| 研究生: |
楊鎮宇 Yang, Chen-Yu |
|---|---|
| 論文名稱: |
電化學法製備微奈米銅線技術與應用 Fabrication and Application of Copper Micro-Nano Wires by Electrochemical Deposition |
| 指導教授: |
鍾震桂
Chung, Chen-Kui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 陽極氧化鋁 、電化學沈積 、微米銅線 、奈米銅線 |
| 外文關鍵詞: | AAO, electrochemical deposition, copper nanowires, copper microwires |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為透過市售的陽極氧化鋁模板,以電化學沈積的方式,在直流與脈衝不同的條件下,進行微奈米銅線的沈積。並探討電壓、溫度、孔徑和工作週期等實驗參數對於微奈米銅線的形貌與相結構之影響,最後,再進行量測奈米銅線的場發射特性,並就結果加以比較之。
本研究調變電壓、溫度、孔徑與工作週期等實驗參數後,進行模板電化學沈積,並以掃描式電子顯微鏡 (SEM)觀察微奈米銅線的形貌;以低掠角X光繞射儀 (GIXRD)分析奈米銅線的相結構與結晶性;最後再以場效發射量測系統量測奈米銅線的場發射特性。
實驗結果顯示,在直流的條件之下,電壓在1、2、3 V沈積出來的奈米線,其長度分別為28.45±4.28、1.01±0.21、0.66±0.16 μm;而微米線的長度則分別為36.23、49.54、55.12 μm。因此,在直流的情況下,微米線隨者電壓增大而增長,而奈米線則是以1 V的實驗結果為佳。另外,在脈衝的條件之下,電壓在1、2、3 V沈積出來的奈米線,其長度分別為25.16±2.81、31.64±4.29、22.75±4.33 μm,而微米線的長度則分別為34.38、40.48、49.84 μm,所以,在脈衝的情況下,微米線隨者電壓增大而增長,而奈米線則是以2 V的實驗結果為佳。針對場發射特性的量測,模板孔徑20 nm、電壓1 V、工作週期50%、溫度25 ℃的奈米銅線擁有最低的啟動電壓。預期製作出來的奈米銅線可應用在探針頭、場發射器與導線等方面。
In this study, we utilized both direct current (DC) and pulse electroforming modes to deposit copper micro-nano wires by anodic aluminum oxide (AAO) template electrochemical deposition method. The variation of morphology and crystallographic structure of copper micro-nano wires between modulated parameters such as voltage, temperature, pore size and duty cycle were investigated. And we also measured the field emission characteristic of copper nanowires.
In the experiment process, the structure of copper micro-nano wires was investigated by scanning electron microscopy (SEM). The crystallographic structure of copper nanowires was characterized by grazing incidence X-ray diffraction (GIXRD). The field emission characteristic of copper nanowires was measured by field emission measurement system.
At direct current electroforming mode, the length of copper microwires at 1, 2, 3 V was 36.23, 49.54, 55.12 μm . The length of copper nanowires at 1, 2, 3 V was 28.45±4.28, 1.01±0.21, 0.66±0.16 μm. The experimental result showed that the growth of copper microwires increased with increasing voltage. The good result of copper nanowires was at 1 V. At the pulse electroforming mode, the length of copper microwires at 1, 2, 3 V was 34.38, 40.48, 49.84 μm. The length of copper nanowires at 1, 2, 3 V was 25.16±2.81, 31.64±4.29, 22.75±4.33 μm. The experimental result showed that the growth of copper microwires increased with increasing voltage. The good result of copper nanowires was at 2 V. At the measurement of field emission characteristic, the sample at template pore size 20 nm, voltage 1 V, duty cycle 50%, temperature 25 ℃ has low turn-on voltage. The copper nanostructure was expected to apply in probes, emitters and interconnects.
1. 陳貴賢, 吳季珍, “一維奈米材料的研究”, 物理雙月刊 23卷 六期, 2001.
2. Y.M. Shen, Y.T. Shih, S.C. Wang, P.K. Nayak, and J.L. Huang, "Characterization of ordered Cu2O nanowire arrays prepared by heat treated Cu/PAM composite", Thin Solid Films 519, pp. 1687-1692, 2010.
3. R. Inguanta, S. Piazza, and C. Sunseri, "Template electrosynthesis of aligned Cu2O nanowires", Electrochimica Acta 53, pp. 6504-6512, 2008.
4. T. Gao, G. W. Meng, J. Zhang, Y. W. Wang, C. H. Liang, J. C. Fan, and L. D. Zhang, "Template synthesis of single-crystal Cu nanowire arrays by electrodeposition", Applied Physics A Materials Science & Processing 73, pp. 251-254, 2001.
5. M. Motoyama, Y. Fukunaka, T. Sakka, Y. H. Ogata, and S. Kikuchi, "Electrochemical processing of Cu and Ni nanowire arrays", Journal of Electroanalytical Chemistry 584, pp. 84-91, 2005.
6. Y. Konishi, M. Motoyama, H. Matsushima, Y. Fukunaka, R. Ishii, and Y. Ito, "Electrodeposition of Cu nanowire arrays with a template", Journal of Electroanalytical Chemistry 559, pp. 149-153, 2003.
7. M. Motoyama, Y. Fukunaka, T. Sakka and Y.H. Ogata, “Initial stages of electrodeposition of metal nanowires in nanoporous templates”, Electrochimica Acta 53, pp. 205-212, 2007.
8. H. Cao, L. Wang, Y. Qiu, and L. Zhang, "Synthesis and I–V properties of aligned copper nanowires", Nanotechnology 17, pp. 1736-1739, 2006.
9. S. Shin, B. H. Kong, B. S. Kim, K. M. Kim, H. K. Cho, and H. H. Cho, "Over 95% of large-scale length uniformity in template-assisted electrodeposited nanowires by subzero-temperature electrodeposition", Nanoscale Res Lett 6, pp. 467, 2011.
10. Z.W. Liu and Y. Bando, “A novel method for preparing copper nanorods and nanowires, Advanced Materials 15, pp. 303-305, 2003.
11. 李奇軒, 何正榮, “微接觸印刷陣列圖案之陽極氧化鋁模板”, 國立中正大學機械工程研究所碩士論文, 2007.
12. F. Maurer, A. Dangwal, D. Lysenkov, G. Müller, M. E. Toimil-Molares, C. Trautmann, J. Brötz, and H. Fuess, "Field emission of copper nanowires grown in polymer ion-track membranes", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 245, pp. 337-341, 2006.
13. 謝淵清, “電化學反應程序”, 徐氏基金會, 台北市, 1983.
14. 黃進益, “電化學的原理及應用”, 高立圖書有限公司, 台北市, 1988.
15. A.J. Bard and L.R. Faulkner, ”Electrochemical methods : fundamentals and applications”, John Wiley, New York, 2001.
16. 陳慶峰, 鍾震桂, "溫度對電化學沈積鎳金屬膜特性之研究”, 國立成功大學機械工程研究所碩士論文, 2010.
17. M.A. Christopher and A.M. Oliveira, “Electrochemistry principles, methods, and applications”, Oxford University Press, New York, 1993.
18. W. Blum and G.H. Hogaboom, “Principles of electroplating and electroforming”, McGraw Hill, New York, 1949.
19. G. Prentice, “Electrochemical engineering principles”, Prentice Hall, Englewood Cliffs, 1991.
20. 吳浩清, ”電化學動力學”, 科技圖書, 台北市, 2001.
21. S.H. Xue and Z.D. Wang, “Electrochemically synthesized copper nanotubes and nanorod arrays in polycarbonate membranes”, Surface Review and Letters 13, pp.759-762, 2006.
22. E. Matei, I. Enculescu, M. Enculescu and R. Neumann, “Effect of additives on nickel nanowires electrochemical deposition”, Journal of Optoelectronics and Advanced Materials 10, pp. 508-511, 2008.
23. T. Chowdhury, D. P. Casey, and J. F. Rohan, "Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates", Electrochemistry Communications 11, pp. 1203-1206, 2009.
24. R. Inguanta, F. Vergottini, G. Ferrara, S. Piazza, and C. Sunseri, "Effect of temperature on the growth of α-PbO2 nanostructures", Electrochimica Acta 55, pp. 8556-8562, 2010.
25. S.Z. Chu, K. Wada, S. Inoue, S. Todoroki, Y.K. Takahashi and K. Hono, “Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition”, Chemistry of Materials 14, pp. 4595-4602, 2002.
26. G.S. Sekhon, S. Kumar, C. Kaur, N. K. Verma, C.H. Lu, and S.K. Chakarvarti, "An efficient novel low voltage field electron emitter with cathode consisting of template synthesized copper microarrays", Journal of Materials Science: Materials in Electronics 22, pp. 1725-1729, 2011.
27. S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature 354, pp. 56-58, 1991.
28. P. Yang and C.M. Lieber, “Nanorod-superconductor composites: a pathway to materials with high critical current densities”, Science 273, pp. 1836-1840, 1996.
29. P. Yang and C.M. Lieber, “Columnar defect formation in nanorod/TI2Ba2Ca2Cu3Oz superconducting composites”, Applied Physics Letters 70, pp. 3158-3160, 1997.
30. G. Fasol and K. Runge, "Selective electrodeposition of nanometer scale magnetic wires", Applied Physics Letters 70, pp. 2467-2468, 1997.
31. 王世敏, 許祖勛, 傅晶, “奈米材料原理與製備”, 五南圖書出版公司, 台北市, 2004.
32. R. Kaur, N. K. Verma, S. Kumar, and S. K. Chakarvarti, "Fabrication of copper microcylinders in polycarbonate membranes and their characterization", Journal of Materials Science 41, pp. 3723-3728, 2006.
33. R. Kaur, N. K. Verma, and S. K. Chakarvarti, "Structural analysis of electrodeposited copper microstructures fabricated through template synthesis", Journal of Materials Science 42, pp. 3588-3591, 2007.
34. 張巍耀, 徐祥禎, 葉昶麟, “金線與銅線在熱影響區的材料特性及其應用於銲線製程之動態分析”, 義守大學機械與自動化工程研究所碩士論文, 2008.
35. T. Gao, G.W. Meng, Y.W. Wang, S.H. Sun and L. Zhang, “Electrochemical synthesis of copper nanowires”, Journal of Physics: Condensed Matter 14, pp. 355–363, 2002.
36. Y.H. Lee, I.C. Leu, M.T. Wu, J.H. Yen, and K.Z. Fung, "Fabrication of Cu/Cu2O composite nanowire arrays on Si via AAO template-mediated electrodeposition", Journal of Alloys and Compounds 427, pp. 213-218, 2007.
37. R. Inguanta, S. Piazza, and C. Sunseri, "Influence of the electrical parameters on the fabrication of copper nanowires into anodic alumina templates", Applied Surface Science 255, pp. 8816-8823, 2009.
38. 鄧吉雄, “電子束蒸鍍機”, 國立成功大學微奈米科技研究中心, 2003.
39. 王信云, 鍾震桂, "創新CO2雷射加工技術於微結構的製作與應用", 國立成功大學機械工程研究所碩士論文, 2011.
40. 陳俊宏, “掃描式電子顯微鏡儀器操作手冊”, 國立成功大學微奈米科技研究中心, 2004.
41. 陳泰盛, 鍾震桂, “反應式共濺鍍鉭-矽-氮(Ta-Si-N)奈米複合薄膜之微結構與機械性質研究”, 國立成功大學機械工程研究所碩士論文, 2006.
42. D.A. Skoog, F.J. Holler and S.R. Crouch, ”Principles of instrumental analysis”, Thomson, Australia, 2007.
43. 國立成功大學儀器設備中心 http://idc.ord.ncku.edu.tw/files/11-1080-8524.php.
44. G. Allcock, P. E. Dyer, G. Elliner, and H. V. Snelling, "Experimental observations and analysis of CO2 laser-induced microcracking of glass", Journal of Applied Physics 78, p. 7295, 1995.
45. C. K. Chung and S. L. Lin, "CO2 laser micromachined crackless through holes of Pyrex 7740 glass", International Journal of Machine Tools and Manufacture 50, pp. 961-968, 2010.
46. C. K. Chung, Y. C. Sung, G. R. Huang, E. J. Hsiao, W. H. Lin, and S. L. Lin, "Crackless linear through-wafer etching of Pyrex glass using liquid-assisted CO2 laser processing", Applied Physics A 94, pp. 927-932, 2008.
47. C. K. Chung, H. C. Chang, T. R. Shih, S. L. Lin, E. J. Hsiao, Y. S. Chen, E. C. Chang, C. C. Chen, and C. C. Lin, "Water-assisted CO2 laser ablated glass and modified thermal bonding for capillary-driven bio-fluidic application", Biomed Microdevices 12, pp. 107-14, 2010.
48. Y. C. Wang, I. C. Leu, and M. H. Hon, "Effect of colloid characteristics on the fabrication of ZnO nanowire arrays by electrophoretic deposition", Journal of Materials Chemistry 12, pp. 2439-2444, 2002.
49. 吳明道, 洪敏雄, "陽極氧化之奈米多孔氧化鋁的研究", 國立成功大學材料科學及工程研究所博士論文, 2005.
50. 田福助, "電化學基本原理與應用", 五洲出版社, 台北市, 2004.
51. C.K. Chung, W. T. Chang, and S. T. Hung, "Electroplating of nickel films at ultra low electrolytic temperature", Microsystem Technologies 16, pp. 1353-1359, 2009.
52. C. A. Spindt, "A Thin-Film Field-Emission Cathode", Journal of Applied Physics 39, p. 3504, 1968.
53. 黃宣宜, "場發射顯示器技術現況與發展", 光連雙月刊 第39期, 2002.
54. F. Maurer, A. Dangwal, D. Lysenkov, G. Müller, M. E. ToimilMolares, C. Trautmann, J. Brötz, and H. Fuess, "Field emission of copper nanowires grown in polymer ion-track membranes", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 245, pp. 337-341, 2006.
55. C.C. Lin, K.C. Chang, F.M. Pan, C.T. Kuo, M. Liu, and C.N. Mo, "Growth of carbon nanotube field emitters in the triode structure using anodic aluminum oxide as the template", Diamond and Related Materials 16, pp. 1388-1392, 2007.
56. C.H. Lai, C.W. Chang, and T.Y. Tseng, "Size-dependent field-emission characteristics of ZnO nanowires grown by porous anodic aluminum oxide templates assistance", Thin Solid Films 518, pp. 7283-7286, 2010.
校內:2017-08-16公開