簡易檢索 / 詳目顯示

研究生: 張幃傑
Chang, Wei-Chieh
論文名稱: 低溫下對於超薄基體埋入氧化層全空乏絕緣上覆矽金屬氧化物半導體場效電晶體之介面缺陷分析與模擬
Analysis and Modeling of Interface Traps for Ultra-Thin Body and Buried Oxide Fully Depleted Silicon-On-Insulator MOSFETs at Cryogenic Temperatures
指導教授: 江孟學
Chiang, Meng-Hsueh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 奈米積體電路工程碩士博士學位學程
MS Degree/Ph.D. Program on Nano-Integrated-Circuit Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 106
中文關鍵詞: 低溫陷阱介面電荷曲折帶尾次臨界擺幅(SS)超薄基體埋入氧化層全空乏絕緣上覆矽(UTBB-FD-SOI)科技電腦輔助設計(TCAD)
外文關鍵詞: cryogenic temperature, trap, interface charge, inflection, band tail, subthreshold swing (SS), UTBB-FD-SOI, TCAD
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文藉由科技電腦輔助設計(TCAD)模擬探討在低溫操作下半導體的特性(如遷移率、次臨界擺幅(SS),以及帶尾),並著重分析電晶體的轉移特性所發生的曲折(Inflection)現象。曲折現象源自於介面缺陷能態捕捉載子,進而產生介面電荷,由於此現象隨著溫度的下降,其在電晶體元件電性的影響越發明顯,因此本研究近一步分析缺陷的濃度大小、分佈範圍與位置對電性所產生的影響,以此條件去比較不同操作溫度下的差異。
    最後模擬超薄基體埋入氧化層全空乏絕緣上覆矽(UTBB-FD-SOI)架構 MOSFET元件,分析於低溫操作環境,不同埋入氧化層厚度與後閘極偏壓之下曲折的趨勢變化,藉由調變後閘極(back gate)偏壓減緩介面陷阱所導致的電性退化。

    This thesis investigates the characteristics of semiconductors under cryogenic temperature operation through Technology Computer Aided Design (TCAD) simulations (such as mobility, subthreshold swing (SS), and band tail). We particularly focus on analyzing the Inflection phenomenon occurring in the transfer characteristics of transistors. The Inflection phenomenon originates from the trapping of carriers by interface trap states, resulting in the generation of interface charges. As this phenomenon becomes more pronounced with the decrease in temperature, its impact on the electrical characteristics of the transistor becomes increasingly significant. This thesis further analyzes the influence of trap concentration, distribution range, and location on the electrical characteristics. It compares the variations at different temperatures based on these conditions.
    Finally, we simulate MOSFET devices with Ultra-Thin Body and Buried oxide Fully Depleted Silicon-On-Insulator (UTBB-FD-SOI) architecture. Analyzing the trends of Inflection under different buried oxide thicknesses and back gate biases at cryogenic temperature.

    摘要 I Abstract III 誌謝 IV Table Captions VIII Figure Captions IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 The Framework of the Thesis 3 Chapter 2 TCAD Calibration of 40-nm Bulk nMOSFET 4 2.1 Design Rules of nMOSFETs 4 2.2 The Basic Physical Model Used for Simulation 7 2.2.1 Fermi and Temperature Model 7 2.2.2 Effective Intrinsic Density Model 7 2.2.3 Recombination Model 8 2.2.4 Philips Unified Mobility Model 8 2.3 The Physical Models Used for Calibration 9 2.3.1 Lombardi Mobility Model 9 2.3.2 High Field Saturation Mobility Model 11 2.3.3 Traps Model 12 2.4 Calibration Methodology 14 2.4.1 Calibration Introduction 14 2.4.2 ID-VG Calibration (Low Drain Bias Voltage) 15 2.4.3 ID-VG Calibration (High Drain Bias Voltage) 17 2.4.4 ID-VD Calibration 19 Chapter 3 Characteristics of Semiconductor at Cryogenic Temperature 20 3.1 Mobility 20 3.2 Subthreshold Swing 23 3.3 Band Tails 24 Chapter 4 Analysis of the Phenomenon of Traps on Electrical Characteristics in Cryogenic nMOSFETs 30 4.1 Interface Charge 30 4.1.1 Traps Distribution 30 4.1.2 Level State Distribution of Traps 32 4.1.3 Gaussian State Distribution of Traps 36 4.1.4 The Impact of Gaussian State Distribution Variations 43 4.2 The Problem of Subthreshold Swing Distortion in the Gaussian State Caused by TCAD Calculation. 52 4.3 Fixed Charge 54 Chapter 5 Performance of the UTBB FD-SOI MOSFETs Affected by Inflection at Cryogenic Temperatures 57 5.1 Overview of UTBB FD-SOI 57 5.2 Design Rules of UTBB FD-SOI nMOSFETs 61 5.3 Analyzing Inflection Behavior in UTBB FD-SOI nMOSFETs at Cryogenic Temperatures by Back Gate Voltage Adjustment. 64 Chapter 6 Conclusion 86 References 88

    [1] A. Beckers, F. Jazaeri and C. Enz, "Inflection Phenomenon in Cryogenic MOSFET Behavior," in IEEE Transactions on Electron Devices, vol. 67, no. 3, pp. 1357-1360, March 2020, doi: 10.1109/TED.2020.2965475.
    [2] Schaller, Robert R. "Moore's law: past, present and future." IEEE spectrum 34.6 (1997): 52-59.
    [3] ITRS 2.0 Publication: 5_2015 ITRS 2.0_More Moore.pdf, p. 14. [Online]. Available: http://www.itrs2.net/.
    [4] Hu, Chenming. "Finfet and other new transistor technologies." Univ. of Califor-nia (2011).
    [5] Cao, Wei, and Kaustav Banerjee. "Is negative capacitance FET a steep-slope logic switch." Nature communications 11.1 (2020): 1-8.
    [6] Radisavljevic, Branimir, et al. "Single-layer MoS 2 transistors." Nature nano-technology 6.3 (2011): 147-150.
    [7] Chiang, H. L., et al. "Cold CMOS as a power-performance-reliability booster for advanced FinFETs." 2020 IEEE Symposium on VLSI Technology. IEEE, 2020.
    [8] Kao, Kuo-Hsing, et al. "Subthreshold Swing Saturation of Nanoscale MOSFETs Due to Source-to-Drain Tunneling at Cryogenic Temperatures." IEEE Electron Device Letters 41.9 (2020): 1296-1299.
    [9] A. Beckers, E. Charbon, C. Enz, B. Parvais. "Cryogenic MOSFET Modeling for Large-Scale Quantum Computing" Présentée le 28 mai (2021) : 149-157.
    [10] F. H. Gaensslen, V. L. Rideout, E. J. Walker, and J. J. Walker,“Very small MOSFET’s for low-temperature operation,” IEEE Trans.Electron Devices, vol. 24, no. 3, pp. 218–229, Mar. 1977.
    [11] R. M. Fox and R. C. Jaeger, "MOSFET behavior and circuit considerations for analog applications at 77 K," IEEE Trans. Electron Devices,vol. 34, no. 1, pp. 114–123, Jan. 1987.
    [12] Benosman, M, Zerga, A, Dujardin, F. New Coefficients of the Minority Carrier Lifetime and Bandgap Narrowing Models in the Transparent Emitter of Thin Film Silicon Solar Cells. Active and Passive Electronic Components (2001), 141-153.
    [13] Sentaurus™ Device User Guide, Version S-2021.06, June 2021, Synopsys, Inc.
    [14] O. Marcelot, A. Panglosse, P. Martin-Gonthier and V. Goiffon, "TCAD Calibra-tion at Cryogenic Temperatures for CMOS Image Sensor Simulations," in IEEE Transactions on Electron Devices, vol. 69, no. 11, pp. 6188-6194, Nov. 2022, doi: 10.1109/TED.2022.3207120.
    [15] C. Lombardi., et al. "A Physically Based Mobility Model for Numerical Simu-lation of Nonplanar Devices," IEEE Transactions on Computer-Aided Design, vol. 7, no. 11, pp. 1164–1171, 1988.
    [16] C. Canali., et al. "Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field and Temperature," IEEE Transac-tions on Electron Devices, vol. ED-22, no. 11, pp. 1045–1047, 1975.
    [17] N. Khalil., et al. "ULSI Characterization with Technology Computer-Aided De-sign." Doctoral dissertation, Technische Universität Wien, Fakultät für Elektro-technik, 1995.
    [18] Advanced Calibration for Device Simulation User Guide, Version H-2013.03, March 2013, Synopsys, Inc.
    [19] Taur, Y. and Ning, T.H. (2009) Fundamentals of Modern VLSI Devices. 2nd Edition, Cambridge University Press, Cambridge.
    [20] S. Takagi, A. Toriumi, M. Iwase and H. Tango, "On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration," in IEEE Transactions on Electron Devices, vol. 41, no. 12, pp. 2357-2362, Dec. 1994, doi: 10.1109/16.337449.
    [21] Y. Liu, L. Lang, Y. Chang, Y. Shan, X. Chen and Y. Dong, "Cryogenic Characteristics of Multinanoscales Field-Effect Transistors," in IEEE Transactions on Electron Devices, vol. 68, no. 2, pp. 456-463, Feb. 2021, doi: 10.1109/ TED.2020.3041438.
    [22] A. Beckers, F. Jazaeri and C. Enz, "Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors," in IEEE Electron Device Letters, vol. 41, no. 2, pp. 276-279, Feb. 2020, doi: 10.1109/LED.2019.2963379.
    [23] Milton Ohring, Lucian Kasprzak, in "Reliability and Failure of Electronic Materials and Devices (Second Edition) ", 2015. pp. 333
    [24] Lohith K S, Mahesh. "Electrical Properties of Materials - Electronic conduction in solids",2018.
    [25] Stephane Monfray, Thomas Skotnicki, "UTBB FDSOI: Evolution and opportunities", Solid-State Electronics,Volume 125, 2016, Pages 63-72, ISSN 0038-1101.
    [26] Fenouillet-Beranger C. "Efficient multi-VT FDSOI technology with UTBOX for low power circuit design." 2010 symposium on VLSI technology digest of technical papers; 2010. p. 65, 66.
    [27] Y.i. Han, F. Xi, F. Allibert, I. Radu, S. Prucnal, J.-H. Bae, et al. "Characterization of fully silicided source/drain SOI UTBB nMOSFETs at cryogenic temperatures." Solid State Electron, 192 (2022), p. 108263
    [28] F. Silveira, D. Flandre, and P. G. A. Jespers, "A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA, " IEEE J. Solid-State Circuits, vol. 31, pp.1314–1319, Sep. 1996.
    [29] Ming-Yu Chang, Wei-Chieh Chang, Yeong-Her Wang, and Meng-Hsueh Chiang, "Simulation Study of the Subthreshold Characteristics of Cryogenic UTBB FDSOI with Interface Traps and Back-Gate Operation," NMDC 2024-IEEE 19th Nanotechnology Materials and Devices Conference (NMDC), Salt Lake City, Utah, United States.

    無法下載圖示 校內:2027-06-17公開
    校外:2027-06-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE