| 研究生: |
陳畯憲 Chen, Chun-Hsien |
|---|---|
| 論文名稱: |
內化因素和微環境因素影響藥物對棘阿米巴角膜炎的療效 The protist-intrinsic and microenvironmental factors affect the efficacy of antimicrobial drugs for Acanthamoeba keratitis. |
| 指導教授: |
林威辰
Lin, Wei-Chen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 英文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 棘阿米巴 、抗藥性 、葡萄糖酸氯己定 、眼表環境 、β-內醯胺酶 |
| 外文關鍵詞: | Acanthamoeba, drug resistance, chlorhexidine digluconate, ocular environment, beta-lactamase |
| 相關次數: | 點閱:59 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
棘阿米巴角膜炎是由棘阿米巴原蟲造成的角膜損傷疾病,臨床中發現大部分的棘
阿米巴角膜炎患者多長期配戴隱形眼鏡。棘阿米巴角膜炎會造成的症狀包含:眼
睛畏光、視力模糊、眼睛異物感以及失明等,感染嚴重者需進行摘除眼球手術。
隱形眼鏡配戴除棘阿米巴角膜炎外,細菌性感染也時常發生,細菌性角膜炎使用
抗生素作為主要治療手段,但常用的眼用抗生素對於棘阿米巴並不具殺滅效果,
而棘阿米巴有攜帶致病性細菌的能力並造成嚴重角膜炎,臨床案例也指出多重感
染性角膜炎較難被治癒且嚴重性較高。過去研究已經發現棘阿米巴具有多種藥物
耐受相關基因,而在我們的預試驗發現棘阿米巴干擾氨苄青黴素對於細菌的殺滅
效果。我們假設棘阿米巴可能藉由β-內酰胺酶相關基因干擾抗生素殺菌效果,藉
由細菌表達系統以及抗生素敏感性實驗,我們首次證實棘阿米巴中的β-內酰胺酶
對於數種β-內酰胺類抗生素具有干擾效果。除了抗藥性相關基因導致棘阿米巴相
關角膜炎治療效果不佳之外,臨床案例報告指出葡萄糖酸氯己定 (chlorhexidine
digluconate, CHG) 雖然為治療棘阿米巴角膜炎的第一線藥物,然而在部分案例中
發現 CHG 無法有效治癒棘阿米巴相關角膜炎。因此,在本研究中我們想要了解
為何體外試驗證實CHG有良好的殺滅棘阿米巴效果而在臨床使用卻無法有效控
制棘阿米巴感染。我們假設複雜的眼部環境可能影響CHG對於棘阿米巴的治療效
果,實驗結果證實黏蛋白、細胞裂解物、角膜等的環境因素會干擾CHG殺滅棘阿
米巴的效果。根據以上結果,我們的研究成果提供棘阿米巴用藥的參考,並提升
臨床藥物對於棘阿米巴感染症治療的效果。
Acanthamoeba keratitis (AK) is a serious and harmful eye infection caused by
Acanthamoeba. Moreover, AK leads to severe consequences, such as photophobia, blurred vision, and blindness, in such harmful patients, the operation of enucleation of the eyeball is required. Besides Acanthamoeba keratitis, a bacterial infection also takes responsibility for contact lens-associated keratitis. Although antibiotic drugs are effective treatment for bacterial infection, past studies suggest that Acanthamoeba is a Trojan horse of microorganisms, which may cause co-infection with bacteria and get more severe symptoms as clinical cases reported. Past studies have identified several intrinsic drug tolerance genes in amoeba. Our previous result shows that Acanthamoeba decreases the bactericidal activity of ampicillin. First, we hypothesize amoeba have beta-lactamase-like genes, which may result in a decrease in antibiotic activity. Thus, we characterize the Acanthamoeba beta-lactamase-like gene and overexpress candidate protein in the bacteria expression system, then we determine beta-lactamase-like gene function on several beta-lactam antibiotics by antibiotic susceptibility test. Chlorhexidine digluconate (CHG) is considered one of the first lines of treatment for AK patients and has powerful anti-amoeba effect in vitro. However, clinical researches show that Acanthamoeba has resistance to CHG. Thus, in this project, we investigate the gap between the reported CHG-effective amoebicidal activity in vitro and its weak effect in vivo. Except for the identified intrinsic drug tolerance genes in amoeba, we focus on the ocular environmental factors to figure out the CHG treatment gap between in vitro and in vivo. Our results demonstrate that environmental factors including mucin, cell lysate, and cornea affect the amoebicidal effect on CHG. Our findings relevel the effective opinions for clinical drug utilization and improve the therapeutic effect of Acanthamoeba infection diseases.
1. Brown, T.J., R.T. Cursons, and E.A. Keys, Amoebae from antarctic soil and water. Appl Environ Microbiol, 1982. 44(2): p. 491-3.
2. Trabelsi, H., et al., Free-living Amoebae (FLA): morphological and olecular identification of Acanthamoeba in dental unit water. Parasite, 2010. 17(1): p. 67-70.
3. Visvesvara, G.S., H. Moura, and F.L. Schuster, Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol, 2007. 50(1): p. 1-26.
4. Khan, N.A., Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev, 2006. 30(4): p. 564-95.
5. Diehl, M.L.N., J. Paes, and M.B. Rott, Genotype distribution of Acanthamoeba in keratitis: a systematic review. Parasitol Res, 2021. 120(9): p. 3051-3063.
6. Corsaro, D., et al., Update on Acanthamoeba jacobsi genotype T15, including full-length 18S rDNA molecular phylogeny. Parasitol Res, 2017. 116(4): p. 1273-1284.
7. Plutzer, J. and P. Karanis, Neglected waterborne parasitic protozoa and their detection in water. Water Res, 2016. 101: p. 318-332.
8. Khan, N.A., E.L. Jarroll, and T.A. Paget, Molecular and physiological differentiation between pathogenic and nonpathogenic Acanthamoeba. Curr Microbiol, 2002. 45(3): p. 197-202.
9. Adamska, M., et al., Thermophilic potentially pathogenic amoebae isolated from natural water bodies in Poland and their molecular characterization. Acta Parasitol, 2014. 59(3): p. 433-41.
10. Costa, A.O., et al., Characterization of acanthamoeba isolates from dust of a public hospital in Curitiba, Parana, Brazil. J Eukaryot Microbiol, 2010. 57(1): p. 70-5.
11. Denet, E., et al., Diversity of free-living amoebae in soils and their associated human opportunistic bacteria. Parasitol Res, 2017. 116(11): p. 3151-3162.
12. Marciano-Cabral, F. and G. Cabral, Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev, 2003. 16(2): p. 273-307.
13. Lorenzo-Morales, J., et al., Acanthamoeba keratitis: an emerging disease gathering importance worldwide? Trends Parasitol, 2013. 29(4): p. 181-7.
14. Lorenzo-Morales, J., et al., Therapeutic potential of a combination of two gene-specific small interfering RNAs against clinical strains of Acanthamoeba. Antimicrob Agents Chemother, 2010. 54(12): p. 5151-5.
15. Muchesa, P., et al., Detection of free-living amoebae using amoebal enrichment in a wastewater treatment plant of Gauteng Province, South Africa. Biomed Res Int, 2014. 2014: p. 575297.
16. Siddiqui, R. and N.A. Khan, Biology and pathogenesis of Acanthamoeba. Parasites & vectors, 2012. 5(1).
17. Siddiqui, R., R. Dudley, and N.A. Khan, Acanthamoeba differentiation: a two-faced drama of Dr Jekyll and Mr Hyde. Parasitology, 2012. 139(7): p. 826-34.
18. T, M., H. E, and I. I, The duration of the cyst stage and the viability and virulence of Acanthamoeba isolates. Trop Med Parasitol, 1995. 46(2): 106-108.
19. Huang, S.W. and B.M. Hsu, Isolation and identification of Acanthamoeba from Taiwan spring recreation areas using culture enrichment combined with PCR. Acta Trop, 2010. 115(3): p. 282-7.
20. Walochnik, J., U. Scheikl, and E.M. Haller-Schober, Twenty years of acanthamoeba diagnostics in Austria. J Eukaryot Microbiol, 2015. 62(1): p.3-11.
21. Panjwani, N., Pathogenesis of Acanthamoeba keratitis. The ocular surface, 2010. 8(2): p. 70-79.
22. Imbert-Bouyer, S., et al., A mannose binding protein is involved in the adherence of Acanthamoeba species to inert surfaces. FEMS Microbiol Lett, 2004. 238(1): p. 207-11.
23. Garate, M., et al., In vitro pathogenicity of Acanthamoeba is associated with the expression of the mannose-binding protein. Invest Ophthalmol Vis Sci, 2006. 47(3): p. 1056-62.
24. Garate, M., et al., Biochemical characterization and functional studies of Acanthamoeba mannose-binding protein. Infect Immun, 2005. 73(9): p. 5775-81.
25. Clarke, D.W. and J.Y. Niederkorn, The pathophysiology of Acanthamoeba keratitis. Trends Parasitol, 2006. 22(4): p. 175-80.
26. Yoo, K.T. and S.Y. Jung, Effects of mannose on pathogenesis of Acanthamoeba castellanii. Korean J Parasitol, 2012. 50(4): p. 365-9.
27. Hurt, M., J. Niederkorn, and H. Alizadeh, Effects of mannose on Acanthamoeba castellanii proliferation and cytolytic ability to corneal epithelial cells. Invest Ophthalmol Vis Sci, 2003. 44(8): p. 3424-31.
28. Niederkorn, J.Y., et al., The pathogenesis of Acanthamoeba keratitis. Microbes Infect, 1999. 1(6): p. 437-43.
29. Leher, H.F., et al., Role of mucosal IgA in the resistance to Acanthamoeba keratitis. Invest Ophthalmol Vis Sci, 1998. 39(13): p. 2666-73.
30. Leher, H., et al., Impact of oral immunization with Acanthamoeba antigens on parasite adhesion and corneal infection. Invest Ophthalmol Vis Sci, 1998. 39(12): p. 2337-43.
31. Niederkorn, J.Y., The biology of Acanthamoeba keratitis. Exp Eye Res, 2021. 202: p. 108365.
32. Huang, J.M., et al., Pathogenic Acanthamoeba castellanii Secretes the Extracellular Aminopeptidase M20/M25/M40 Family Protein to Target Cells for Phagocytosis by Disruption. Molecules, 2017. 22(12).
33. Huang, J.M., et al., Identification and characterization of a secreted M28 aminopeptidase protein in Acanthamoeba. Parasitol Res, 2019. 118(6): p. 1865-1874.
34. Alizadeh, H., et al., Tear IgA and serum IgG antibodies against Acanthamoeba in patients with Acanthamoeba keratitis. Cornea, 2001. 20(6): p. 622-7.
35. NAGINGTON, J., et al., Amoebic infection of the eye. The Lancet, 1974. 304(7896): p. 1537-1540.
36. Chan, M.Y. and T.C. Ca, Acanthamoeba keratitis: report of the first two cases in Taiwan. ACTA Societatis Ophthalmologicae Sinicae, 1988. 27(172).
37. Brown, T., R. Cursons, and E. Keys, Amoebae from antarctic soil and water. Applied and Environmental Microbiology, 1982. 44(2): p. 491-493.
38. Broxton, P., P. Woodcock, and P. Gilbert, A study of the antibacterial activity of some polyhexamethylene biguanides towards Escherichia coli ATCC 8739. Journal of Applied Bacteriology, 1983. 54(3): p. 345-353.
39. Auran, J.D., M.B. Starr, and F.A. Jakobiec, Acanthamoeba keratitis. Cornea, 1987. 6(1): p. 2-26.
40. Allen, M.J., A.P. Morby, and G.F. White, Cooperativity in the binding of the cationic biocide plyhexamethylene biguanide to nucleic acids. Biochemical and biophysical research communications, 2004. 318(2): p. 397-404.
41. Li, M.-L., et al., Treatment of early Acanthamoeba keratitis with alcohol-assisted epithelial debridement. Cornea, 2012. 31(4): p. 442-446.
42. van Klink, F., et al., The role of contact lenses, trauma, and Langerhans cells in a Chinese hamster model of Acanthamoeba keratitis. Invest Ophthalmol Vis Sci, 1993. 34(6): p. 1937-44.
43. Jaison, P.L., Z. Cao, and N. Panjwani, Binding of Acanthamoeba to [corrected] mannose-glycoproteins of corneal epithelium: effect of injury. Curr Eye Res, 1998. 17(8): p. 770-6.
44. Centers for Disease, C., Acanthamoeba keratitis in soft-contact-lens wearers. MMWR Morb Mortal Wkly Rep, 1987. 36(25): p. 397-8, 403-4.
45. Fong, C.F., et al., Clinical characteristics of microbial keratitis in a university hospital in Taiwan. Am J Ophthalmol, 2004. 137(2): p. 329-36.
46. Inderjit Deol, et al., Encephalitis Due to a Free-Living Amoeba (Balamuthia mandrillaris): Case Report with Literature Review. Surgical neurology, 2000. 53(6): p. 611-616.
47. Gomes, T.S., et al., Presence and interaction of free-living amoebae and amoeba-resisting bacteria in water from drinking water treatment plants. Science of The Total Environment, 2020. 719: p. 137080.
48. Price, C., et al., Paradoxical Pro-inflammatory Responses by Human Macrophages to an Amoebae Host-Adapted Legionella Effector. Cell Host & Microbe, 2020.
49. Declerck, P., et al., Receptor‐mediated uptake of Legionella pneumophila by Acanthamoeba castellanii and Naegleria lovaniensis. Journal of applied microbiology, 2007. 103(6): p. 2697-2703.
50. Thomas, V., et al., Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Applied and Environmental Microbiology, 2006. 72(4): p. 2428-2438.
51. Scheid, P., Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms. Parasitology research, 2014. 113(7): p. 2407-2414.
52. Whan, L., I.R. Grant, and M.T. Rowe, Interaction between Mycobacterium avium subsp. paratuberculosis and environmental protozoa. BMC microbiology, 2006. 6(1): p. 63.
53. König, L., et al., Symbiont-mediated defense against Legionella pneumophila in amoebae. Mbio, 2019. 10(3).
54. Molmeret, M., et al., Amoebae as training grounds for intracellular bacterial pathogens. Appl. Environ. Microbiol., 2005. 71(1): p. 20-28.
55. Casadevall, A., et al., The ‘amoeboid predator-fungal animal virulence’hypothesis. Journal of Fungi, 2019. 5(1): p. 10.
56. Niyyati, M., et al., Occurrence of Potentially Pathogenic Bacterial-Endosymbionts in Acanthamoeba Spp. Iran J Parasitol, 2015. 10(2): p. 181-8.
57. Puech, V., et al., Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology (Reading), 2001. 147(Pt 5): p. 1365-1382.
58. Alizadeh, H., et al., Role of contact lens wear, bacterial flora, and mannose-induced pathogenic protease in the pathogenesis of amoebic keratitis. Infect Immun, 2005. 73(2): p. 1061-8.
59. Kelly, J.A., et al., Penicillin target enzyme and the antibiotic binding site. Science, 1982. 218(4571): p. 479-481.
60. Hare, R., New light on the history of penicillin. Medical history, 1982. 26(1): p. 1-24.
61. KONG, K.F., L. Schneper, and K. Mathee, Beta‐lactam antibiotics: from antibiosis to resistance and bacteriology. Apmis, 2010. 118(1): p. 1-36.
62. Tabbara, K.F., Antimicrobial Agents in Ophthalmology, in Ocular Infections, K.F. Tabbara, A.M.A. El-Asrar, and M. Khairallah, Editors. 2014, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 19-35.
63. Tomasz, A., The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annual Reviews in Microbiology, 1979. 33(1): p. 113-137.
64. Spratt, B.G. and K.D. Cromie, Penicillin-binding proteins of gram-negative bacteria. Clinical Infectious Diseases, 1988. 10(4): p. 699-711.
65. Torres, M.J. and M. Blanca, The complex clinical picture of β-lactam hypersensitivity: penicillins, cephalosporins, monobactams, carbapenems, nd clavams. Medical Clinics, 2010. 94(4): p. 805-820.
66. Villani, E., et al., In vivo confocal microscopy of the ocular surface: from bench to bedside. Curr Eye Res, 2014. 39(3): p. 213-31.
67. Bari, A., et al., Real-life comparison of three intravitreal antibiotic drug regimens in endophthalmitis. Indian J Ophthalmol, 2022. 70(5): p. 1696-1700.
68. Canton, R., Y. Doi, and P.J. Simner, Treatment of carbapenem-resistant Pseudomonas aeruginosa infections: a case for cefiderocol. Expert Rev Anti Infect Ther, 2022: p. 1-18.
69. van Duijn, P.J., et al., The effects of antibiotic cycling and mixing on acquisition of antibiotic resistant bacteria in the ICU: A post-hoc individual patient analysis of a prospective cluster-randomized crossover study. PLoS One, 2022. 17(5): p. e0265720.
70. Inglis, T.J., et al., Comparison of the susceptibilities of Burkholderia pseudomallei to meropenem and ceftazidime by conventional and intracellular methods. Antimicrob Agents Chemother, 2004. 48(8): p. 2999-3005.
71. Masoudi, S., Biochemistry of human tear film: A review. Exp Eye Res, 2022. 220: p. 109101.
72. Knop, E., et al., The international workshop on meibomian gland dysfunction: report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Invest Ophthalmol Vis Sci, 2011. 52(4): p. 1938-78.
73. Chiang, J.C.B., et al., The Impact of Post-Tear Collection Storage on Tear Film Substance P Concentration. Curr Eye Res, 2022: p. 1-5.
74. You, J., et al., Tear fluid protein biomarkers. Adv Clin Chem, 2013. 62: p. 151-96.
75. Pena-Verdeal, H., et al., Diurnal variations of tear film osmolarity on the ocular surface. Clin Exp Optom, 2022: p. 1-11.
76. Asiedu, K., et al., Tear film and ocular surface neuropeptides: Characteristics, synthesis, signaling and implications for ocular surface and systemic diseases. Exp Eye Res, 2022. 218: p. 108973.
77. Georgiev, G.A., P. Eftimov, and N. Yokoi, Structure-function relationship of tear film lipid layer: A contemporary perspective. Exp Eye Res, 2017. 163: p. 17-28.
78. Acera, A., et al., Comparative study of the lipid profile of tears and plasma enriched in growth factors. Exp Eye Res, 2022. 219: p. 109061.
79. Xu, X., et al., Biophysical properties of tear film lipid layer II. Polymorphism of FAHFA. Biophys J, 2022. 121(3): p. 451-458.
80. Kim, W.J., et al., Lipid layer thickness decrease due to meibomian gland dysfunction leads to tear film instability and reflex tear secretion. Ann Med, 2022. 54(1): p. 893-899.
81. Lorentz, H., et al., The impact of tear film components on in vitro lipid uptake. Optom Vis Sci, 2012. 89(6): p. 856-67.
82. Viitaja, T., et al., On the importance of chain branching in tear film lipid layer wax and cholesteryl esters. Colloids Surf B Biointerfaces, 2022. 214: p. 112429.
83. Khanna, R.K., et al., Metabolomics and lipidomics approaches in human tears: A systematic review. Surv Ophthalmol, 2022.
84. Chen, L., et al., Characterization of the human tear metabolome by LC-MS/MS. J Proteome Res, 2011. 10(10): p. 4876-82.
85. Argueso, P., Human ocular mucins: The endowed guardians of sight. Adv Drug Deliv Rev, 2022. 180: p. 114074.
86. Machiele, R., M.J. Lopez, and C.N. Czyz, Anatomy, Head and Neck, Eye acrimal Gland, in StatPearls. 2022: Treasure Island (FL).
87. Posa, A., et al., Schirmer strip vs. capillary tube method: non-invasive methods of obtaining proteins from tear fluid. Ann Anat, 2013. 195(2): p. 137-42.
88. Pflugfelder, S.C. and M.E. Stern, Biological functions of tear film. Exp Eye Res, 2020. 197: p. 108115.
89. Chang, A.Y. and B. Purt, Biochemistry, Tear Film, in StatPearls. 2022: Treasure Island (FL).
90. Martinez-Carrasco, R., P. Argueso, and M.E. Fini, Membrane-associated mucins of the human ocular surface in health and disease. Ocul Surf, 2021. 21: p. 313-330.
91. Nomi, K., et al., Generation of functional conjunctival epithelium, including goblet cells, from human iPSCs. Cell Rep, 2021. 34(5): p. 108715.
92. Hori, Y., Secreted Mucins on the Ocular Surface. Invest Ophthalmol Vis Sci, 2018. 59(14): p. DES151-DES156.
93. Aydin, E., et al., A Review of Emerging Tear Proteomics Research on the Ocular Surface in Ocular Allergy. Biology (Basel), 2022. 11(2).
94. Choudhury, A., et al., Tear-film breakup: The role of membrane-associated mucin polymers. Phys Rev E, 2021. 103(1-1): p. 013108.
95. Maycock, N.J. and R. Jayaswal, Update on Acanthamoeba Keratitis: Diagnosis, Treatment, and Outcomes. Cornea, 2016. 35(5): p. 713-20.
96. Brooks, J.G., Jr., D.J. Coster, and P.R. Badenoch, Acanthamoeba keratitis. Resolution after epithelial debridement. Cornea, 1994. 13(2): p. 186-9.
97. Seal, D.V., Acanthamoeba keratitis update-incidence, molecular epidemiology and new drugs for treatment. Eye (Lond), 2003. 17(8): p. 893-905.
98. Huang, F.C., et al., The effect of the disulfideisomerase domain containing protein in the defense against polyhexamethylene biguanide of highly tolerant Acanthamoeba at the trophozoite stage. Int J Parasitol Drugs Drug Resist, 2016. 6(3): p. 251-257.
99. Huang, F.C., et al., Characterizing clinical isolates of Acanthamoeba castellanii with high resistance to polyhexamethylene biguanide in Taiwan. J Microbiol Immunol Infect, 2017. 50(5): p. 570-577.
100. LL0YD, D., et al., Encystation in Acanthamoeba castellanii Development of Biocide Resistance. Journal of Eukaryotic Microbiology,, 2001. 48(1): p. 11-16.
101. Di Zazzo, A., et al., Therapeutic Corneal Transplantation in Acanthamoeba Keratitis: Penetrating Versus Lamellar Keratoplasty. Cornea, 2022. 41(3): p. 396-401.
102. Joshi, L.S. and R. Gurung, Acanthamoeba Keratitis - A Case Report. Nepal J Ophthalmol, 2021. 13(25): p. 133-136.
103. Huang, J.M., et al., Cytochrome P450 monooxygenase of Acanthamoeba castellanii participates in resistance to polyhexamethylene biguanide treatment. Parasite, 2021. 28: p. 77.
104. Larkin, D.F., S. Kilvington, and J.K. Dart, Treatment of Acanthamoeba keratitis with polyhexamethylene biguanide. Ophthalmology, 1992. 99(2): p. 185-91.
105. Wright, P., D. Warhurst, and B.R. Jones, Acanthamoeba keratitis successfully treated medically. Br J Ophthalmol, 1985. 69(10): p. 778-82.
106. Alserehi, H., et al., Chlorhexidine gluconate bathing practices and skin concentrations in intensive care unit patients. Am J Infect Control, 2018. 46(2): p. 226-228.
107. Ikeda, T., et al., Interaction of a polymeric biguanide biocide with phospholipid membranes. Biochim Biophys Acta, 1984. 769(1): p. 57-66.
108. Perez-Santonja, J.J., et al., Persistently culture positive acanthamoeba keratitis: in vivo resistance and in vitro sensitivity. Ophthalmology, 2003. 110(8): p. 1593-600.
109. Portenier, I., et al., Inactivation of the antibacterial activity of iodine potassium iodide and chlorhexidine digluconate against Enterococcus faecalis by dentin, dentin matrix, type-I collagen, and heat-killed microbial whole cells. Journal of Endodontics, 2002. 28(9): p. 634-637.
110. Radischat, N., et al., Influence of human wound exudate on the bactericidal efficacy of antiseptic agents in quantitative suspension tests on the basis of European Standards (DIN EN 13727). International Wound Journal, 2020. 17(3): p. 781-789.
111. Davidson, H.J. and V.J. Kuonen, The tear film and ocular mucins. Vet Ophthalmol, 2004. 7(2): p. 71-7.
112. Gipson, I.K. and P. Argueso, Role of mucins in the function of the corneal and conjunctival epithelia. Int Rev Cytol, 2003. 231: p. 1-49.
113. Dartt, D.A., Control of mucin production by ocular surface epithelial cells. Exp Eye Res, 2004. 78(2): p. 173-85.
114. Sebbag, L., L.M. Moody, and J.P. Mochel, Albumin Levels in Tear Film Modulate the Bioavailability of Medically-Relevant Topical Drugs. Front Pharmacol, 2019. 10: p. 1560.
115. Berk, S.G., et al., Production of respirable vesicles containing live Legionella pneumophila cells by two Acanthamoeba spp. Appl Environ Microbiol, 1998. 64(1): p. 279-86.
116. Low, C., An Illustrated Key to Freshwater and Soil Amoebae. Journal of the Fisheries Board of Canada, 1977. 34(8): p. 1254-1255.
117. Naas, T., et al., Beta-lactamase database (BLDB)–structure and function. Journal of enzyme inhibition and medicinal chemistry, 2017. 32(1): p. 917-919.
118. Stamatakis, A., RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 2014. 30(9): p. 1312-1313.
119. Kumar, S., G. Stecher, and K. Tamura, MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular biology and evolution, 2016. 33(7): p. 1870-1874.
120. Sarink, M.J., et al., Acanthamoeba castellanii interferes with adequate chlorine disinfection of multidrug-resistant Pseudomonas aeruginosa. J Hosp Infect, 2020. 106(3): p. 490-494.
121. Karas, M.A., et al., Growth and Survival of Mesorhizobium loti Inside Acanthamoeba Enhanced Its Ability to Develop More Nodules on Lotus corniculatus. Microb Ecol, 2015. 70(2): p. 566-75.
122. Bucolo, C., F. Drago, and S. Salomone, Ocular drug delivery: a clue from nanotechnology. Front Pharmacol, 2012. 3: p. 188.
123. Kapalschinski, N., et al., Albumin reduces the antibacterial activity of polyhexanide-biguanide-based antiseptics against Staphylococcus aureus and MRSA. Burns, 2013. 39(6): p. 1221-1225.
124. Runstrom, G., A. Mann, and B. Tighe, The fall and rise of tear albumin levels: a multifactorial phenomenon. Ocul Surf, 2013. 11(3): p. 165-80.
125. Ribeiro, D.A., et al., Chlorhexidine induces DNA damage in rat peripheral leukocytes and oral mucosal cells. J Periodontal Res, 2004. 39(5): p. 358-61.
126. Grassi, T.F., et al., DNA damage in multiple organs after exposure to chlorhexidine in Wistar rats. Int J Hyg Environ Health, 2007. 210(2): p. 163-7.
127. Gaudana, R., et al., Ocular drug delivery. AAPS J, 2010. 12(3): p. 348-60.
128. Neff, R.J. and R.H. Neff, The biochemistry of amoebic encystment. Symp Soc Exp Biol, 1969. 23: p. 51-81.
129. Linder, M., J. Winiecka-Krusnell, and E. Linder, Use of recombinant cellulose-binding domains of Trichoderma reesei cellulase as a selective immunocytochemical marker for cellulose in protozoa. Appl Environ Microbiol, 2002. 68(5): p. 2503-8.
130. Garajova, M., et al., Cellulose fibrils formation and organisation of cytoskeleton during encystment are essential for Acanthamoeba cyst wall architecture. Sci Rep, 2019. 9(1): p. 4466.
131. Magistrado-Coxen, P., et al., The most abundant cyst wall proteins of Acanthamoeba castellanii are lectins that bind cellulose and localize to distinct structures in developing and mature cyst walls. PLoS Negl Trop Dis, 2019. 13(5): p. e0007352.
132. Abjani, F., et al., Targeting cyst wall is an effective strategy in improving the efficacy of marketed contact lens disinfecting solutions against Acanthamoeba castellanii cysts. Cont Lens Anterior Eye, 2016. 39(3): p. 239-43.
133. Moon, E.-K., et al., Potential value of cellulose synthesis inhibitors combined with PHMB in the treatment of Acanthamoeba keratitis. Cornea, 2015. 34(12): p. 1593-1598.
134. Lakhundi, S., R. Siddiqui, and N.A. Khan, Cellulose degradation: a therapeutic strategy in the improved treatment of Acanthamoeba infections. Parasit Vectors, 2015. 8: p. 23.
135. Bennett, J.E., R. Dolin, and M.J. Blaser, Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases: 2-Volume Set. Vol. 1. 2014: Elsevier Health Sciences.
136. Høiby, N., et al., Antibiotic resistance of bacterial biofilms. International journal of antimicrobial agents, 2010. 35(4): p. 322-332.
137. Xie, L., et al., Emerging resistance to ceftriaxone treatment owing to different ampD mutations in Enterobacter roggenkampii. Infect Genet Evol, 2022: p. 105301.
138. Benveniste, R. and J. Davies, Mechanisms of antibiotic resistance in bacteria. Annual review of biochemistry, 1973. 42(1): p. 471-506.
139. Trampari, E., et al., Cefotaxime Exposure Selects Mutations within the CA-Domain of envZ Which Promote Antibiotic Resistance but Repress Biofilm Formation in Salmonella. Microbiol Spectr, 2022: p. e0214521.
140. Alfei, S. and A.M. Schito, beta-Lactam Antibiotics and beta-Lactamase Enzymes Inhibitors, Part 2: Our Limited Resources. Pharmaceuticals (Basel), 2022. 15(4).
141. Moon, E.K., et al., Comparative analysis of differentially expressed genes in Acanthamoeba after ingestion of Legionella pneumophila and Escherichia coli. Exp Parasitol, 2022. 232: p. 108188.
142. Bornier, F., et al., Environmental Free-Living Amoebae Can Predate on Diverse Antibiotic-Resistant Human Pathogens. Appl Environ Microbiol, 2021. 87(18): p. e0074721.
143. Siddiqui, R. and N.A. Khan, War of the microbial worlds: Who is the beneficiary in Acanthamoeba–bacterial interactions? Experimental parasitology, 2012. 130(4): p. 311-313.
144. Matz, C., et al., Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae. The ISME journal, 2008. 2(8): p. 843.
145. Greub, G. and D. Raoult, Microorganisms resistant to free-living amoebae. Clinical microbiology reviews, 2004. 17(2): p. 413-433.
146. Wang, Z. and M. Wu, Comparative genomic analysis of acanthamoeba endosymbionts highlights the role of amoebae as a “Melting Pot” Shaping the rickettsiales evolution. Genome biology and evolution, 2017. 9(11): p. 3214-3224.
147. Yadav, A.N., et al., Biodiversity of the genus Penicillium in different habitats, in New and Future Developments in Microbial Biotechnology and Bioengineering. 2018, Elsevier. p. 3-18.
148. Park, S.W., T.T. Nguyen, and H.B. Lee, Characterization of two species of Acremonium (unrecorded in Korea) from soil samples: A. variecolor and A. persicinum. Mycobiology, 2017. 45(4): p. 353-361.
149. Guarro, J., et al., Acremonium species: new emerging fungal opportunists—in vitro antifungal susceptibilities and review. Clinical Infectious Diseases, 1997. 25(5): p. 1222-1229.
150. Williamson, J.M., et al., Biosynthesis of the beta-lactam antibiotic, thienamycin, by Streptomyces cattleya. Journal of Biological Chemistry, 1985. 260(8): p. 4637-4647.
151. KAHAN, J.S., et al., Thienamycin, a new β-lactam antibiotic I. Discovery, taxonomy, isolation and physical properties. The Journal of antibiotics, 1979. 32(1): p. 1-12.
152. Diene, S.M., et al., Human metallo-β-lactamase enzymes degrade penicillin. Scientific reports, 2019. 9(1): p. 1-7.
153. Arguello-Garcia, R., et al., Drug resistance in Giardia: Mechanisms and alternative treatments for Giardiasis. Adv Parasitol, 2020. 107: p. 201-282.
154. Emery, S.J., et al., Differential protein expression and post-translational modifications in metronidazole-resistant Giardia duodenalis. Gigascience, 2018. 7(4).
155. Nillius, D., J. Muller, and N. Muller, Nitroreductase (GlNR1) increases susceptibility of Giardia lamblia and Escherichia coli to nitro drugs. J Antimicrob Chemother, 2011. 66(5): p. 1029-35.
156. Leitsch, D., J. Muller, and N. Muller, Evaluation of Giardia lamblia thioredoxin reductase as drug activating enzyme and as drug target. Int J Parasitol Drugs Drug Resist, 2016. 6(3): p. 148-153.
157. Muller, J., et al., Resistance formation to nitro drugs in Giardia lamblia: No common markers identified by comparative proteomics. Int J Parasitol Drugs Drug Resist, 2019. 9: p. 112-119.
158. Joo, S.Y., et al., Sirtinol Supresses Trophozoites Proliferation and Encystation of Acanthamoeba via Inhibition of Sirtuin Family Protein. Korean J Parasitol, 2022. 60(1): p. 1-6.
159. Martin-Perez, T., et al., In Vitro Evaluation of the Combination of Melaleuca alternifolia (Tea Tree) Oil and Dimethyl Sulfoxide (DMSO) against Trophozoites and Cysts of Acanthamoeba Strains. Oxygen Consumption Rate (OCR) Assay as a Method for Drug Screening. Pathogens, 2021. 10(4).
160. Puig Silla, M., J.M. Montiel Company, and J.M. Almerich Silla, Use of chlorhexidine varnishes in preventing and treating periodontal disease. A review of the literature. Med Oral Patol Oral Cir Bucal, 2008. 13(4): p. E257-60.
161. McDonnell, G. and A.D. Russell, Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev, 1999. 12(1): p. 147-79.
162. Wiktorowska-Owczarek, A., M. Berezinska, and J.Z. Nowak, PUFAs: Structures, Metabolism and Functions. Adv Clin Exp Med, 2015. 24(6): p. 931-41.
163. Das, U.N., Essential Fatty acids - a review. Curr Pharm Biotechnol, 2006. 7(6): p. 467-82.
164. Rzycki, M., et al., Unraveling the mechanism of octenidine and chlorhexidine on membranes: Does electrostatics matter? Biophys J, 2021. 120(16): p. 3392-3408.
165. Torres-Luna, C., et al., Extended delivery of cationic drugs from contact lenses loaded with unsaturated fatty acids. Eur J Pharm Biopharm, 2020. 155: p. 1-11.
166. Rolla, G., H. Loe, and C.R. Schiott, The affinity of chlorhexidine for hydroxyapatite and salivary mucins. J Periodontal Res, 1970. 5(2): p. 90-5. 167. Spijkervet, F.K., et al., Chlorhexidine inactivation by saliva. Oral Surg Oral Med Oral Pathol, 1990. 69(4): p. 444-9.
168. Abouassi, T., et al., Does human saliva decrease the antimicrobial activity of chlorhexidine against oral bacteria? BMC Res Notes, 2014. 7: p. 711.
169. Loe, H. and C.R. Schiott, The effect of mouthrinses and topical application of chlorhexidine on the development of dental plaque and gingivitis in man. J Periodontal Res, 1970. 5(2): p. 79-83.
170. Jones, C.G., Chlorhexidine: is it still the gold standard? Periodontol 2000, 1997. 15: p. 55-62.
171. Quintana, R.M., et al., Effect of human, dentin, albumin and lipopolysaccharide on the antibacteerial activity of endodontic activity of endodontic irrigants. J Conserv Dent, 2017. 20(5): p. 341-345.
172. Bucki, R., et al., Salivary mucins inhibit antibacterial activity of the cathelicidin-derived LL-37 peptide but not the cationic steroid CSA-13. J Antimicrob Chemother, 2008. 62(2): p. 329-35.
173. Portenier, I., et al., Inactivation of root canal medicaments by dentine, hydroxylapatite and bovine serum albumin. Int Endod J, 2001. 34(3): p. 184-8.
174. Dahlgren, M.A., A. Lingappan, and K.R. Wilhelmus, The clinical diagnosis of microbial keratitis. Am J Ophthalmol, 2007. 143(6): p. 940-944.
175. Thangavelu, A., et al., Chlorhexidine: An Elixir for Periodontics. J Pharm Bioallied Sci, 2020. 12(Suppl 1): p. S57-S59.
176. Allen, M.J., A.P. Morby, and G.F. White, Cooperativity in the binding of the cationic biocide polyhexamethylene biguanide to nucleic acids. Biochem Biophys Res Commun, 2004. 318(2): p. 397-404.
177. Sowlati-Hashjin, S., P. Carbone, and M. Karttunen, Insights into the Polyhexamethylene Biguanide (PHMB) Mechanism of Action on Bacterial Membrane and DNA: A Molecular Dynamics Study. J Phys Chem B, 2020. 124(22): p. 4487-4497.
178. Gilbert, P. and L.E. Moore, Cationic antiseptics: diversity of action under a common epithet. J Appl Microbiol, 2005. 99(4): p. 703-15.
179. Bashir, M.H., L.K. Olson, and S.A. Walters, Suppression of regrowth of normal skin flora under chlorhexidine gluconate dressings applied to chlorhexidine gluconate-prepped skin. Am J Infect Control, 2012. 40(4): p. 344-8.
180. Karki, S. and A.C. Cheng, Impact of non-rinse skin cleansing with chlorhexidine gluconate on prevention of healthcare-associated infections and colonization with multi-resistant organisms: a systematic review. J Hosp Infect, 2012. 82(2): p. 71-84.
181. Tanzer, J.M., A.M. Slee, and B.A. Kamay, Structural requirements of guanide, biguanide, and bisbiguanide agents for antiplaque activity. Antimicrob Agents Chemother, 1977. 12(6): p. 721-9.
182. Willcox, M.D., Characterization of the normal microbiota of the ocular surface. Exp Eye Res, 2013. 117: p. 99-105.
183. Ueta, M., et al., Polyclonality of Staphylococcus epidermidis residing on the healthy ocular surface. J Med Microbiol, 2007. 56(Pt 1): p. 77-82.
184. Bannerman, T.L., et al., The source of coagulase-negative staphylococci in the Endophthalmitis Vitrectomy Study. A comparison of eyelid and intraocular isolates using pulsed-field gel electrophoresis. Arch Ophthalmol, 1997. 115(3): p. 357-61.
185. Schechter, B.A., et al., An Evaluation of Staphylococci from Ocular Surface Infections Treated empirically with Topical Besifloxacin: Antibiotic Resistance, Molecular Characteristics, and Clinical Outcomes. Ophthalmol Ther, 2020. 9(1): p. 159-173.
186. Lorenzo-Morales, J., N.A. Khan, and J. Walochnik, An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite, 2015. 22: p. 10.
187. Kim, D.H., et al., Biophysico-functional compatibility of Seoul National University (SNU) miniature pig cornea as xenocorneal graft for the use of human clinical trial. Xenotransplantation, 2016. 23(3): p. 202-10.
188. Boote, C., et al., Collagen fibrils appear more closely packed in the prepupillary cornea: optical and biomechanical implications. Invest Ophthalmol Vis Sci, 2003. 44(7): p. 2941-8.
189. Zhang, Y., et al., Evaluation of artificial tears on cornea epithelium healing. Int J Ophthalmol, 2018. 11(7): p. 1096-1101.
190. Aguilar, A., et al., Efficacy of polyethylene glycol-propylene glycol-based lubricant eye drops in reducing squamous metaplasia in patients with dry eye disease. Clin Ophthalmol, 2018. 12: p. 1237-1243.