於中頻段兼具覆蓋率及服務容量之優勢,C頻段 (3300-4200 MHz) 在國際上已被視為5G的重要發展頻段。且隨著頻譜需求的攀升,我國也於2020年釋出3300-3570 MHz供5G使用,並將3570-4200 MHz列為長期評估規劃供行動通信使用之頻段。然而,C頻段在過去已廣泛分配給衛星固定服務使用,我國雖非聯合國之會員,仍遵守國際電信聯盟之頻率分配建議。目前剩餘C頻段之既有使用者包含中新二號衛星、衛星固定服務下鏈頻段及固定點對點微波鏈路等。因此,為了在國家經濟發展與既有使用者權益間取得平衡,對於剩餘C頻段的頻譜整備需及早研析,以使各利害關係人皆得到最適當的安排,並達到頻譜資源的有效分配。
本研究主要採用情境分析法,對我國剩餘C頻段頻譜規劃供5G使用進行研析。鑑於利害關係人間的決策具相互影響之關係,首先,透過頻譜需求的評估,以更明確的了解頻譜使用現況及潛在新進使用者的未來需求。其次,以政府及法律面、技術面、經濟面與社會面四大影響因素,研析我國規劃剩餘C頻段需考量之面向。基於發展出可權衡各方利益且適用於我國環境之頻譜整備方案,最後,將前述探討之結果納入頻譜整備情境的評估及比較。本研究得出,將釋出頻段規劃為專用方式供行動通信服務使用,比較適合我國的環境。另外,本研究建議將保留中新二號衛星之情境二作為中長期頻譜整備方案,並將C頻段全部規劃供5G使用之情境一作為長期目標。
綜上所述,本研究望能將此研究結果,提供給我國頻譜主管機關、相關通信服務業者、頻譜既有使用者等可能受頻譜整備之利害關係人,作為未來決策之參考。
The C-band (3300-4200 MHz) has been considered an essential band for 5G development internationally due to the advantages of both coverage and capacity in the mid-band. With the rising demand for spectrum, Taiwan has released 3300-3570 MHz for 5G in 2020 and designated 3570-4200 MHz for mobile communications in the long-term planning.
However, the C-band has been widely allocated to fixed-satellite services (FSS) in the past, there are some incumbent users currently using the remainder of the C-band, including ST-2, FSS downlink, and point-to-point microwave link. To strike a balance between the national economic development and the interests of the incumbent users, the spectrum planning of the remaining C-band needs to be analyzed as early as possible. Therefore, the most appropriate arrangement can be made for all stakeholders and the spectrum resources can be allocated effectively.
This study adopts a scenario analysis to analyze how the remainder of the C-band spectrum can be used for 5G in Taiwan. First, the spectrum demand assessment is used to understand the spectrum usage. Secondly, the four factors, namely policy and legality, technical, economic, and social, will be used to analyze the plans. Finally, the results of the above discussion are considered in the evaluation of the spectrum scenarios.
In summary, this study is expected to provide the results to spectrum authority, related communication service providers, incumbent users, and other stakeholders who may be affected by spectrum planning for future decision-making.
3GPP. (2019). Release 15. https://www.3gpp.org/specifications-technologies/releases/release-15
3GPP. (2020). Release 16. https://www.3gpp.org/specifications-technologies/releases/release-16
3GPP. (2022a). The 5G standard. https://www.3gpp.org/ftp/Inbox/Marcoms/3GPP_Poster%20v2.pdf
3GPP. (2022b). Introducing 3GPP. https://www.3gpp.org/about-us/introducing-3gpp
3GPP. (2022c). Release 17. https://www.3gpp.org/specifications-technologies/releases/release-17
3GPP. (2023). Release 18. https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3283
ACMA. (2018). Auction summary - 3.6 GHz band (2018). https://www.acma.gov.au/auction-summary-36-ghz-band-2018
ACMA. (2021). Replanning the 3700–4200 MHz band – Outcomes paper. https://www.acma.gov.au/consultations/2020-07/planning-options-3700-4200-mhz-band-consultation-222020
ACMA. (2023). Allocating the 3.4–4.0 GHz band. https://www.acma.gov.au/allocating-34-40-ghz-band#keep-up-to-date
Al-Jumaily, A., Sali, A., Jiménez, V. P. G., Fontán, F. P., Singh, M. J., Ismail, A., Al-Maatouk, Q., Al-Saegh, A. M., & Al-Saegh, A. M. (2022). Evaluation of 5G Coexistence and Interference Signals in the C-Band Satellite Earth Station. IEEE Transactions on Vehicular Technology, 71(6), 6189-6200. https://doi.org/10.1109/TVT.2022.3158344
Ali, S., Sohail, M., Shah, S. B. H., Koundal, D., Hassan, M. A., Abdollahi, A., & Khan, I. U. (2021). New trends and advancement in next generation mobile wireless communication (6G): A survey. Wireless Communications and Mobile Computing, 2021, 1-14.
ARCEP. (2022). Arcep specifies the rules enabling the coexistence of 5G networks and fixed satellite services in Metropolitan France (3.4 – 3.8 GHz and 3.8 – 4.2 GHz bands). https://en.arcep.fr/fileadmin/cru-1664269931/user_upload/34-22-english-version.pdf
ASUS. (2023). 智慧手機. https://www.asus.com/tw/mobile-handhelds/phones/zenfone/
Bahia, K., & Castells, P. (2022). The impact of spectrum assignment policies on consumer welfare. Telecommunications Policy, 46(1), 102228.
Bazelon, C., & McHenry, G. (2013). Spectrum value. Telecommunications Policy, 37(9), 737-747. https://doi.org/10.1016/j.telpol.2013.06.004
Biradar, S. B., & Hallur, G. G. (2022). Economic implication of spectrum bands used in 5G: A multicountry study of spectrum allocation. 2022 International Conference on Decision Aid Sciences and Applications (DASA),
Bowen, G. A. (2009). Document analysis as a qualitative research method. Qualitative Research Journal, 9(2), 27-40.
Ericsson. (2022). Ericsson mobility report. https://www.ericsson.com/en/reports-and-papers/mobility-report/reports/june-2022
European Commission. (2021). Connectivity for a European Gigabit Society – Brochure. https://digital-strategy.ec.europa.eu/en/library/connectivity-european-gigabit-society-brochure
FCC. (2020a). Expanding flexible use of the 3.7 to 4.2 GHz band, Order. https://www.fcc.gov/document/wtb-announces-c-band-relocation-coordinator
FCC. (2020b). In the matter of expanding flexible use in the 3.7-4.2 GHz band, GN Docket No. 18-122. https://www.fcc.gov/document/fcc-expands-flexible-use-c-band-5g-0
FCC. (2021). Auction 110: 3.45 GHz service. https://www.fcc.gov/auction/110
FCC. (2023a). 3.5 GHz band overview. https://www.fcc.gov/wireless/bureau-divisions/mobility-division/35-ghz-band/35-ghz-band-overview
FCC. (2023b). America’s 5G future. https://www.fcc.gov/5G
Freeman, R. E. (1984). Strategic management: A stakeholder approach. Cambridge University Press.
Frieden, R. (2020). The evolving 5G case study in United States unilateral spectrum planning and policy. Telecommunications Policy, 44(9), 102011.
GSA. (2022). May 2022 national spectrum positions. https://gsacom.com/paper/may-2022-national-spectrum-positions/
GSA. (2023). 5G device ecosystem summary report. https://gsacom.com/reports/
GSMA. (2021a). 3.5 GHz in the 5G Era. https://www.gsma.com/spectrum/resources/3-5-ghz-range-for-5g/
GSMA. (2021b). Vision 2030: Insights for mid-band spectrum needs. https://www.gsma.com/spectrum/wp-content/uploads/2022/07/5G-Mid-Band-Spectrum-Needs.pdf
GSMA. (2022). The socio-economic benefits of mid-band 5G services. https://www.gsma.com/spectrum/wp-content/uploads/2022/02/mid-band-5G-spectrum-benefits.pdf
Hattab, G., Moorut, P., Visotsky, E., Cudak, M., & Ghosh, A. (2018, 20-24 May 2018). Interference analysis of the coexistence of 5G cellular networks with Satellite Earth Stations in 3.7-4.2 GHz. 2018 IEEE International Conference on Communications Workshops (ICC Workshops),
Hwang, Y., Kim, S.-L., Sung, K. W., & Zander, J. (2012). Scenario making for assessment of secondary spectrum access. IEEE Wireless Communications, 19(4), 25-31.
IMDA. (2019). Second consultation on 5G mobile services and networks. https://www.imda.gov.sg/-/media/Imda/Files/Regulation-Licensing-and-Consultations/Consultations/Consultation-Papers/Second-Public-Consultation-on-5G-Mobile-Services-and-Networks/Second-5G-Public-Consultation-7-May-2019-Final.pdf
Intelsat. (2023). Satellite Basics. https://www.intelsat.com/resources/tools/satellite-101/
ITU. (2015). Recommendation ITU-R M.2083-0. https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.2083-0-201509-I!!PDF-E.pdf
ITU. (2019). Final acts WRC-19. https://www.itu.int/pub/R-ACT-WRC.14-2019/en
ITU. (2022). WRC-23 booklet: Agenda and relevant resolutions. https://www.itu.int/hub/publication/r-act-arr-1-2022/
ITU. (2023). ITU-R preparatory studies for WRC-23. https://www.itu.int/en/ITU-R/study-groups/rcpm/Pages/wrc-23-studies.aspx
ITU-R. (2018). Economic aspects of spectrum management. https://www.itu.int/dms_pub/itu-r/opb/rep/R-REP-SM.2012-4-2014-PDF-E.pdf
ITU-R. (2021). Guidance on the regulatory framework for national spectrum management. https://www.itu.int/pub/R-REP-SM.2093
ITU-R. (2022). Methods for determining national long-term strategies for spectrum utilization. https://www.itu.int/pub/R-REP-SM.2015-1998
Jung, J., & Katz, R. (2022). Spectrum flexibility and mobile telecommunications development. Utilities Policy, 75, 101351.
Khan, A., Waris, M., Panigrahi, S., Sajid, M. R., & Rana, F. (2021). Improving the performance of public sector infrastructure projects: Role of project governance and stakeholder management. Journal of Management in Engineering, 37(2), 04020112.
Kumar, R. (2000). 研究方法:步驟化學習指南 (潘中道, 黃瑋瑩, & 胡龍騰, Trans.). 學富文化.
Kuś, A., & Massaro, M. (2022). Analysing the C-Band spectrum auctions for 5G in Europe: Achieving efficiency and fair decisions in radio spectrum management. Telecommunications Policy, 46(4), 102286.
Lee, J., Tejedor, E., Ranta-aho, K., Wang, H., Lee, K.-T., Semaan, E., Mohyeldin, E., Song, J., Bergljung, C., & Jung, S. (2018). Spectrum for 5G: Global status, challenges, and enabling technologies. IEEE Communications Magazine, 56(3), 12-18.
Marcus, M. J. (2017). Possible repurposing of “Mid-Band Spectrum”: Challenges and opportunities. IEEE Wireless Communications, 24(6), 4-5.
Massaro, M., & Beltrán, F. (2020). Will 5G lead to more spectrum sharing? Discussing recent developments of the LSA and the CBRS spectrum sharing frameworks. Telecommunications Policy, 44(7), 101973. https://doi.org/10.1016/j.telpol.2020.101973
Matinmikko-Blue, M., Yrjölä, S., & Ahokangas, P. (2020, 17-20 March 2020). Spectrum management in the 6G era: The role of regulation and spectrum sharing. 2020 2nd 6G Wireless Summit (6G SUMMIT),
Matinmikko-Blue, M., Yrjölä, S., Seppänen, V., Ahokangas, P., Hämmäinen, H., & Latva-Aho, M. (2019). Analysis of spectrum valuation elements for local 5G networks: Case study of 3.5-GHz band. IEEE Transactions on Cognitive Communications and Networking, 5(3), 741-753.
Medeisis, A., Fomin, V., & Webb, W. (2022). Untangling the paradox of licensed shared access: Need for regulatory refocus. Telecommunications Policy, 46(8), 102380. https://doi.org/10.1016/j.telpol.2022.102380
Mishra, A., & Dwivedi, Y. K. (2012). Stakeholder theory and applications in information systems. Information Systems Theory: Explaining and Predicting Our Digital Society, Vol. 1, 28, 471-488. https://doi.org/10.1007/978-1-4419-6108-2_22
Morgado, A., Huq, K. M. S., Mumtaz, S., & Rodriguez, J. (2018). A survey of 5G technologies: Regulatory, standardization and industrial perspectives. Digital Communications and Networks, 4(2), 87-97.
Moussaoui, M., Bertin, E., & Crespi, N. (2022). Telecom business models for beyond 5G and 6G networks: Towards disaggregation? 2022 1st International Conference on 6G Networking (6GNet),
Mustonen, M., Matinmikko, M., Holland, O., & Roberson, D. (2017). Process model for recent spectrum sharing concepts in policy making. Telecommunications Policy, 41(5), 391-404. https://doi.org/10.1016/j.telpol.2017.01.007
NCC. (2019). 3.5吉赫 (GHz) 頻段整備改善措施補助作業要點總說明. https://www.ncc.gov.tw/chinese/files/19072/566_41708_190722_2.pdf
NCC. (2021). 中新二號衛星騰讓頻譜補償計畫. https://www-api.moda.gov.tw/File/Get/moda/zh-tw/YOLSjwQzy6kllXk
NCC. (2022a). 111通訊傳播市場報告. https://www.ncc.gov.tw/chinese/files/23011/5023_48484_230116_1.pdf
NCC. (2022b). NCC前進高雄,舉行5G垂直場域體驗活動,推展5G創新應用,為亞灣注入5G服務創新能量. https://www.ncc.gov.tw/chinese/news_detail.aspx?site_content_sn=8&sn_f=47477
NCC. (2022c). 中華民國無線電頻率分配表. https://www.rootlaw.com.tw/Attach/L-Doc/A040110071011900-1110318-1000-001.pdf
NCC. (2023a). 行動寬頻服務用戶數統計. https://www.ncc.gov.tw/chinese/news.aspx?site_content_sn=5018
NCC. (2023b). 行動寬頻用戶每月平均數據用量. https://www.ncc.gov.tw/chinese/opendata_item.aspx?menu_function_sn=314
NGMN. (2015). 5G white paper. https://www.ngmn.org/work-programme/5g-white-paper.html
Nowak, T. W., Sepczuk, M., Kotulski, Z., Niewolski, W., Artych, R., Bocianiak, K., Osko, T., & Wary, J.-P. (2021). Verticals in 5G MEC-use cases and security challenges. IEEE Access, 9, 87251-87298.
NTIA. (2016). Using on-shore detected radar signal power for interference protection of off-shore radar receivers. https://its.ntia.gov/umbraco/surface/download/publication?reportNumber=TR-16-521.pdf
NTIA. (2023). Moving closer to making spectrum sharing at 3.5 GHz a reality. https://ntia.gov/blog/moving-closer-making-spectrum-sharing-35-ghz-reality#
OnGo Alliance. (2023). CBRS adoption continues to accelerate. https://ongoalliance.org/wp-content/uploads/2023/03/OnGo_CBRS-Adoption-Continues-to-Accelerate.pdf
Oughton, E., Frias, Z., Russell, T., Sicker, D., & Cleevely, D. D. (2018). Towards 5G: Scenario-based assessment of the future supply and demand for mobile telecommunications infrastructure. Technological Forecasting and Social Change, 133, 141-155.
Parcu, P. L., Innocenti, N., & Carrozza, C. (2022). Ubiquitous technologies and 5G development. Who is leading the race? Telecommunications Policy, 46(4), 102277.
Pogorel, G. (2007). Nine regimes of radio spectrum management: A 4-step decision guide. Communications & Strategies(65), 169.
Postma, T. J., & Liebl, F. (2005). How to improve scenario analysis as a strategic management tool? Technological Forecasting and Social Change, 72(2), 161-173.
Raharjo, A. M., Maryam, Z., & Hakimi, R. (2020). Spectrum analysis of 5G initial deployment for Indonesia. 2020 14th International Conference on Telecommunication Systems, Services, and Applications (TSSA),
Rendón Schneir, J., Whalley, J., Amaral, T. P., & Pogorel, G. (2018). The implications of 5G networks: Paving the way for mobile innovation? Telecommunications Policy, 42(8), 583-586.
Rosston, G. L., & Skrzypacz, A. (2021). Reclaiming spectrum from incumbents in inefficiently allocated bands: Transaction costs, competition, and flexibility. Telecommunications Policy, 45(7), 102167.
Sastrawidjaja, L., & Suryanegara, M. (2018). Regulation challenges of 5G spectrum deployment at 3.5 GHz: The framework for indonesia. 2018 Electrical Power, Electronics, Communications, Controls and Informatics Seminar (EECCIS),
Son, H.-K., & Chong, Y.-J. (2018). Coexistence of 5G system with Fixed satellite service Earth station in the 3.8 GHz Band. 2018 international conference on information and communication technology convergence (ICTC),
Staple, G., & Werbach, K. (2004). The end of spectrum scarcity [spectrum allocation and utilization]. IEEE Spectrum, 41(3), 48-52.
Wan, J., Zheng, X., Li, S., & Wen, C. (2021, 13-16 Oct. 2021). Overview of C-band satellite anti-5G jamming implementation strategy. 2021 IEEE 21st International Conference on Communication Technology (ICCT),
Wang, M.-Y., & Lan, W.-T. (2007). Combined forecast process: Combining scenario analysis with the technological substitution model. Technological Forecasting and Social Change, 74(3), 357-378.
Weissberger, A. (2023). Update on 5G stand-alone (SA) core networks. https://techblog.comsoc.org/2023/01/23/gsa-update-on-5g-stand-alone-sa/
Widyoseno, F. Z., & Iskandar. (2015). Interference mitigation of FSS earth station and FS station in extended C-band frequency. 2015 9th International Conference on Telecommunication Systems Services and Applications (TSSA),
Wild, T., Braun, V., & Viswanathan, H. (2021). Joint design of communication and sensing for beyond 5G and 6G systems. IEEE Access, 9, 30845-30857.
Wireless Innovation Forum. (2022). Requirements for commercial operation in the U.S. 3550-3700 MHz citizens broadband radio service band. https://winnf.memberclicks.net/assets/CBRS/WINNF-TS-0112.pdf
Zaber, M., & Sirbu, M. (2012). Impact of spectrum management policy on the penetration of 3G technology. Telecommunications Policy, 36(9), 762-782.
中華民國內政部戶政司. (2023). 人口統計資料. https://www.ris.gov.tw/app/portal/346
中華民國衛星廣播電視事業商業同業公會. (2018). 第五屆第一次會員代表大會 http://www.stba.org.tw/file_db/stba/201908/i0d3h04iz8.pdf
中華電信. (2021). 中華電信推出5G 獨立式組網 (SA) 服務 提供更多元的垂直場域應用 加速產業升級. https://www.cht.com.tw/zh-tw/home/cht/messages/2021/1019-1440
中華電信. (2023). 企業通訊與資訊安全服務多項解決方案. https://www.cht.com.tw/home/enterprise
交通部. (2020). 中華民國無線電頻率分配表. https://naer.siim.org.tw/中華民國無線電頻率分配表.pdf
劉鴻鈞. (2021). 5G與C頻段衛星數位廣播電視系統共存機制研究. NCC NEWS. https://nccnews.com.tw/202106/ch2.html
台灣大哥大. (2022). 全台首次! 台灣大以5G SA真實網路環境展出智慧應用 NCC高雄亞灣5G垂直場域體驗活動 台灣大展身手. https://corp.taiwanmobile.com/press-release/news/press_20220505_738955.html
台灣大哥大. (2023). 台灣大哥大5G!企業5G專網服務,因應各垂直場域,協助企業用戶滿足建置維運需求. https://www.taiwanmobile.com/5G/page/index-ebg.html
姚郁紋. (2022). 我國下階段釋出第五代行動通訊頻譜整備方案之研究. 國立成功大學.
數位發展部. (2022). 中頻段前瞻頻譜整備計畫可行性委託研究採購案. https://www.grb.gov.tw/search/planDetail?id=14340354
數位發展部. (2023). 行動寬頻業務釋照專區. https://moda.gov.tw/digital-affairs/resource-management/mobile/1147
新世代モバイル通信システム委員会. (2018). 情報通信審議会 情報通信技術分科会 新世代モバイル通信システム委員会報告. https://www.soumu.go.jp/main_content/000567504.pdf
総務省. (2020). 令和4年版情報通信白書. https://www.soumu.go.jp/johotsusintokei/whitepaper/ja/r04/pdf/n4600000.pdf
葉至誠, & 葉立誠. (2011). 研究方法與論文寫作. 商鼎.
行政院. (2020a). 5G 首波釋照成果暨後續辦理規劃問答集. https://www.ncc.gov.tw/chinese/files/20032/5057_42912_200326_1.pdf
行政院. (2020b). 台灣5G行動計畫. https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/087b4ed8-8c79-49f2-90c3-6fb22d740488
行政院. (2021). 發展5G加值應用服務—擴大臺灣核心供應鏈地位. https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/545ac175-42c2-4aa2-86c9-8067bb339f1f
行政院. (2022). 無線電頻率供應計劃. https://www.laws.taipei.gov.tw/lawatt/Law/A040110071011800-20220318-1000-001.pdf
財團法人電信技術中心. (2019). 3.5 GHz 中頻段改善措施建置與潛在干擾評估及處理作業計畫. https://www.grb.gov.tw/search/planDetail?id=13015729
遠傳電信. (2023a). 遠傳企業服務. https://enterprise.fetnet.net/content/ebu/tw/fet-enterprise-solution.html
遠傳電信. (2023b). 遠傳前進MWC 2023 展台灣5G實力!攜手愛立信秀全台第一個5G SA網路切片商用案例. https://www.fetnet.net/content/cbu/tw/lifecircle/tech/2023/02/MWC2023.html
黃晶琳. (2022). 中華電加速5G建設 提升數位力. https://money.udn.com/money/story/11162/6428064
黃晶琳. (2023). 中華電揪伴 攻高軌衛星. https://money.udn.com/money/story/10871/7029240