簡易檢索 / 詳目顯示

研究生: 廖冠傑
Liao, Kuan-Chieh
論文名稱: 以z-factor修正t-z曲線運用於樁載重試驗分析
The Application of t-z Curve Modified by z-factor to Pile Loading Test Analysis
指導教授: 倪勝火
Ni, Sheng-Huoo
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 95
中文關鍵詞: 理論t-z曲線樁載重試驗經驗t-z曲線載重位移關係圖
外文關鍵詞: theoretical t-z curve, empirical t-z curve, pile load test, load-displacement curve
相關次數: 點閱:190下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於樁基礎工程在工程上使用頻繁且日趨重要,現地載重試驗乃一重要且可靠性高的分析方式,我的研究動機為將現地試驗結果和電腦分析結果做一詳細比較,試圖使分析出結果貼近現場。
    本研究除了比較理論及經驗t–z曲線之差異外,分析方法為取用甲光電股份有限公司-專案南部某園區新建工程的地基調查報告,土壤參數及鑽探報告配合該公司的基樁載重試驗報告書,使用程式TZPILE分析,利用各t-z曲線分析出之載重位移關係跟現場試樁結果作比較,了解其差異,並延伸探討其相關輸出數據結果,接著修改理論和經驗t-z曲線 (z-factor) 使載重位移關係圖和現場情況更為相近。最後採用另兩支樁作修改後的驗證。
    分析結果和結論表示,由於採用不同的樁徑樁長,加上土層參數的差異,各t-z曲線間本身就存在差異,在作分析時的所需參數也可能因為不完整而自行假設,理論t-z曲線中所需的參數比現場的更多,各分析結果皆有差異,但各曲線分析結果的差異仍在合理範圍內,亦有較適合此現地的t-z曲線作分析,後續皆會說明各t-z曲線作分析時與此現地差異之源由。

    This study not only compares the differences between theoretical t-z curves and empirical t-z curves, but also provides modifications on the obtained theoretical and empirical t-z curves to (z-factor) make their resulting load-displacement curve more similar to actual cases. The simulation software, TZPILE, was used with data obtained from the base investigation report, soil parameters, and borehole information from the new facility construction site of 甲 Optoelectronics Co., Ltd. at southern Taiwan, to compare the simulated load-displacement relationship to the results of pile load tests, using t-z curves. Two piles were used to confirm the validity of the proposed modification.
    The differences between each t-z curves were caused by differences in pile length, pile diameter, and soil properties. Assumptions were also made for missing soil parameters during the analysis, and more parameters are required for theoretical t-z curves than site testing. In conclusion, these differences were proven minor, and there are preferable t-z curve to be used for this particular site. The differences between the results of t-z curve simulation and field testing results will also be discussed in this study.

    目錄 摘要 I 英文摘要 Ⅱ 致謝 Ⅸ 目錄 Ⅹ 表目錄 XⅣ 圖目錄 XV 符號說明 XⅦ 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的與方法 1 1.3 研究內容 2 第二章 文獻回顧 5 2.1 引言 5 2.2 基樁沉陷與承載力相關研究 5 2.2.1基樁承受軸向壓力之受力機制 5 2.2.2試樁結果推求承載力 7 2.2.3彈性理論 8 2.2.4數值分析法 9 2.2.5 t-z曲線法 10 第三章 t-z曲線分析方法 19 3.1 引言 19 3.2 TZPILE程式使用介紹 21 第四章 案例分析 27 4.1 引言 27 4.2 甲廠房編號B-P4基樁 27 4.2.1現場調查報告 27 4.2.2現場土層資料 28 4.2.3基樁編號B-P4性質 28 4.2.4分析方法 28 4.2.5分析所需參數 28 4.2.6分析結果與討論 32 4.2.7修正方法及結果 34 4.3 甲廠房編號D-P4基樁 35 4.3.1現場土層資料及狀況 35 4.3.2土層資料狀況和基樁性質: 35 4.4 甲廠房編號A-P4基樁 36 4.4.1現場土層資料及狀況 36 4.4.2土層資料狀況和基樁性質: 36 第五章 結論與建議 53 5.1 結論 53 5.2 建議 54 參考文獻 55 附錄 59 附錄A1 TZPILE程式介面範例 59 附錄A2 試樁記錄表 64 附錄A3 B-P4鑽探報告資料 73 附錄A4 B-P4未修正t-z曲線比較圖 76 附錄A5 B-P4各修正t-z曲線比較圖 79 附錄A6 D-P4鑽探報告資料 82 附錄A7 D-P4各修正t-z曲線比較圖 84 附錄A8 A-P4各修正t-z曲線比較圖 88 附錄A9 A-P4載重位移OUTPUT 91 表目錄 表4.1 B-P4建議土壤參數 37 表4.2 黏土之t–z曲線的值 38 表4.3 各段相同位移情況下和現場載重之誤差比 42 表4.4 各經驗和理論t-z曲線乘上之z-factor 43 表4.5 B-P4樁經修正後與現場位移之誤差比 44 表4.6 TZPILE程式OUTPUT (B-P4) 45 表4.7 D-P4簡化土層參數 45 表4.8 D-P4樁各土層之f_max和採用公式 46 表4.9 D-P4各段相同位移情況下和現場載重之誤差比 47 表4.10 TZPILE程式OUTPUT (D-P4) 48 表4.11 A-P4樁各土層之f_max和採用公式 49 表4.12 A-P4各段相同位移情況下和現場載重之誤差比 50 表4.13 TZPILE程式OUTPUT (A-P4) 51   圖目錄 圖1.1 研究流程圖 3 圖2.1 基樁受壓時之載重–位移曲線 12 圖2.2 基樁受壓時樁身應力分布 12 圖2.3 α與不排水剪力強度之關係圖 13 圖2.4 λ與基樁貫入深度之關係 13 圖2.5 砂土層中基樁貫入與承載力關係圖 14 圖2.6 Meyerhof砂土層中求樁周摩擦力 14 圖2.7 Davisson法判斷基樁極限承載力 15 圖2.8 De Beer法判斷基樁極限承載力 15 圖2.9 線彈性理論分析基樁之模式 16 圖2.10 一維樑柱元素示意圖 17 圖2.11 黏土t-z曲線圖 17 圖2.12 砂土t-z曲線圖 18 圖2.13 樁周邊土圓柱變形圖 18 圖3.1 受垂直荷重樁元素受力圖 23 圖3.2 隨樁變位之正規化剪力強度 23 圖3.3 剪力強度隨深度圖 24 圖3.4 荷重隨沉陷變化圖 24 圖3.5 荷重隨深度變化圖 24 圖3.6 樁身切分成三個元素之示意圖 25 圖3.7 樁身摩擦隨沉陷量變化圖 25 圖4.1 基地位置及鑽探孔配置 37 圖4.2 值影響比較圖 38 圖4.3 砂土之t–z曲線 39 圖4.4 鑽掘樁於黏土層之正規化剪力–沉陷示意圖 39 圖4.5 鑽掘樁於砂土層之正規化剪力–沉陷示意圖 40 圖4.6 API規範黏土及砂土之t–z曲線 40 圖4.7 API規範黏土及砂土之Q–z曲線 41 圖4.8 B-P4樁載重位移圖 41 圖4.9 Reese&O’Neil於深度3m經z-factor改變之t-z影響圖 42 圖4.10 API方法經修正後與現場比較的載重位移圖 43 圖4.11 B-P4樁載重位移圖(修正後) 44 圖4.12 D-P4樁載重位移圖 47 圖4.13 A-P4樁載重位移圖 50

    1. API Recommended Practice 2A–WSD (RP 2A–WSD), (2000), Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms–Working Stress Design, American Petroleum Institute .
    2. Coyle, H.M., and Reese, L.C. (1966), “Load Transfer for Axially Loaded Piles in Clay,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM2, pp. 1–26.
    3. Coyle, H.M., and Sulaiman, I.H. (1967), “Skin Friction for Steel Piles in Sand,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, No. SM6, pp. 261–278.
    4. Davisson, M.T. (1972), “High Capicity Piles,” Proc. Innovations in Foundation Construction, ASEA, Ilinois Section, 52p.
    5. De Beer, E.E. (1970), “Experimental Determination of the Shape Factors and Bearing Capicity Factors of Sand,” Geotechnique, Vol. 20, No. 4, pp. 387–411.
    6. Desai, C.S. (1967), “Numerical Design Analysis for Piles in Sand,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 100, No. 6, pp. 613–635.
    7. Desai, C.S., and Abel, J.F. (1974), Introduction to Finite Element Method, CBS Publishers, New Delhi.
    8. Desai, C.S., and Christian, J.T. (1979), Numerical Methods in Geotechnical Engineering, McGraw–Hill Int. Book Co.
    9. Fuller, R.H., and Hoy, H.E. (1970), “Pile Load Tests Including Quick-Load Tests Method, Conventional Methods and Interpretations,” Highway Research Record, pp. 76–86.
    10. Hardin, B.O. (1978), “The Nature of Stress-Strain Behaviors for Soils,” Earthquake Engineering and Soil Dynamics-Proceedings , ASCE, Vol . 1.
    11. Konder, R.L. (1963), “Hyperbolic Stress-Strain Response: Cohesive Soils,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 89, No. 1, Feb., pp. 115-143.
    12. Kraft, L.M., and Ray, R.P. (1981), “Theoretical t–z Curves,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 107, No. GT11, pp. 1543–1561.
    13. Kiousis, P.D., and Elansary, A.S. (1987), “Load Settlement Relation for Axially Loaded Piles,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 113, No. 6, pp. 655–661.
    14. Mindlin, R.D. (1936), “Forces at a Point in the Interior of Semi-infinite Solid,” Physics, Vol. 7, pp. 195-202.
    15. Poulos, H.G., and Davis, E.H. (1968), Pile Foundation Analysis and Design, John Wiley and Sons, New York.
    16. Randolph, M.F. (1977), “A Theoretical Study of the Performance of Piles,” Thesis presented to Cambridge University, at Cambridge, England.
    17. Randolph, M.F., and Wroth, C.P. (1978), “Analysis of Deformation of Vertically Load Piles,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. GT12, pp. 1465–1488.
    18. Reese, L. C., and O’Neill, M. W. (1971), “Criteria for Design of Axially Loaded Drilled Shafts,” Report of Center for Highway Research, University of Texas.
    19. Reese, L.C., and O’Neill, M.W. (1988), “Field Load Test of Drilled Shaft,” Proceedings of International Seminar on Deep Foundations on Bored and Auger Piles, Van Impe (ed.), Balkema, Rotterdam, pp. 145–192.
    20. Reese, L.C., and O’Neill, M.W. (1988), “Drilled Shafts: Construction Procedures and Design Methods,” Publication No. FHWA–HI–88–042, Federal Highway Administration,USA.
    21. Reese, L.C., Touma, F.T., and O'Neill, M.W. (1976), “Behavior of Drilled Piers under Axial Loading,” Journal of the Geotechnical Engineering Division, ASCE, Vol. 102, No. GT5, pp. 493–510.
    22. Seed, H.B., and Idriss, I.M. (1970), “Soil Moduli and Damping Factors for Dynamic Response Analyses,” Report, UCB/EERC-70/10, Earthquake Engineering Research Center, University of California.
    23. Seed, H.B., and Reese, L.C. (1957), “The Action of Soft Clay along Friction Piles,” Transaction of ASCE, Vol. 122, pp. 731–754.
    24. Tomlinson, M.J. (1970), “The Adhesion of Piles in Stiff Clay,” Construction Industry Research and Information Association, Research Report , No. 26.
    25. Vijayvergiya, V.N., and Fotch, J.A., Jr. (1972), “A New Way to Predict The Capicity of Piles in Clay,” 4th Annual Offshore Tech., Houston, Vol. 2, pp. 865–874.
    26. Vijayvergiya, V.N. (1977), “Load–Movement Characteristics of Piles,” Proceedings, 4th Symposium of Waterways, Port, Coastal and Ocean Division, ASCE, Vol. 2, Long Beach, CA, pp. 561–584.
    27. 李建中,(1984),試樁加載過程及結果詮釋方法之探討,地工技術雜誌,第五期,第91-96頁。
    28. 邱俊翔,(2009),「樁基礎設計實務」,國家地震工程研究中心。
    29. 宏築大地股份有限公司,(2015),群創光電股份有限公司L6廠新建工程之基樁載重試驗報告書。
    30. 林基學,(2007),「基樁承受軸向載重之線彈塑性行為之研究」,碩士論文,成功大學,土木工程研究所。
    31. 施國欽,(1990),大地工程學(二)基礎工程篇。
    32. 張玉蓉,(2015),「理論與經驗t-z 曲線運用在基樁分析」,碩士論文,成功大學,土木工程研究所。
    33. 萬鼎工程服務股份有限公司,(2014),南科815專案路科(工1)新建工程地基調查報告。
    34. 熊雲嵋,周義娟,(2006),「軸向樁荷重轉移法之圖解原理與應用」,技術學刊,第二十一卷,第二期,第189–196頁。
    35. 熊雲嵋,蔡熙昀,張秋旺,(1995),「土壤剪應─位移曲線與基樁t–z曲線」,土木水利,第二十二卷,第三期,第3–15頁。
    36. 蔡明輝,(1989),「理論t–z曲線對樁基沉陷分析之研究」,碩士論文,土木工程研究所。
    37. 魏如暄,(2014),「群樁承受軸向載重之非線性行為研究」,碩士論文,成功大學,土木工程研究所。
    38. 藍士堯,(2004),「垂直承載樁試驗之資料分析」,碩士論文,台灣大學,土木工程研究所。

    無法下載圖示 校內:2019-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE