| 研究生: |
黃美珠 Huang, Mei-Chu |
|---|---|
| 論文名稱: |
阿拉伯芥TMAC2蛋白質核定位訊號之鑑定分析 Identification of the nuclear localization signal within Arabidopsis TMAC2 protein |
| 指導教授: |
吳文鑾
Wu, Wen-Luan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 阿拉伯芥 、核定位訊號 |
| 外文關鍵詞: | ABA, NLS, Arabidopsis |
| 相關次數: | 點閱:113 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
阿拉伯芥TMAC2基因(two or more ABREs containing gene 2)受ABA及鹽誘導表現,轉譯成一個含有319個氨基酸且功能未知的蛋白質。前人研究發現,過量表現TMAC2的阿拉伯芥轉殖株,會抑制開花及根部生長。接上報導基因sGFP (synthetic green fluorescent protein gene)的TMAC2-sGFP融合蛋白,經由短暫性轉染法(transient transfection)於阿拉伯芥葉肉原生細胞(protoplasts)表現,利用定位分析結果得知TMAC2-sGFP位於細胞核,推測TMAC2具有核定位訊號(nuclear localization signal, NLS)。為了進一步找出影響TMAC2入核的重要訊號,利用PSORT分析TMAC2氨基酸序列,發現位於N端氨基酸82-86 (NLS1)屬於典型monopartite NLS,以NetNES分析發現氨基酸65-71為leucine-rich功能區,即所謂核輸出訊號(nuclear export signal, NES)。而分別從TMAC2蛋白兩端逐一刪除部分氨基酸並接上sGFP的融合蛋白定位結果,顯示TMAC2氨基酸中69-108及194-216區域是促使TMAC2蛋白進入細胞核所必須的序列。除了在69-108片段之中已知的NLS1,TMAC2 氨基酸194-216區域中尚有一段兩端富含離氨酸(K),中間由一群低保守性氨基酸組成,屬於新穎的bipartite NLS (氨基酸194-214,NLS2)。而缺少NLS1或NLS2會影響TMAC2入核能力,顯示其為功能性NLS。經酵母菌雙雜合實驗(yeast two-hybrid)分析發現TMAC2與阿拉伯芥importin α (At-Imp α)蛋白之間具有交互作用,證實TMAC2藉由importin α-dependent路徑傳送到細胞核。最後,分別刪除TMAC2兩端部分氨基酸[TMAC2 (△1-68)與TMAC2 (△271-319)]的突變型阿拉伯芥轉殖株,晚開花及短根性狀即消失,顯示TMAC2兩端氨基酸序列會影響開花及根部生長。綜合以上研究,TMAC2蛋白含兩段功能性NLS (NLS1和NLS2)及一個NES,且TMAC2兩端氨基酸序列可能與調控開花及根部的生長有關聯。
TMAC2 (two or more ABREs containing gene 2) encodes a novel protein of 319 amino acids and is up-regulated under ABA and salt treatments in Arabidopsis. In previous study, constitutive overexpression of TMAC2 in Arabidopsis caused the inhibition of flowering and root elongation. In frame fusion of TMAC2 to the synthetic green fluorescent protein (sGFP) directed the sGFP to the nucleus in transiently transfected Arabidopsis mesophyll protoplasts, suggesting that TMAC2 may possess nuclear localization signals (NLSs). To clarify the specific sequence responsible for its nuclear localization, PSORT analysis shows that one classic monopartite NLS motif (NLS1) is found in the N-terminal amino acid 82-86, and NetNES analysis reveals the presence of a putative leucine-rich NES (nuclear export signal) in amino acid 65-71. However, subcellular localization of fusion proteins comprising sGFP and deletion constructs of TMAC2 expressed in protoplasts indicates that the regions aa 69-108 and 194-216 are required for TMAC2 nuclear localization. In addition to NLS1 in the region aa 69-108, another NLS (NLS2) is found in the region aa 194-214 containing two clusters of basic residues (lysine) separated by an unconserved linker region. Hence, NLS2 belongs to a novel bipartitle NLS. Furthermore, deletion of either NLS1/NLS2 or both would result in cytoplasmic localization, indicating that TMAC2 has two functional NLSs. Yeast two-hybrid analysis revealed that TMAC2 interacts with NLS receptor-Arabidopsis importin α (At-Imp α) and demonstrated that TMAC2 is targeted into the nucleus via importin α-dependent pathway. However, deletion constructs of either aa 1-68 or 271-319 and individually expressed in wild-type Arabidopsis plants did not show the late flowering and short root phenotypes, implying that these fragments may have essential roles for flowering and root growth. In conclusion, two functional NLSs and one putative NES were identified within the Arabidopsis TMAC2 protein and in which two regions, amino acids 1-68 and 271-319, appear to be associated with flowering and root growth.
Ballas N. and Citovsky V. (1997) Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc. Natl Acad Sci. USA 94, 10723-10728.
Bohnsack M. T., Regener K., Schwappach B., Saffrich R., Paraskeva E., Hartmann E., and Görlich D. (2002) Exp5 exports eEF1A via tRNA from nuclei and synergizes with other transport pathways to confine translation to the cytoplasm. EMBO J. 21, 6205-6215.
Chiu W. L., Niwa Y., Zeng W., Hirano T., Kobayashi H., and Sheen J. (1996) Engineered GFP as a vital reporter in plants. Current Biology 6(3), 325-330.
Chkheidze A. N. and Liebhaber S. A. (2003) A novel set of nuclear localization signals determine distributions of the αCP RNA-binding proteins. Mol. Cell. Biol. 23, 8405-8415.
Clough S. J. and Bent A. F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
Cokol M., Nair R., and Rost B. (2000) Finding nuclear localization signals. EMBO Reports 1(5), 411-415.
Conti E. (2002) Structures of importins. Results Probl. Cell Differ. 35, 93-113.
Cour T. L., Kiemer L., Molgaard A., Gupta R., Skriver K., and Brunak S. (2004) Analysis and prediction of leucine-rich nuclear export signals. Protein Eng. Des. Sel. 17(6), 527-36.
Dang C. V. and Lee W. M. (1988) Identification of the human c-Myc protein nuclear translocation signal. Mol. Cell. Biol. 8, 4048-4054.
Dingwell C., Sharnick S. V., and Laskey R. A. (1982) A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell 30, 449-458.
Figueira A. R., Golem S., Goregaoker S. P., and Culver J. N. (2002) A nuclear localization signal and a membrane association domain contribute to the cellular localization of the Tobacco Mosaic Virus 126-kDa replicase protein. Virology 301, 81-89.
Fornerod M. and Ohno M. (2002) Exportin-mediated nuclear export of proteins and ribonucleoproteins. Results Probl. Cell Differ. 35, 67-91.
Görlich D. and Kutay U. (1999) Transport the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607-660.
Görlich D. and Mattaj I. W. (1996) Nucleocytoplasmic transport. Science 271, 1513-1518.
Hall, M. N., Hereford, L., and Herskowitz, I. (1984) Targeting of E. coli beta-
galactosidase to the nucleus in yeast. Cell 36, 1057-1065.
Harreman M. T., Kline T. M., Milford H. G., Harben M. B., Hodel A. E., and Corbett A. H. (2004) Regulation of nuclear import by phosphorylation adjacent to nuclear localization signals. J. Biol. Chem. 279, 9071-9077.
Heerklotz D., Doring P., Bonzelius F., Winkelhaus S., and Nover L. (2001) The balance of nuclear import and export determines the intracellular distribution and function of Tomato stress transcription factor HsfA2. Mol. Cell. Biol. 21, 1759-1768.
Hick G. R., Smith H. M. S., Shien M., and Raikhel N. V. (1995) Three classes of nuclear import signal bind to plant nuclei. Plant Physiol. 107, 1055-1058.
Huang M. D. and Wu W. L. (2006) Genome-wide in silico identification and experimental confirmation of abscisic acid-regulated genes in Arabidopsis. Plant Sci. 170, 986-993.
Hubner S., Smith H. M. S., Hu W., Chan C. K., Rihs H. P., Paschal B. M., Raikhel N. V., and Jans D. A. (1999) Plant importin α binds nuclear localization sequences with high affinity and can mediate nuclear import independent of importin β. J. Biol. Chem. 274, 22610-22617.
Jacquot E., Keller M., and Yot P. (1997) A short basic domain supports a nucleic acid-binding activity in the rice tungro bacilliform virus open reading frame 2 product. Virology 239, 352-359.
Jans D. A., Xiao C. Y., and Lam M. H. (2000) Nuclear targeting signal recognition: a key control point in nuclear transport? Bioessays 22, 532-544.
Kaffman A. and O’Shea, E. K. (1999) Regulation of nuclear localization: a key to a door. Annu. Rev. Cell Dev. 15, 291-339.
Kalderon D., Roberts B. L., Richardson W. D., and Smith A. E. (1984) A short amino acid sequence able to specify nuclear location. Cell 39, 499-509.
Kleiner, O., Kircher S., Harter K., and Batschauer A. (1999) Nuclear localization of the Arabidopsis blue light receptor cryptochrome 2. Plant J. 19(3), 289-296.
Knauf J. A., Pendergrass S. H., Marrone B. L., Strniste G. F., Maclnnes M. A., and Park M. S. (1996) Multiple nuclear localization signals in XPG nuclease. Mutat. Res. 363, 67-75.
Krauer, K., Buck M., Flanagan J., Belzer D., and Sculley T. (2004) Identification of the nuclear localization signals within the Epstein–Barr virus EBNA-6 protein. J. Gen. Virol. 85, 165-172.
Kyte J. and Doolittle R. F. J. (1982) A simple method for displaying the hydropathic character of a protein. Mol. Biol. 157, 105-132.
Lesile D. M., Grill B., Rout M. P., Wozniak R. W., and Aitchison J. D. (2002) Kap121p-mediated nuclear import is required for mating and cellular differentiation in yeast. Mol. Cell. Biol. 22, 2544-2555.
Liu X. and Baird W. M. V. (2004) Identification of a novel gene HaABRC5, from Helianthus Annuus (Asteraceae) that is upregulated in response to drought, salinity, and abscisic acid. Am. J. Bot. 91, 184-191.
Mattaj, I. W. and Englmeier L. (1998) Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265-306.
McGuffin L. J., Bryson K., and Jones D. T. (2000) The PSIPRED protein structure prediction server. Bioinformatics. 16, 404-405.
Merkle T. (2004) Nucleo-cytoplasmic partitioning of protein in plants:implications for the regulation of environment and development signaling. Curr. Genet. 44, 231-260.
Merkle T. (2001) Nuclear import and export of proteins in plants:a tool for the
regulation of signaling. Planta 213, 499-517.
Miguel A., Milla R., Uno Y., Chang I. F., Townsend J., Maher E. A., Quilici D., and Cushman J. C. (2006) A novel yeast two-hybrid approach to identify CDPK substrates:Characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein. FEBS Letters (580), 904-911.
Mosammaparast N., Jackson K. R., Guo Y., Brame C. J., Shabanowitz J., Hunt D. F., and Pemberton L. F. (2001) Nuclear import of histone H2A and H2B is mediated by a network of karyopherins. J. Cell Biol. 153, 251-262.
Murashige T. and Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol. Plant 15, 473-479.
Nakai K., and Kanehisa M. (1991) Expert system for predicting protein localization sites in gram-negative bacteria. Proteins 11(2), 95-110.
Nigg E. A. (1997) Nucleocytoplasmic transport: signals, mechanisms and regulation. Science 386, 779-787.
Nikolaev A. Y., Li M., Puskas N., Qin J., and Gu W. (2003) Parc:a cytoplasmic anchor for p53. Cell 112, 29-40.
Ribbeck K. and Görlich D. (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 20:1320-1330.
Roberts B. L., Richardson W. D., and Smith A. E. (1987) The effect of protein context on nuclear location signal function. Cell 50, 465-475.
Romanelli M. G., Tato L., Lorenzi P., and Morandi C. (2003) Nuclear localization domains in human thyroid transcription factor 2. Bioch. et Biophy. Acta 1643, 55- 64.
Ryan K. J. and Wente S. R. (2000) The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm. Curr. Opin. Cell. Biol. 12, 361-371.
Scharf K. D., Heider H., Ho¨hfeld I., Lyck R., Schmidt E., and Nover L. (1998) The tomato Hsf System: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol. Cell. Biol. 18, 2240-2251.
Sheen J. (2000) Ca2+-dependent protein kinase and stress signal transduction in plants. Science 274, 5294-5297.
Sheen J., Hwang S., Niwa Y., Kobayashi H., and Galbraith D. W. (1995) Green-
fluorescent protein as a new vital marker in plant cells. Plant J. 8, 777-784.
Shieh M, Wessler S. R., and Raikhel N. V. (1993) Nuclear targeting of the maize R protein requires two localization sequences. Plant Physiol. 101, 353-361.
Shields J. M. and Yang V. W. (1997) Two potent nuclear localization signals in the gut-enriched Kruppel-like factor define a subfamily of closely related Kruppel proteins. J. Biol. Chem. 272, 18504-18507.
Smith H. M. S., Hicks G. R., and Raikhel N. V. (1997) Importin α from Arabidopsis theliana is a nuclear import receptor that recognizes three classes of import signals. Plant Physiol. 114, 411-417.
Stoffler D., Fahrenkrog B., and Aebi U. (1999) The nuclear pore complex: from molecular architecture to functional dynamics. Curr. Opin. Cell. Biol. 11, 391-401.
Suo Y. and Miernyk J. A. (2004) Regulation of nucleocytoplasmic localization of the atDjC6 chaperone protein. Protoplasma 224, 79-89.
Wang H. J., Hsu C. M., Jauh G. Y. and Wang C. S. (2005) A lily pollen ASR protein localizes to both cytoplasm and nuclei requiring a nuclear localization signal. Physiologia plantarum 123, 314-320.
Zhang F., White R. L., and Neufeld K. L. (2000) Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proc. Natl. Acad. Sci. USA 97, 12577-12582.
Zhang Y. and Xiong Y. (2001) A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292, 1910-1915.