簡易檢索 / 詳目顯示

研究生: 蔡沐恭
Tsai, Mu-Gong
論文名稱: 製備CIGS靶材並應用於脈衝雷射鍍膜研究
Study of CIGS Targets Synthesis for Pulsed Laser Deposition
指導教授: 陳引幹
Chen, Ing-Kann
共同指導教授: 齊孝定
Qi, Xiao-Ding
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 116
中文關鍵詞: 硒化銅銦鎵靶材燒結脈衝雷射沉積法飛秒雷射
外文關鍵詞: CIGS, target sintering, pulsed laser deposition, femtosecond laser
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以純元素(Cu、In、Ga、Se)與硒化物(Cu2Se、In2Se3、Ga2Se3)二種類前驅物製作硒化銅銦鎵(Copper Indium Gallium Diselenide, CIGS)靶材,並利用脈衝雷射沉積法(pulsed laser deposition, PLD)製備CIGS薄膜。其後將所成長之CIGS薄膜進行不同溫度之退火處理,分析薄膜成份結構及其光電性質。以PLD之鍍膜結果來檢驗自製靶材並與商用靶材結果比較。
    由研究結果得知,以硒化物前驅物於700 oC燒結8小時所製成之靶材,經由XRD分析得知具有單一CuIn0.7Ga0.3Se2結晶相,且燒結後之重量損失較小;其以PLD所製作之薄膜亦具有CuIn0.7Ga0.3Se2結晶結構,薄膜於500 oC退火1小時後,薄膜能隙值為1.21 eV,載子遷移率可提升至33 cm2 V-1 s-1;並由光電流量測,可得知薄膜於照光後電流可提升1.25倍,並可與Mo電極呈ohmic接面特性,可得知其與商用靶材薄膜具有相近的性質,因此以硒化物前驅物製作之靶材擁有可取代商用靶材進行PLD實驗之潛力。

    In this study, we discussed different kinds of pure elements (Cu, In, Ga, Se) and selenide compounds (Cu2Se, In2Se3, Ga2Se3) precousors to synthesize the CIGS (Copper Indium Gallium Diselenide) targets and then used these homemade targets to prepare CIGS thin films by pulsed laser deposition (PLD). Furthermore, the effects of different annealing temperature on the structure, optical and electrical properties of these CIGS thin films were studied and compared with those of the commercial target.
    After sintering at 700 oC for 8 hours, the target made from selenide compounds showed a pure CuIn0.7Ga0.3Se2 phase by XRD result and showed less weight loss. The CIGS thin films prepared by the selenide-compound target also showed the CuIn0.7Ga0.3Se2 phase. After annealing at 500 oC for 1 hour, the band gap energy of the film is 1.21 eV, and the carrier mobility rised to 33 cm2 V-1 s-1. From the photocurrent measurement, the current of the film is 1.25 times larger than dark current and it formed ohmic contact with Mo electrodes. The above results showed close to those of the films prepared by commercial target. After all, the results of selenide-compound target exhibited that it can be considered to substitute the commercial target in the PLD process.

    誌謝 I 摘要 II Abstract III 總目錄 IV 表目錄 VI 圖目錄 IX 第一章 緒論 1 1-1前言 1 1-2研究動機及目的 3 第二章 研究背景與文獻回顧 6 2-1銅銦鎵硒(CIGS)薄膜太陽能電池簡介 6 2-1-1 太陽能電池種類 6 2-1-2 CIGS吸收層性質 8 2-1-3 CIGS吸收層製程 9 2-1-4 CIGS太能電池元件結構 10 2-2 脈衝雷射沉積法簡介 13 2-2-1脈衝雷射鍍膜原理 13 2-2-2 CIGS靶材製作技術 16 第三章 實驗方法與分析儀器 27 3-1實驗方法與步驟 27 3-1-1 CIGS靶材製作 27 3-1-2 脈衝雷射沉積CIGS薄膜 28 3-1-3 CIGS薄膜退火處理 29 3-2使用藥品 30 3-3使用儀器與分析設備 31 第四章 實驗結果與討論 39 4-1 CIGS靶材製作研究 39 4-1-1前驅物對靶材成份影響 42 4-1-2 燒結溫度對靶材成份影響 45 4-1-3 燒結時間對靶材成份影響 46 4-1-4 自製靶材與商用靶材成份比較 48 4-2 以不同CIGS靶材進行PLD鍍膜研究 60 4-2-1 不同CIGS靶材對薄膜成份影響 60 4-2-2 不同CIGS靶材對薄膜結晶結構影響 61 4-2-3 不同CIGS靶材對薄膜表面形貌影響 62 4-2-4 不同CIGS靶材對薄膜之光穿透度與能隙值影響 63 4-2-5 不同CIGS靶材對薄膜之霍爾效應影響 65 4-3 CIGS薄膜退火處理研究 76 4-3-1 退火溫度對CIGS薄膜成份影響 76 4-3-2 退火溫度對CIGS薄膜結晶結構影響 77 4-3-3 退火溫度對CIGS薄膜表面形貌影響 78 4-3-4 退火溫度對CIGS薄膜光穿透度與能隙值影響 79 4-3-5 退火溫度對CIGS薄膜霍爾效應影響 81 4-3-6 CIGS薄膜之光電流量測 83 第五章 結論 105 參考文獻 108

    [1] http://www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_ english/reports_and_publications/statistical_energy_review_2011/ STAGING/local_assets/pdf/statistical_review_of_world_energy_ full_report_2011.pdf
    [2] S. Marsillac, P. D. Paulson, M. W. Haimbodi, R. W. Birkmire, and W. N. Shafarman, “High-efficiency solar cells based on Cu.InAl.Se2 thin films”, Applied Physics Letters, 81, 1350-1352 (2002)
    [3] M. Yuan, D. B. Mitzi, W. Liu, A. J. Kellock, S. J. Chey, and V. R. Deline, “Optimization of CIGS-Based PV Device through Antimony Doping”, Chemistry of Materials, 22, 285-287 (2010)
    [4] J. Palm, V. Probst, W. Stetter, R. Toelle, S. Visbeck, H. Calwer, T. Niesen, H. Vogt, O. Hernández, M. Wendl, F. H. Karg, “CIGSSe thin film PV modules: from fundamental investigations to advanced performance and stability”, Thin Solid Films, 451-452, 544-551 (2004)
    [5] 楊昌中,”能源領域中的奈米科技研究”,工業研究院能源與環境研究所,(2006)
    [6] M. A. Green, K. Emery, Y. Hishikawa and W. Warta, “Solar cell efficiency tables (version 37)”, Progress in Photovoltaics: Research and Applications, 19, 84-92 (2011)
    [7] I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill Factor”, Progress in Photovoltaics: Research and Applications, 16, 235-239 (2008)
    [8] P Jackson, D Hariskos, E Lotter, S Paetel, R Wuerz, R Menner, W Wischmann and M Powalla, ”New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%”, 25th EU PVSEC WCPEC-5, Valencia, Spain, (2010)
    [9] J.W. Chu and D. Honeman, “Degradation processes in polycrystalline copper indium di-selenide photoelectrochemical cells”, Solar cells, 31, 197-201 (1991)
    [10] M. Nishitani, T. Negami, M. Ikeda, N. Kohara, M. Terauchi, T. Wada ,T. Hirao, “Photovoltaic properties of Cu(In,Ga)Se2 thin film solar cell fabricated by co-evaporation process”, First WCPEC, Dec. 5-9, Hawaii, (1994)
    [11] G.S. Chen, J.C.Yang, Y.C.Chan, L.C.Yang, W. Huang , “Another route to fabricate single-phase chalcogenides by post-selenization of Cu–In–Ga precursors sputter deposited from a single ternary target”, Solar Energy Materials & Solar Cells, 93, 1351-1355 (2009)
    [12] F.B. Dejene, “Material and device properties of Cu(In,Ga)Se2 absorber films prepared by thermal reaction of InSe/Cu/GaSe alloys to elemental Se vapor”, Current Applied Physics, 10, 36-40 (2010)
    [13] F.B. Dejene, “The structural and material properties of CuInSe2 and Cu(In,Ga)Se2 prepared by selenization of stacks of metal and compound precursors by Se vapor for solar cell applications”, Solar Energy Materials & Solar Cells, 93, 577-582 (2009)
    [14] K. T. L. De Silva, W. A. A. Priyantha , J. K. D. S. Jayanetti, B. D. Chithrani, W. Siripala, K. Blake, I. M. Dharmadasa, “Electrodeposition and characterization of CuInSe2 for applications in thin film solar cells”, Thin Solid Films, 382, 158-163 (2001)
    [15] J. F. Guillemoles, P. Cowache, S. Massaccesi, L. Thouin, S. Sanchez, D. Lincot, J.Vedel, “Solar cells with improved efficiency based on electrodeposited copper indium diselenide thin films”, Advanced Materials, 6, 379-381 (1994)
    [16] M. M. Islam , S. Ishizuka , A. Yamada , K. Sakurai , S. Niki , T. Sakurai , K. Akimoto, “CIGS solar cell with MBE-grown ZnS buffer layer”, Solar Energy Materials & Solar Cells, 93, 970-972 (2009)
    [17] J. Levoska, S. Leppavuori, F. Wang, O. Kusmartseva, A. E. Hill, E. Ahmed, R. D. Tomlinson, R. D. Pikington, “Pulsed laser ablation deposition of CuInSe2 and CuIn1-xGaxSe2 thin films”, Physica Scripta, T54, 244-247 (1994)
    [18] A. S. Kindyak, V. V. Kindyak, V. F. Gremenok, “Energy-gap variations in thin laser-deposited Cu(In,Ga)Se2 films”, Materials Letters, 28, 273-275 (1996)
    [19] M. A. Contreras, J. Tuttle, A. Gabor, A. Tennant, K. Ramanathan, S. Asher, A. Franz, J. Keane, L. Wang, J. Scofield and, R. Noufi, “High Efficiency Cu(ln,Ga)Se2-based Solar Cells: Processing of Novel Absorber Structures”, First WCPEC, Dec. 5-9, Hawaii, (1994)
    [20] K. Ramanathan, G. Teeter, J. C. Keane, R. Noufi, “Properties of high-efficiency CuInGaSe2 thin film solar cells”, Thin Solid Films, 480-481, 499-502 (2005)
    [21] R. Kimura, T. Nakada, and P. Fons, “Photoluminescence properties of sodium incorporation in CuInSe2 and CuIn3Se5 thin film”, Solar energy materials and solar cells, 67, 289-295 (2001)
    [22] D. Braunger, D. Hariskos, G. Bilger, U. Rau, H. W. Schock, “Influence of sodium on the growth of polycrystalline Cu(In,Ga)Se2 thin film”, Thin solid film, 361-362, 161-166 (2000)
    [23] M. Ruckh, D. Schmid, M. Kaiser, R. Schaffler, T. Walter, H. W. Schock, “Influence on substrate on the Electrical Properties of Cu(In,Ga)Se2 thin film”, 1st World Conference on Photovolt Energy Conversion,.156-159 (1994)
    [24] T. J. Vink, M. A. J. Somers, J. L. C. Daams, A. G. Dirks, “Stress, strain, and microstructure of sputter-deposited Mo thin films”, Journal of applied physics, 70, 4301-4308 (1991)
    [25] W. N. Shafarman and J. E. Phi1lips, “Direct Current-voltage Measurments of the Mo/CulnSe2 Contact on Operating Solar Cells”, 25th'PVSC, Washington, D.C., (1996)
    [26] U. Rau, H.W. Schock, “Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges”, Applied Physics A, 69, 131-147 (1999)
    [27] R. Schaffler, and H. W. Schock, “High mobility ZnO:Al thin film grown by reactive DC magnetron sputtering”, Photovoltaic Specialists Conference, 23th IEEE, USA, (1993)
    [28]A. Romeo, M. Terheggen, D. Abou-Ras, D. L. Batzner, F.-J. Haug, M. Kalin, D. Rudamann and A. N. Tiwari, “Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells”, Progress in Photovoltaics: Research and Applications,.12, 93-111 (2004)
    [29]D. B. Chrisey, G. K. Hubler, “Pulsed laser deposition of thin films”, Wiley; 1 edition, 167-171 (1994)
    [30]M. Sanz, M. Walczak, R. De Nalda, M. Oujja, José F. Marco, J. Rodriguez, Jesús G. Izquierdo, L. Bañares, M. Castillejo, “Femtosecond pulsed laser deposition of nanostructured TiO2 films”, Applied Surface Science, 255, 5206-5210 (2009)
    [31] J. L. H. Chau, M. C. Yang, T. Nakamura, S. Sato, C. C. Yang, C. W. Cheng, “Fabrication of ZnO films by femtosecond pulsed laser deposition”, Optics & Laser Technology, 42, 1337-1339 (2010)
    [32] S. Heiroth, J. Koch, T. Lippert, A. Wokaun, D. Günther, F. Garrelie, and M. Guillermin, “Laser ablation characteristics of yttria-doped zirconia in the nanosecond and femtosecond regimes”, Journal of Applied Physics, 107,014908 (2010)
    [33] R. Teghil, L. D'Alessio, A. De Bonis, A. Galasso, P. Villani, A. Santagata, “Femtosecond pulsed laser ablation and deposition of titanium carbide”, Thin Solid Films, 515, 1411-1418 (2006)
    [34] C. Ristoscu, G. Socol, C. Ghica, I. N. Mihailescu, D. Gray, A. Klini, A. Manousaki, D. Anglos, C. Fotakis, “Femtosecond pulse shaping for phase and morphology control in PLD Synthesis of cubic SiC”, Applied Surface Science, 252, 4857-4862 (2006)
    [35] Zs. Geretovszky, Z. Kántor, T.Szörényi, “Structure and composition of carbon-nitride films grown by sub-ps PLD”, Applied Surface Science, 208-209, 547-552 (2003)
    [36] F. Garrelie , A.S. Loir , C. Donnet, F. Rogemond, R. Le Harzic, M. Belin, E. Audouard, P. Laporte, “Femtosecond pulsed laser deposition of diamond-like carbon thin films for tribological applications”, Surface and Coatings Technology, 163-164, 306-312 (2003)
    [37] R. Teghil , L. D'Alessio, A. De Bonis, D. Ferro, A. Galasso, G. Lanza, A. Santagata, P. Villani, D. J. Sordelet, “Ultra-short pulse laser ablation of Al70Cu20Fe10 alloy- Nanoparticles generation and thin films deposition”, Thin Solid Films, 517, 1880-1886 (2009)
    [38] G. Ausanio, A. C. Barone, V. Iannotti, P. Scardi, M. D’Incau, S. Amoruso, M. Vitiello and L. Lanotte, “Morphology, structure and magnetic properties of (Tb0.3Dy0.7Fe2)100−xFex nanogranular films produced by ultrashort pulsed laser deposition”, Nanotechnology, 17, 536-542 (2006)
    [39] L. D’Alessio, A. De Bonis, A. Galasso, A. Morone, A. Santagata, R. Teghil, P. Villani, M. Zaccagnino, “Characterisation of ultrashort pulse laser ablation of SmBaCuO”, Applied Surface Science, 248, 295-298 (2005)
    [40] A. Tverjanovich, E. N. Borisov, E. S. Vasilieva, O. V. Tolochko, I. E. Vahhi, S. Bereznev, Y. S. Tveryanovich, “CuInSe2 thin films deposited by UV laser ablation”, Solar Energy Materials & Solar Cells, 90, 3624-3632 (2006)
    [41] S. Ando, S. Endo, Y. Makita and T. Tsukamoto, “Preparation of CuInSe2 Thin Films by Pulsed Laser Ablation Technique Using CuInSe2 Bulk Crystal Targets”, Proceedings of SPIE, 3550, 156-168 (1998)
    [42] P. Victor, J. Nagaraju, S. B. Krupanidhi, “Pulsed excimer laser ablated copper indium diselenide thin films”, Solid State Communications, 116, 649–653 (2000)
    [43] A. Yoshida , N. Tanahashi , T. Tanaka , Y. Demizu , Y. Yamamoto, T. Yamaguchi, “Preparation of CuInSe2 thin films with large grain by excimer laser ablation”, Solar Energy Materials and Solar Cells, 50, 7-12 (1998)
    [44] P. Luo, C. Zhu, G. Jiang, “Preparation of CuInSe2 thin films by pulsed laser deposition the Cu–In alloy precursor and vacuum selenization”, Solid State Communications, 146, 57–60 (2008)
    [45] C. Suryanarayana, E. Ivanov, R. Noufi, M.A. Contreras, J.J. Moore, “Synthesis and processing of a Cu-In-Ga-Se sputtering target”, Thin Solid Films, 332, 340-344 (1998)
    [46] M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara, and B. A. Korgel, “Synthesis of CuInS2, CuInSe2, and Cu(InxGa1-x)Se2 (CIGS) Nanocrystal “Inks” for Printable Photovoltaics”, Journal of the American Chemical Society, 130, 16770-16777 (2008)
    [47] Z. Ning, Z. Da-Ming, Z. Gong, ”An investigation on preparation of CIGS targets by sintering process”, Materials Science and Engineering B, 166, 34-40 (2010)
    [48] Materials Science International Team MSIT®, and J. Shen, ”Cu-In-Se (Copper-Indium-Selenium)”, G. Effenberg, S. Ilyenko, (edit). SpringerMaterials - The Landolt-Börnstein Database
    [49] J. Tang, S. Hinds, S. O. Kelley, and E. H. Sargent, “Synthesis of Colloidal CuGaSe2, CuInSe2, and Cu(InGa)Se2 Nanoparticles”, Chemistry of Materials, 20 ,6906-6910 (2008)
    [50] S. Ahn, C. Kim, J. Yun, J. Lee, K. Yoon, “Effects of heat treatments on the properties of Cu(In,Ga)Se2 Nanoparticles”, Solar Energy Materials & Solar Cells, 91, 1836-1841 (2007)
    [51] R. Viswanathan and J. G. Edwards, “Condensed-Phase Transitions during Effusion of Gallium Selenide”, Journal of Physical Chemistry, 102, 2419-2426 (1998)
    [52] H. J. Moore, D. L. Olson, and R. Noufi, “Use of the Effective Heat of Formation Model to Determine Phase Formation Sequences of In-Se, Ga-Se, Cu-Se, and Ga-In Multilayer Thin Films”, Journal of Electronic Materials, 27, 1334-1340 (1998)
    [53] E. Millon, J. Perriére, R. M. Défourneau, D. Défourneau, O. Albert, J. Etchepare, “Femtosecond pulsed-laser deposition of BaTiO3”, Applied Physics A, 77, 73-80 (2003)
    [54] N. F. Mott and E. A. Davis, “Electron Processes in Non-crystalline Materials, Clarendon Press”, Oxford, (1979)
    [55] S. H. Wei, S. B. Zhang, and A. Zunger, “Effects of Ga addition to CuInSe2 on its electronic, structural, and defect properties”, Applied Physics Letters, 72, 3199-3201 (1998)
    [56] B. Pejova1 and I. Grozdanov, “Chemical Deposition and Characterization of Cu3Se2 and CuSe Thin Films”, Journal of Solid State Chemistry, 158, 49-54 (2001)
    [57] D. G. Zhao, S. J. Xu, M. H. Xie, and S. Y. Tong, “Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire”, Applied Physics Letters, 83, 677-679 (2003)
    [58] A. Ashida, Y. Hachiuma, N. Yamamoto, T. Ito, Y. Cho, “CulnSe2 thin films prepared by quasi-flash evaporation of In2Se3 and Cu2Se”, Journal of Materials Science Letters, 13, 1181-1184 (1994)
    [59] D. A. Neamen, “Fundamentals of Semiconductor Physics and Devices”, McGraw-Hill Inc. 1st edit (2003)
    [60] M. J Kim, S. H. Cho S. H. Lee, S. G. Lee, S. H. Sohn, “A study of CuGaSe2 thin film growth from multilayered precursors”, Current Applied Physics, 11, S93-S98 (2011)
    [61] C. H. Champness, “Diffusion length estimation in CuInSe2-based cells by the photocurrent–capacitance method”, Thin Solid Films, 431 –432, 172–175 (2003)
    [62] T. Wada, N. Kohara, S. Nishiwaki, T. Negami, “Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells”, Thin Solid Films, 387, 118-122 (2001)

    無法下載圖示 校內:2016-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE