| 研究生: |
廖冠傑 Liao, Kuan-Chieh |
|---|---|
| 論文名稱: |
以z-factor修正t-z曲線運用於樁載重試驗分析 The Application of t-z Curve Modified by z-factor to Pile Loading Test Analysis |
| 指導教授: |
倪勝火
Ni, Sheng-Huoo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 理論t-z曲線 、樁載重試驗 、經驗t-z曲線 、載重位移關係圖 |
| 外文關鍵詞: | theoretical t-z curve, empirical t-z curve, pile load test, load-displacement curve |
| 相關次數: | 點閱:190 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於樁基礎工程在工程上使用頻繁且日趨重要,現地載重試驗乃一重要且可靠性高的分析方式,我的研究動機為將現地試驗結果和電腦分析結果做一詳細比較,試圖使分析出結果貼近現場。
本研究除了比較理論及經驗t–z曲線之差異外,分析方法為取用甲光電股份有限公司-專案南部某園區新建工程的地基調查報告,土壤參數及鑽探報告配合該公司的基樁載重試驗報告書,使用程式TZPILE分析,利用各t-z曲線分析出之載重位移關係跟現場試樁結果作比較,了解其差異,並延伸探討其相關輸出數據結果,接著修改理論和經驗t-z曲線 (z-factor) 使載重位移關係圖和現場情況更為相近。最後採用另兩支樁作修改後的驗證。
分析結果和結論表示,由於採用不同的樁徑樁長,加上土層參數的差異,各t-z曲線間本身就存在差異,在作分析時的所需參數也可能因為不完整而自行假設,理論t-z曲線中所需的參數比現場的更多,各分析結果皆有差異,但各曲線分析結果的差異仍在合理範圍內,亦有較適合此現地的t-z曲線作分析,後續皆會說明各t-z曲線作分析時與此現地差異之源由。
This study not only compares the differences between theoretical t-z curves and empirical t-z curves, but also provides modifications on the obtained theoretical and empirical t-z curves to (z-factor) make their resulting load-displacement curve more similar to actual cases. The simulation software, TZPILE, was used with data obtained from the base investigation report, soil parameters, and borehole information from the new facility construction site of 甲 Optoelectronics Co., Ltd. at southern Taiwan, to compare the simulated load-displacement relationship to the results of pile load tests, using t-z curves. Two piles were used to confirm the validity of the proposed modification.
The differences between each t-z curves were caused by differences in pile length, pile diameter, and soil properties. Assumptions were also made for missing soil parameters during the analysis, and more parameters are required for theoretical t-z curves than site testing. In conclusion, these differences were proven minor, and there are preferable t-z curve to be used for this particular site. The differences between the results of t-z curve simulation and field testing results will also be discussed in this study.
1. API Recommended Practice 2A–WSD (RP 2A–WSD), (2000), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms–Working Stress Design, American Petroleum Institute .
2. Coyle, H.M., and Reese, L.C. (1966), “Load Transfer for Axially Loaded Piles in Clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM2, pp. 1–26.
3. Coyle, H.M., and Sulaiman, I.H. (1967), “Skin Friction for Steel Piles in Sand,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM6, pp. 261–278.
4. Davisson, M.T. (1972), “High Capicity Piles,” Proc. Innovations in Foundation Construction, ASEA, Ilinois Section, 52p.
5. De Beer, E.E. (1970), “Experimental Determination of the Shape Factors and Bearing Capicity Factors of Sand,” Geotechnique, Vol. 20, No. 4, pp. 387–411.
6. Desai, C.S. (1967), “Numerical Design Analysis for Piles in Sand,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 100, No. 6, pp. 613–635.
7. Desai, C.S., and Abel, J.F. (1974), Introduction to Finite Element Method, CBS Publishers, New Delhi.
8. Desai, C.S., and Christian, J.T. (1979), Numerical Methods in Geotechnical Engineering, McGraw–Hill Int. Book Co.
9. Fuller, R.H., and Hoy, H.E. (1970), “Pile Load Tests Including Quick-Load Tests Method, Conventional Methods and Interpretations,” Highway Research Record, pp. 76–86.
10. Hardin, B.O. (1978), “The Nature of Stress-Strain Behaviors for Soils,” Earthquake Engineering and Soil Dynamics-Proceedings , ASCE, Vol . 1.
11. Konder, R.L. (1963), “Hyperbolic Stress-Strain Response: Cohesive Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. 1, Feb., pp. 115-143.
12. Kraft, L.M., and Ray, R.P. (1981), “Theoretical t–z Curves,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. GT11, pp. 1543–1561.
13. Kiousis, P.D., and Elansary, A.S. (1987), “Load Settlement Relation for Axially Loaded Piles,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 113, No. 6, pp. 655–661.
14. Mindlin, R.D. (1936), “Forces at a Point in the Interior of Semi-infinite Solid,” Physics, Vol. 7, pp. 195-202.
15. Poulos, H.G., and Davis, E.H. (1968), Pile Foundation Analysis and Design, John Wiley and Sons, New York.
16. Randolph, M.F. (1977), “A Theoretical Study of the Performance of Piles,” Thesis presented to Cambridge University, at Cambridge, England.
17. Randolph, M.F., and Wroth, C.P. (1978), “Analysis of Deformation of Vertically Load Piles,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. GT12, pp. 1465–1488.
18. Reese, L. C., and O’Neill, M. W. (1971), “Criteria for Design of Axially Loaded Drilled Shafts,” Report of Center for Highway Research, University of Texas.
19. Reese, L.C., and O’Neill, M.W. (1988), “Field Load Test of Drilled Shaft,” Proceedings of International Seminar on Deep Foundations on Bored and Auger Piles, Van Impe (ed.), Balkema, Rotterdam, pp. 145–192.
20. Reese, L.C., and O’Neill, M.W. (1988), “Drilled Shafts: Construction Procedures and Design Methods,” Publication No. FHWA–HI–88–042, Federal Highway Administration,USA.
21. Reese, L.C., Touma, F.T., and O'Neill, M.W. (1976), “Behavior of Drilled Piers under Axial Loading,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT5, pp. 493–510.
22. Seed, H.B., and Idriss, I.M. (1970), “Soil Moduli and Damping Factors for Dynamic Response Analyses,” Report, UCB/EERC-70/10, Earthquake Engineering Research Center, University of California.
23. Seed, H.B., and Reese, L.C. (1957), “The Action of Soft Clay along Friction Piles,” Transaction of ASCE, Vol. 122, pp. 731–754.
24. Tomlinson, M.J. (1970), “The Adhesion of Piles in Stiff Clay,” Construction Industry Research and Information Association, Research Report , No. 26.
25. Vijayvergiya, V.N., and Fotch, J.A., Jr. (1972), “A New Way to Predict The Capicity of Piles in Clay,” 4th Annual Offshore Tech., Houston, Vol. 2, pp. 865–874.
26. Vijayvergiya, V.N. (1977), “Load–Movement Characteristics of Piles,” Proceedings, 4th Symposium of Waterways, Port, Coastal and Ocean Division, ASCE, Vol. 2, Long Beach, CA, pp. 561–584.
27. 李建中,(1984),試樁加載過程及結果詮釋方法之探討,地工技術雜誌,第五期,第91-96頁。
28. 邱俊翔,(2009),「樁基礎設計實務」,國家地震工程研究中心。
29. 宏築大地股份有限公司,(2015),群創光電股份有限公司L6廠新建工程之基樁載重試驗報告書。
30. 林基學,(2007),「基樁承受軸向載重之線彈塑性行為之研究」,碩士論文,成功大學,土木工程研究所。
31. 施國欽,(1990),大地工程學(二)基礎工程篇。
32. 張玉蓉,(2015),「理論與經驗t-z 曲線運用在基樁分析」,碩士論文,成功大學,土木工程研究所。
33. 萬鼎工程服務股份有限公司,(2014),南科815專案路科(工1)新建工程地基調查報告。
34. 熊雲嵋,周義娟,(2006),「軸向樁荷重轉移法之圖解原理與應用」,技術學刊,第二十一卷,第二期,第189–196頁。
35. 熊雲嵋,蔡熙昀,張秋旺,(1995),「土壤剪應─位移曲線與基樁t–z曲線」,土木水利,第二十二卷,第三期,第3–15頁。
36. 蔡明輝,(1989),「理論t–z曲線對樁基沉陷分析之研究」,碩士論文,土木工程研究所。
37. 魏如暄,(2014),「群樁承受軸向載重之非線性行為研究」,碩士論文,成功大學,土木工程研究所。
38. 藍士堯,(2004),「垂直承載樁試驗之資料分析」,碩士論文,台灣大學,土木工程研究所。
校內:2019-08-01公開