簡易檢索 / 詳目顯示

研究生: 黃家輝
Hwang, Chia-Hui
論文名稱: 物理氣相傳輸法生長碳化矽單晶之數值模擬系統建立及其製程探討
Study of Silicon Carbide Growth by Physical Vapor Transport Method Through Development of a Numerical System
指導教授: 黃文星
Hwang, Weng-Sing
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 97
中文關鍵詞: 碳化矽物理氣相傳輸法數值模擬
外文關鍵詞: Silicon carbide, Physical vapor transport method, Numerical simulation
相關次數: 點閱:140下載:16
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 物理氣相傳輸法(Physical vapor transport method)為製備碳化矽塊材之主要方式,本研究以數值方法針對其高溫石墨長晶爐內部進行熱場及流場之模擬分析,採用有限差分法建立模擬系統,包含電磁、熱傳、質傳模組及成核能計算。本研究觀察及分析數值模擬之結果,由此對製程進行改善。
    由熱場模擬結果發現:為避免熱應力產生,在晶種尺寸增大時,徑向溫度分佈均勻化是改善重點。
    由流場模擬結果可知:反應氣氛由粉末晶源高溫區分解產生後,部分被低溫區之再結晶反應消耗,而沒有傳輸至晶種表面,且隨著高溫區孔隙度上升,對反應氣氛流動有加速作用;相對地,低溫區因再結晶而形成一緻密區塊阻擋氣氛流動,低溫區過大將降低粉末利用率且不利反應氣氛傳輸。
    由成核自由能之計算結果發現:碳化矽晶體的成核模式與晶種表面過飽和度及表面自由能狀態有關,且存在一臨界過飽和度為二維與三維成核的轉變點。碳化矽生長過程中,晶種表面與粉末晶源間之軸向溫度梯度越小,晶種表面過飽和度越低,碳化矽不同多型間之成核能差越大,較不易發生多型混雜生成的狀況。但是,當晶體厚度增加,晶種與晶體間的晶格失配可能使界面能提高,並在低於臨界過飽和度時產生三維核島,易造成不規則排列。
    綜合以上,本研究提出一加熱線圈集中於長晶前端與粉末晶源的線圈非等距設計,兼顧粉末晶源之充分加熱及縮小軸向和徑向溫度梯度,並且在晶體厚度增加後可藉由降低填充氬氣壓均勻調整過飽和度,藉此避免三維核島因晶格失配而出現,避免異質介在物和缺陷在晶體中產生。

    Physical vapor transport method (PVT) is the major process for silicon carbide bulk production. In this study, thermal and flow numerical simulation system for high-temperature PVT crucible is built by finite element method (FDM), including electromagnetic induction heating module, heat transport module, mass transport module and nucleation energy calculation. Simulation results are checked and analyzed and some process improvements are brought up according to them.
    From thermal simulation results, it is a key point to reduce the radial temperature gradient on seed surface for avoiding thermal stress, when seed size enlarged.
    From species transport simulation results, it is found that reaction species are not produced from powder source surface but mainly come from hotter zone of powder source. Powders in hotter zone sublimate to reaction species and the flow accelerates because of increasing porosity. However, parts of reaction species are consumed in cooler zone instead of reaching seed surface. Recrystallization occurs in cooler zone and makes powders denser to block gas flow.
    From calculation of nucleation energy, it found that the nucleation mode of silicon carbide crystal is related to supersaturation ratio and surface energy status of seed surface. Furthermore, there is a transition from 2D to 3D nucleation mode and it is called critical supersaturation ratio. The 3D islands may bring about arrangement disorder and be the origin of defects. In growth process, the lower supersaturation ratio is proper for single-polytype crystal growth because of larger nucleation energy difference between polytypes, but it should not be lower than critical supersaturation to avoid 3D islands. With crystal thickness increasing, the interfacial energy may rise because of accumulating crystal mismatch and result in 3D islands occurring.
    Furthermore, the supersaturation ratio is in a positive correlation with axial temperature gradient between seed and powder source. Therefore, the supersaturation ratio can be adjusted by crucible temperature distribution.
    To sum up, a non-equidistant heating coils design is brought up to look after both the proper powder source utilization and temperature gradient reduction. In this improved design, the coils are separated to two groups and respectively center around seed surface (or crystal front) and powder source. Moreover, to avoid 3D nucleation islands occurring, the supersaturation should be risen above critical supersaturation ratio by reducing inner argon pressure with crystal thickening.

    摘要 I ABSTRACT III 誌謝 V 目錄 VII 表目錄 XI 圖目錄 XII 符號對照表 XV 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 2 1.2.1 碳化矽材料特性及其應用 2 1.2.2 碳化矽塊材之主要製備方法 5 1.2.3 碳化矽塊材之晶體缺陷 7 1.3 研究目的 10 第二章 理論基礎 16 2.1 電磁感應模擬原理 16 2.1.1 電磁感應控制方程之推導 17 2.1.2 熱能轉換公式 19 2.2 熱傳模擬原理 20 2.2.1 熱傳導 20 2.2.2 熱對流 21 2.2.3 熱輻射 22 2.2.4 複合熱導係數 22 2.2.5 多孔質熱導係數 23 2.3 質傳模擬原理 23 2.3.1 質傳控制方程 24 2.3.2 平衡分壓與過飽和度 27 2.4 成核生長原理 29 2.4.1 成核與生長機構 29 2.4.2 長晶速率 32 第三章 數值方法 36 3.1 數值模擬之爐體規格 36 3.2 數值計算流程 36 3.3 電磁模型之解析解法 38 3.4 熱傳模型之數值方法 39 3.4.1 非穩態熱傳差分方程建立 39 3.4.2交替隱式差分法求解 41 3.5 質傳模型之數值方法 42 3.5.1 超鬆弛疊代法 43 3.5.2 時間步選取 45 3.6 邊界條件 45 3.6.1 熱傳模擬之邊界條件 45 3.6.2 質傳模擬之邊界條件 47 3.7 熱物參數取值 48 第四章 結果與討論 57 4.1 溫度場數值模擬結果與實驗驗證 57 4.2 不同尺寸晶種之溫度分佈差異 58 4.3 多孔粉末區內之質傳行為 59 4.4 過飽和度對成核生長模式之影響 61 4.5 加熱線圈位置對晶體生長的影響 62 4.6 填充內壓對晶體生長的影響 64 第五章 結論 89 參考文獻 91 附錄 95

    [1] A. Powell, J. Jenny, S. Muller, H.M. Hobgood, V. Tsvetkov, R. Lenoard and C. Carter, “Growth of SiC substrates,” International Journal of High Speed Electronics and Systems, vol. 16, no. 3, pp.751-777, 2006.
    [2] C.H. Carter, V.F. Tsvetkov, R.C. Glass, D. Henshall, M. Brady, St.G. Muller, O. Kordina, K. Irvine, J.A. Edmond, H.S. Kong, R. Singh, S.T. Allen and J.W. Palmour, “Progress in SiC: from material growth to commercial device development,” Material Science and Engineering B, vol.61-62, pp.1-8, 1999.
    [3] St.G. Muller, R.C. Glass, H.M. Hobgood, V.F. Tsvetkov, M. Brady, D. Henshall, J.R. Jenny, D. Malta and C.H. Carter, “The status of SiC bulk growth from an industrial point of view,” Journal of Crystal Growth, vol. 211, pp.325-332, 2000.
    [4] K. Semmelroth, N. Schulze and G. Pensl, “Growth of SiC polytypes by the physical vapour transport technique,” Journal of Physics: Condensed Matter, vol. 16, pp.1597-1610, 2004.
    [5] P. Raback, “Modeling of the sublimation growth of silicon carbide crystals,” 1999.
    [6] N. Ohtani, M. Katsuno, T. Fujimoto, T. Aigo and H. Yashiro, “Micropipe formation model via surface step interaction,” Material Science Forum, vol. 389-393, pp.99-102, 2002.
    [7] S.I. Maximenko, P. Pirouz and T.S. Sudarshan, “Open core dislocations and surface energy of SiC,” Material Science Forum, vol. 527-529, pp. 439-442, 2006.
    [8] M. Dudley, X.R. Huang, W. Huang, A. Powell and S. Wang, “The mechanism of micropipe nucleation at inclusions in silicon carbide,” American Institute of Physics, vol. 75, pp. 784-797,1999.
    [9] H. Li, X.L. Chen, D.Q. Ni and X.Wu, “An analysis of seed graphitization for sublimation growth of SiC bulk crystal,” Diamond and Related Materials, vol. 13, pp. 151-156, 2004.
    [10] J. Liu, J. Gao, J. Cheng, J. Yang and G. Qiao, “Effects of graphitization degree of crucible on SiC single crystal growth process,” Diamond and Related Materials, vol. 15, pp. 117-120, 2006.
    [11] D.S. Karpov, O.V. Bord, S.Y. Karpov, A.I. Zhmakin, M.S. Ramm and Y.N. Makarov, “Mass transport and powder source evolution in sublimation growth of SiC bulk crystals,” Material Science Forum, vol. 353-356, pp.37-40, 2001.
    [12] J.M. Dedulle, M. Anikin, M. Pons, E. Blanquet, A. Pisch, R. Madar and C. Bernard, “Free growth of 4H-SiC by sublimation method,” Material Science Forum, vol. 457-460, pp.71-74, 2004.
    [13] Z.G. Herro, B.M. Epelbaum, M. Bickermann, P. Masri and A. Winnacker, “Effective increase of single-crystalline yield during PVT growth of SiC by tailoring of temperature gradient,” Journal of Crystal Growth, vol. 262, pp.105-112, 2004.
    [14] E.Y. Tupitsyn, A. Arulchakkaravarthi, R.V. Drachev and T.S. Sudarshan, “Controllable 6H-SiC to 4H-SiC polytype transformation during PVT growth,” Journal of Crystal Growth, vol. 299, pp.70-76, 2007.
    [15] R. Yakimova, M. Syvajarvi, T. Iakimov, H. Jacobsson, R. Raback, A. Vehanen and E. Janzen, “Polytype stability in seeded sublimation growth of 4H-SiC boules,” Journal of Crystal Growth, vol. 217, pp.255-262, 2000.
    [16] X. Li, S. Jiang, X. Hu, J. Dong, J. Li, X. Chen, L. Wang, X. Xu and M. Jiang, “Polytype control in 6H-SiC grown via sublimation method,” Material Science Forum, vol. 527-529, pp.95-98, 2006.
    [17] R.A. Stein and P. Lanig, “Control of polytype formation by surface energy effects during the growth of SiC monocrystals by the sublimation method,” Journal of Crystal Growth, vol. 131, pp.71-74, 1993.
    [18] R.A. Stein, P. Lanig and S. Leibenzeder, “Influence of surface energy on the growth of 6H- and 4H-SiC polytypes by sublimation,” Material Science and Engineering B, vol. 11, pp.69-71, 1992.
    [19] V.D. Heydemann, N. Schulze, D.L. Barrett and G. Pensl, “Sublimation growth of 4H- and 6H-SiC boule crystals,” Diamond and Related Materials, vol. 6, pp. 1262-1265, 1997.
    [20] Q.S. Chen, H. Zhang, V. Prasad, C.M. Balkas and N.K. Yushin, “Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals,” Transactions of the ASME, vol. 123, pp.1098-1109, 2001.
    [21] R.H. Ma, Q.S. Chen, H. Zhang, V. Prasad, C.M. Balkas and N.K. Yushin, “Modeling of silicon carbide crystal growth by physical vapor transport,” Journal of Crystal Growth, vol. 211, pp.352-359, 2000.
    [22] M.V. Bogdanov, A.O. Galyukov, S.Y. Karpov, A.V. Kulik, S.K. Kochuguev, D.K. Ofengeim, A.V. Tsiryulnikov, M.S. Ramm, A.I. Zhmakin and Y.N. Makarov, “Virtual reactor as a new tool for modeling and optimization of SiC bulk crystal growth,” Journal of Crystal Growth, vol. 225, pp.307-311, 2001.
    [23] J. Geiser, O. Klein and P. Philip, “Numerical simulation of temperature fields during the sublimation growth of SiC single crystals, using WIAS-HiTNIHS,” Journal of Crystal Growth, vol. 303, pp.352-356, 2007.
    [24] M.S. Ramm, E.N. Mokhov, S.E. Demina, M.G. Ramm, A.D. Roenkov, Y.A. Vodakov, A.S. Segal, A.N. Vorob’ev, S.Y. Karpov, A.V. Kukik and Y.N. Makarov, “Optimization of sublimation growth SiC bulk crystals using modeling,” Material Science and Engineering B, vol. 61-62, pp.107-112, 1999.
    [25] K. Bottcher, “Heat and mass transport computation at the sublimation growth of SiC,” Crystal Research and Technology, vol. 36, pp.719-728, 2001.
    [26] Q.S. Chen, J.Y. Yan and V. Prasad, “Application of flow-kinetics model to the PVT growth of SiCcrystals,” Journal of Crystal Growth, vol. 303, pp.357-361, 2007.
    [27] M. Selder, L. Kadinski, Y. Makarov, F. Durst, P. Wellmann, T. Straubinger, D. Hoffmann, S. Karpov and M. Ramm, “Global numerical simulation of heat and mass transfer for SiC bulk crystal growth by PVT,” Journal of Crystal Growth, vol. 211, pp.333-338, 2000.
    [28] A.V. Kulik, M.V. Bogdanov, S.Y. Karpov, M.S. Ramm and Y.N. Makarov, “Theoretical analysis of the mass transport in the powder charge in long-term bulk SiC growth,” Material Science Forum, vol. 457-460, pp.67-70, 2004.
    [29] S.K. Lilov, “Study of the equilibrium processes in the gas phase during silicon carbide sublimation,” Material Science and Engineering B, vol. 21, pp.65-69, 1993.
    [30] S.K. Lilov, “Thermodynamic analysis of phase transformations at the dissociative evaporation of silicon carbide polytypes,” Diamond and Related Materials, vol. 4, pp. 1331-1334, 1995.
    [31] I. Markov and R. Kaischew, “Influence of supersaturation on the mode of crystallization on crystalline substrates,” Thin Solid Films, vol. 32, pp.163-167, 1976.
    [32] K. Kakimoto, B. Gao, T. Shiramomo, S. Nakano and S. Nishizawa, “Thermodynamic analysis of SiC polytype growth by physical vapor transport method,” Journal of Crystal Growth, vol. 324, pp.78-81, 2011.
    [33] A. Fissel, “Thermodynamic considerations of the epitaxial growth of SiC polytypes,” Journal of Crystal Growth, vol. 212, pp.438-450, 2000.
    [34] S. Verlaak, S. Steudel and P. Heremans, “Nucleation of organic semiconductors on inert substrates,” Physical Review B, vol. 68, 2003.
    [35] J. Palisaitis, R. Vasiliauskas and G. Ferro, “Epitaxial growth of thin films,” Physics of Advanced Materials Winter School, 2008.
    [36] X.J. Chen, L.J. Liu, H. Tezuka, Y. Usuki and K. Kakimoto, “Optimization of the design of a crucible for a SiC sublimation growth system using a global model,” Journal of Crystal Growth, vol. 310, pp.1810-1814, 2008.
    [37] Q.S. Chen, H. Zhang, V. Prasad , C.M. Balkas, N.K. Yushin and S. Wang, “Kinetics and modeling of sublimation growth of silicon carbide bulk crystal,” Journal of Crystal Growth, vol. 224, pp.101-110, 2001.
    [38] J.P. De Angeli, A.M.P. Valli, N.C. Reis and A.F. De Souza, “Finite difference simulations of the Navier-Stokes equations using parallel distributed computing,” SBAC-PAD '03 Proceedings of the 15th Symposium on Computer Architecture and High Performance Computing, pp.149-156, 2003.
    [39] L. Liu and J.H. Edgar, “Transport effects in the sublimation growth of aluminum nitride,” Journal of Crystal Growth, vol. 220, pp.243-253, 2000.
    [40] C. Mennetrier and W.M.B. Duval, “Physical vapor transport of mercurous chloride under a nonlinear thermal profile,” NASA Technical Memorandum, 1992.
    [41] A. Nadarajah, F. Rosenberger and J.I.D. Alexander, “Effect of buoyancy-driven flow and thermal boundary conditions on physical vapor transport,” Journal of Crystal Growth, vol. 118, pp.49-59, 1992.
    [42] J. Geiser, O. Klein and P. Philip, “Influence of anisotropic thermal conductivity in the apparatus insulation for sublimation growth of SiC: numerical investigation of heat transfer,” Institute for Mathematics and Its Applications, 2005.
    [43] J. Geiser and S. Irle, “Macro- and micro-simulations for a sublimation growth of SiC single crystals,” Humboldt University of Berlin, Department of Mathematics, Germany ,2008.

    下載圖示 校內:2014-07-26公開
    校外:2014-07-26公開
    QR CODE