簡易檢索 / 詳目顯示

研究生: 陳嘉銘
Chen, Chia-Ming
論文名稱: 以電泳法製備鈀/磷化銦蕭特基二極體氫氣感測器之研究
Study on Fabrication of Pd/InP Schottky Diode Hydrogen Sensors by Electrophoretic Deposition
指導教授: 陳慧英
Chen, Huey-Ing
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 117
中文關鍵詞: 奈米微粒電泳沈積蕭特基二極體氫氣感測器
外文關鍵詞: electrophoretic deposition, nanoparticle, hydrogen sensor, Schottky diode
相關次數: 點閱:73下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究將鈀微粒以電泳法(EPD)在磷化銦摻雜磊晶膜之基材上沈積鈀膜,以製備鈀蕭特基二極體作為氫氣感測器。首先,研製EPD元件並就其電性及氫氣感測表現與無電鍍(EP)及蒸鍍(TE)元件作一比較,並以Langmuir及Temkin等溫吸附模式進行穩態分析,求得氫氣感測之熱力學參數。其次,進一步探討製備變因,如鈀微粒粒徑及電泳操作電壓對EPD元件鈀膜表面微結構、電性及氫氣感測表現之影響。另外,藉由暫態響應分析,求出氫氣吸附動力學參數。
      實驗結果顯示,EPD元件具備極佳之電性整流特性,估計其蕭特基能障值可高達829 meV,遠大於TE(494 meV)及EP(568 meV)元件,另由氫氣感測結果可知,EPD元件具有靈敏度高、偵測下限低(<15 ppm)、偵檢範圍寬(15 ppm~1 %)、再現性佳、吸附與脫附速率快之優點,可開發為高性能氫氣感測元件。
      另由製備變因之探討可知,減小鈀微粒粒徑(ωo值減小),可提升蕭特基界面品質,而提高電泳操作電壓,則可增加鈀膜表面吸附活性座數目,使氫氣感測之靈敏度提高,偵檢範圍變寬。此外,由本實驗結果,可求出氫氣感測ΔHo及活化能分別為-53.5 kJ mol-1及22.4~27.2 kJ mol-1。

      In this study, electrophoretic deposition (EPD) combining with Pd nanoparticles was firstly employed to fabricate Pd/InP Schottky diode as hydrogen sensor. Firstly, the electric property and the hydrogen sensing performances of the EPD device were characterized and were compared with those of EP and TE diodes. From the Langmuir isotherm and Temkin isotherm analysis, the thermodynamic parameters of hydrogen detection on EPD diode were obtained. Furthermore, the effects of deposition variables, such as particle size and the EPD applied voltage, on the I-V characteristics, surface morphology and hydrogen sensing performances were investigated. In addition, the kinetics parameters were estimated from the transient analysis.
      From the fabrication of EPD device, it shows that this device demonstrates superior rectify-ing property with higher Schottky barrier height of 829 meV, which is far prevailing over the TE (494 meV) and EP (568 meV) ones. In addition, the EPD device exhibits merits of high hydrogen sensitivity, low detection limit (<15 ppm), wide detection range (15 ppm~1 %), good reproducibility and rapid response. It is promising to further develop the high-performance hydrogen sensors.
      From the results of parametric analysis, it shows that either decreasing the particle size (by decreasing ωo value) or increasing the EPD applied voltage can enhance the sensitivity and widen the detection range, attributed from the promoting the junction quality and increasing the number of adsorption sites. In addition, for the hydrogen detection process, the enthalpy change and the activation energy were estimated as -53.5 kJ mol-1 and 22.4~27.2 kJ mol-1, respectively.

    摘 要 Ⅰ 英文摘要-----------------------------------------------------------------II 總目錄----------------------------------------------------------------------IV 表目錄---------------------------------------------------------------------VII 圖目錄--------------------------------------------------------------------VIII 符號說明---------------------------------------------------------------------XII 第一章 緒論-----------------------------------------------------------------------1 1.1化學氣體感測器------------------------------------------------------------1 1.2氣體感測器種類------------------------------------------------------------1 1.2.1電阻式感測器------------------------------------------------------------1 1.2.2電化學式感測器----------------------------------------------------------2 1.2.3電壓式感測器------------------------------------------------------------3 1.2.4場效式感測器------------------------------------------------------------3 1.3氫氣感測器之需求----------------------------------------------------------4 1.4蕭特基二極體式氫氣感測器文獻回顧------------------------------------------5 1.5實驗目的與動機------------------------------------------------------------7 第二章 原理-----------------------------------------------------------------12 2.1電泳沈積-----------------------------------------------------------------12 2.1.1電泳沈積原理-----------------------------------------------------------12 2.1.2鈀奈米微粒之製備—油中水滴型(w/o)微乳化系統----------------------------14 2.2蕭特基二極體之元件特性---------------------------------------------------15 2.3氫氣感測理論-------------------------------------------------------------18 2.3.1氫氣感測機制-----------------------------------------------------------18 2.3.2穩態分析---------------------------------------------------------------18 2.3.3暫態分析---------------------------------------------------------------23 第三章 實驗方法-------------------------------------------------------------33 3.1藥品與材料---------------------------------------------------------------33 3.2儀器及分析方法-----------------------------------------------------------35 3.2.1分析儀器---------------------------------------------------------------35 3.2.2設備儀器---------------------------------------------------------------35 3.2.3分析方法---------------------------------------------------------------36 3.3實驗方法及步驟-----------------------------------------------------------37 3.3.1鈀奈米微粒之製備-----------------------------------------------------37 3.3.2元件製作-------------------------------------------------------------37 3.3.2 氫氣檢測實驗----------------------------------------------------------39 第四章電泳鈀/磷化銦二極體特性暨氫氣感測表現---------------------------------44 4.1二極體定性分析-----------------------------------------------------------44 4.1.1鈀微粒分析-------------------------------------------------------------44 4.1.2鈀膜分析---------------------------------------------------------------44 4.1.3電性特性分析-----------------------------------------------------------45 4.2氫氣感測表現-------------------------------------------------------------46 4.2.1穩態感測-------------------------------------------------------------46 4.2.2氫氣吸附模式分析-------------------------------------------------------49 4.2.3暫態感測---------------------------------------------------------------52 第五章 製備變因對鈀/磷化銦二極體氫氣感測表現之影響--------------------------77 5.1製備變因之影響-----------------------------------------------------------77 5.1.1鈀膜微結構分析---------------------------------------------------------77 5.1.2二極體元件電性分析-----------------------------------------------------78 5.2氫氣感測表現-------------------------------------------------------------79 5.2.1穩態感測---------------------------------------------------------------79 5.2.2暫態感測---------------------------------------------------------------82 5.3暫態氫氣感測分析---------------------------------------------------------82 第六章 結論與建議----------------------------------------------------------105 參考文獻-------------------------------------------------------------------108 自述

    1.吳仁彰,“電子鼻技術簡介”,科儀新知,21(5),86(2003).
    2.陶德和,“電流式氣體感測器簡介”科儀新知15(2),64(1993).
    3.I. Lundstrőm, “Approaches and mechanisms to solid state based sensing,” Sens. Acurators B, 35-36, 11 (1996).
    4.陳一誠,“金屬氧化物半導體型氣體感測器”,材料與科學,68,62(1992).
    5.呂志誠,“SOI MOSFET 氣體微感測器之設計與發展”,科儀新知,22(5),76(2001).
    6.W. J. Moon, J. H. Yu, and G. M. Choi “Selective gas detection of SnO2-TiO2 gas sensors,” J. Electroceram. , 13(1-3), 707 (2004).
    7.Y. M. Feng, M. Z. Atashbar, and X. Chen, “Mechanical and electrical characterization of β-Ga2O3 nanostructures for sensing applications,” IEEE Sens. J., 5(1), 20 (2005).
    8.N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, “Interaction of tin oxide surface with O2, H2O, and H2,” Surf. Sci., 86, 335, (1979).
    9.J. Guerin, K. Aguir, M. Bendahan, and C. L. Mauriat, “Thermal modelling of a WO3 ozone sensor response,” Sens. Acurators B, 104(2), 289 (2005).
    10.M. Penza, E. Milella, M. B. Alba, A. Quirini, and L. Vasanelli, “Selective NH3 gas sensor based on Langmuir-Blodgett polypyrrole film,” Sens. Acurators B, 40(2-3), 205 (1997).
    11.A. L. Kukla, Y. M.Shirshov, and S. A. Piletsky, “Ammonia sensors based on sensitive polyaniline films,” Sens. Acurators B, 37(3), 135 (1996).
    12.張青玉、宋隆預、李英正、楊淑卿、陶惟翰,“微型氧氣感測器簡介”,科儀新知,20(5),84(2000).
    13.邱秋燕、周澤川,“化學感測器之原理與應用”,化工,16(6),49(1993).
    14.C. Christofides and A. Madelis, “Solid-state sensors for trace hydrogen gas detection,” J. Appl. Phys., 68(6), R1(1990).
    15.施正雄,“壓電晶體化學感測器開發與應用”,科儀新知,21(4),60(2000).
    16.A. N. Nazarov, V. M. Pinchuk, T. V. Yanchuk, V. S. Lysenko, Y. N. Vovk, S. Tangan, S. Ashok, V. Kudoyarova, and E. I. Terukov, “Hydrogen effect on enhancement of defect reactions in semiconductors: example for silicon and vacancy defects,” Int. J. Hydrogen Energy, 26, 521 (2001).
    17.H. Kakikuma and M. Mohri, “Hydrogen-enhanced diffusion of plasma doped phosphorus in silicon,” Jpn. J. Appl. Phys., 34, L1325 (1995).
    18.吳建國,“金屬材料在氫氣能源工業中破壞的溫題”,材料科學,18B(1),13(1986).
    19.左峻德、何玉麗、林佑民、張詩韻,台灣燃料電池產業發展策略之研究,台灣經濟研究院(2001).
    20.T. Chunto and C. S. Yun, Technical feasibility and market potential for fuel cell in Taiwan, 台灣經濟研究院(2002).
    21.M. S. Sze., Semiconductor sensors, John Wiley&Sons, New York (1994).
    22.A. Mandelis and J. D. Winefordner, Physics, chemistry and technology of solid state gas sensor devices, John Wiley&Sons, New York (1993).
    23.劉博文,半導體元件物理,高立圖書有限公司(2003).
    24.I. Lundstrőm, M. S. Shivaraman, and C. M. Svensson, “A hydrogen-sensitive Pd-gate MOS transistor,” J. Appl. Phys., 46 (9), 3876 (1975).
    25.B. B. Kuliev, B. Lalevic, M. Yousuf, and D. M. Safarov, “New hydrogen-sensitive metal-InP diode,” Sov. Phys. Semicond., 17, 875 (1983).
    26.L. W. Chau, P. H. Jen, C. H. Ing, L. K. Wei, C. S. Ying, and Y. K. Hui “Hydrogen-sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, 48 (9), 1938 (2001).
    27.L. M. Lechuga, A. Calle, D. Golmayo, P. Tejedor, and F. Briones, “A new hydrogen sensor based on Pt/GaAs Schottky diode,” Sens. Acurators B, 4, 515 (1991).
    28.L. M. Lechuga, A. Calle, D. Golmayo, and F. Briones, “A new hydrogen sensor based on a Pt/GaAs Schottky diode,” J. Electrochem. Soc., 138, 159 (1991).
    29.K. W. Lin, H. I. Chen, C. T. Lu, Y. Y. Tsai, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A hydrogen sensing Pd/InGaP metal-semiconductor (MS) Schottky diode hydrogen sensor,” Semicond. Sci. Technol., 18 (7), 615 (2003).
    30.Y. Y. Tsai, K. W. Lin, H. I. Chen, C. T. Lu, H. M. Chuang, C. Y. Chen, and W. C. Liu, “Comparative hydrogen sensing performances of Pd- and Pt-InGaP metal-oxide-semiconductor Schottky diodes,” J. Vac. Sci. Technol. B, 21(6), 2471 (2003).
    31.K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, C. T. Lu, C. C. Cheng, and W. C. Liu, “Characteristics of Pd/InGaP Schottky diodes hydrogen sensors,” IEEE Sens. J., 4(1), 72 (2004).
    32.Y. Y. Tsai, K. W. Lin, C. T. Lu, H. I. Chen, H. M. Chuang, C. Y. Chen, C. C. Cheng, and W. C. Liu, “Investigation of hydrogen-sensing properties of Pd/AlGaAs Schottky diodes,” IEEE Trans. Electron Devices, 50(12), 2532 (2003).
    33.陸俊岑,高靈敏度砷化鋁鎵系列蕭特基式氫氣感測器之研製,成功大學微電子所碩士論文(2003).
    34.A. Arbab, A. L. Spetz, and I. Lundstrőm, “Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) device,” Sens. Acurators B, 15-16, 19 (1993)
    35.S. Roy, C. Jacob, C. Lang, and S. Basu, “Studies on Pd/3C-SiC Schottky junction hydrogen sensors at high temperature,” Sens. Actuator B, 94(3), 298 (2003).
    36.J. Schalwig, G. Muller, M. Rickhoff, O. Ambacher, and M. Stuzmam, “Group III- nitride-based gas sensors for combustion monitoring,” Mater. Sci. Eng. B, 93, 207 (2002).
    37.J. Kim, B. P. Gila, G. Y. Chung, C. R. Abernathy, S. J. Pearton, and F. Ren, “Hydrogen-sensitive GaN Schottky diodes,” Solid-state Electron., 47, 1069 (2003).
    38.B. Luther, S. D. Wolter, and S. E. Mohney, “High temperature Pt Schottky diode gas sensors on n-type GaN,” Sens. Actuator B, 56(1-2), 164 (1999).
    39.林鐵豫,金屬/稀土氧化物/半導體場效電晶體的製作與特性研究,中原大學電子工程學系碩士論文(2003).
    40.M. Lőfdahl, M. Eriksson, M. Johansson, and I. Lundstrőm, “Difference in hydrogen sensitivity between Pt and Pd field-effect devices,” J. Appl. Phys., 91 (7), 4275 (2002).
    41.L. M. Lechuga, A Calle, D. Golmayo, and F. Briones, “Different catalytic metals (Pt, Pd and Ir) for GaAs Schottky barrier sensors,” Sens. Acurators B, 7, 614 (1992).
    42.D. E. Aspnes and A. Heller, “Barrier height and leakage reduction in n-GaAs–platinum group metal Schottky barriers upon exposure to hydrogen,” J. Vac. Sci. Technol., B1, 602 (1983).
    43.K. Scharnagl, M. Eriksson, A. Karthigeyan, M. Burgmair, M. Zimmer, and I. Eisele, “Hydrogen detection at high concentrations with stabilized palladium,” Sens. Acurators B, 78, 138 (2001).
    44.R. C. Hughes and W. K. Schubert, “Thin films of Pd/Ni alloys for detection of high hydrogen concentrations,” J. Appl. Phys., 71 (1), 542 (1992).
    45.R. C. Hughes, W. K. Schubert, T. E. Zipperian, J. L. Rodriguez, and T. A Plut, “Thin film palladium and silver alloys and layers for metal-insulator-semiconductor sensors,” J. Appl. Phys., 62 (3), 1074 (1987).
    46.李嗣涔、管傑雄、孫台平,半導體物理元件,三民書局(1999).
    47.M. A. Bulter, “Mechanism of hydrogen sensing in Pd-Si metal- insulator-semiconductor diodes,” J. Appl. Phys., 58 (5), 2044 (1985).
    48.M. S. Shivaraman, I. Lundstrőm, C. Svensson, and H. Hammarsten, “Hydrogen sensitivity of palladium-thin oxide-silicon Schottky barriers,” Electron. Lett., 12(18), 483 (1976).
    49.L. L. Tongson, B. E. Knox, T. E. Sullivan, and S. J. Fonash, “Comparative study of chemical and polarization characteristics of Pd/Si and Pd/SiOx/Si Schottky- barrier-type devices,” J. Appl. Phys., 50, 1535 (1979).
    50.M. Yousuf, B. Kuliyev, B Lalevic, and T. L. Poteat, “Pd-InP Schottky diode hydrogen sensors,” Solid-State Electron., 25 (8), 753 (1982).
    51.T. L. Poteat, B. Lalevic, B. Kuliyev, M. Yousuf, and M. Chen, “MOS and Schottky diode gas sensors using transition metal electrodes,” J. Electron. Mater., 12, 181 (1983).
    52.H. Y. Nie and Y. Nannichi, “Pd-on GaAs Schottky contact: Its barrier height and response to hydrogen,” Jpan. J. Appl. Phys., 30 (5), 906 (1991).
    53.H. Hasegawa and H. Ohno, “Unified disorder induced gap state model for insulator-semiconductor and metal-semiconductor interfaces,” J. Vac. Sci. Technol. B, 4 (4), 1130 (1986).
    54.W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, S. Y. Cheng, and K. H. Yu, “Hydrogen- sensitive characteristics of a novel Pd/InP MOS Schottky diode hydrogen sensor,” IEEE Trans. Electron Devices, 48 (9), 1938 (2001).
    55.K. W. Lin, H. I. Chen, C. C. Cheng, H. M. Chuang, C. R. Lu, S. Y. Cheng K. H. Yu, and W. C. Liu, ”Characteristics of a new Pt/oxide/In0.49Ga0.51P hydrogen sensing Schottky diode,” Sens. Acurators B, 94, 145 (2003).
    56.W. C. Liu, K. W. Lin, H. I. Chen C. K. Wang, C. C. Cheng, S. Y. Cheng, and C. T. Lu, “A new Pt/oxdide/ In0.49Ga0.51P MOS Schottky diode hydrogen sensor,” IEEE Electron Device Lett., 23, 640 (2002).
    57.C. R. Lu, K. W. Lin, H. I. Chen, H. M. Chuang, C. Y. Chen, and W. C. Liu, “A new Pd-oxide-Al0.3Ga0.7As MOS hydrogen sensor,” IEEE Electorn Device Lett., 24 (6), 390 (2003).
    58.K. W. Lin, C. C. Cheng, S. Y. Cheng, K. H. Yu , C. K. Wang, H. M. Chuang, J. Y. Chen, C. Z. Wu, and W. C. Liu, “A novel Pd/oxide/GaAs metal-insulator semiconductor field-effect transistor (MISFET) hydrogen sensor,” Semicond. Sci. Technol., 16, 997 (2001).
    59.W. C. Liu, H. J. Pan, H. I. Chen, K. W. Lin, and C. K. Wang, “Comparative hydrogen sensing study of Pd/GaAs and Pd/InP metal–oxide-semiconductor Schottky diodes,” Jppn. J. Appl. Phys., 40, 6254 (2001).
    60.N. J. Wu, T. Hashizume, and H. Hasegawa, “Formation of oxide-free nearly ideal Pt/GaAs Schottky barriers by novel in-situ photopluse-assisted electrochemical process,” Jpn. J. Appl. Phys. Part 1, 33(1B), 936 (1994).
    61.H. Hasegawa, “Interface-controlled Schottky barriers on InP and related materials”, Solid-state Electron., 41 (10), 1441 (1996).
    62.S. Uno, T. Hashizume, S. Kasai, N. J. Wu, and H. Hasegawa, “0.86 eV Platinum Schottky barrier on Indium Phosphide by in situ electrochemical process and its application to MESFET,” Jpn. J. Appl. Phys., 35, 1258 (1996).
    63.N. J. Wu, T. Hashizume, H. Hasegawa, and Y. Amemiya, “Schottky contacts on n-InP with high barrier heights and reduced Fermi-level pinning by a novel in situ electrochemical process,” Jpn. J. Appl. Phy., 34, 1162 (1995).
    64.T. Sato, C. Kaneshiro and H. Hasegawa, “The strong correlation between interface microstructure and barrier height in Pt/n-InP Schottky contacts formed by an in situ electrochemical process,” Jpn. J. Appl. Phys., 38, 1103 (1999).
    65.H. I. Chen, Y. I. Chou, and C. Y. Chu, “A novel high-sensitive Pd/InP hydrogen sensor fabricated by electroless plating,” Sens. Acurators B, 85, 10 (2002).
    66.H. I. Chen and Y. I. Chou, “A comparative study of hydrogen sensing performances between electroless plated and thermal evaporated Pd/InP Schottky diode,” Semicond. Sci. Technol., 18, 104 (2003).
    67.H. I. Chen, C. K. Hsiung, and Y. I. Chou, “Characterization of Pd-GaAs Schottky diodes prepared by the electroless plating technique,” Semicond. Sci. Technol., 18, 620 (2003).
    68.熊健剛,無電鍍鈀/砷化鎵式氫氣感測器之製備及氫氣感測研究,
    成功大學化學工程系碩士論文(2003).
    69.粘正勳、邱聞鋒,“介電泳動─承先啟後的奈米操縱術”,物理雙月刊26 (3),491(2004).
    70.O. Omer, V. D. Biest, and L. J. Vandeperre, “Electrophoretic deposition of materials,” Annu. Rev. Mater. Sci., 29, 327 (1999).
    71.F. Tang, Y. Sakka and T. Uchikoshi, “Electrophoretic deposition of aqueous nano-sized zinc oxide suspensions on a zinc electrode,” Mater. Res. Bul., 38 (2), 207 (2003).
    72.E. Kissa, Dispersion characterization, testing, and measurement, Marcel Dekker, New York. (1999)
    73.Y. Fukada, N. Nagarajan, W. Mekky, Y. Bao, H. S. Kim, and P. S. Nicholson, “Electrophoretic deposition—mechanisms, myths and materials,” J. Mater. Sci., 39, 787 (2004).
    74.P. Sakar and P. S. Nicholson, “Electrophoretic deposition (EPD): mechanisms, kinetics, and application to ceramics,” J. Am. Ceram. Soc., 79 (8), 1987 (1996).
    75.林立呈,電泳披覆法製備錳鋅鐵氧磁體之研究,成功大學材料科學及工程學系碩士論文(2002).
    76.S. P. Moulik and B. K. Paul, “Structure, dynamics and transport properties of microemulsions,” Adv. Colloid Interface Sci., 78, 99 (1998).
    77.李潔如,牟中原,“微胞、乳化液的形成”,科學月刊,25(10),739 (1994).
    78.A. S. Bommarius, J. F. Holzwarth, D. I. C. Wang, and T. A. Hatton, “Coalescence and solubilizate exchange in a cationic four-component reversed micellar system,” J. Phys. Chem., 94 (18), 7232 (1990).
    79.P. D. Fletcher, A. M. Howe, and B. H. Robinson, “The kinetics of solubilisate exchange between water droplet of a water-in oil microemulsion,” J. Chem. Soc. Faraday Trans., 83, 985 (1987).
    80.M. P. Pileni, “Reverse micelles as microreactors,” J. Phys. Chem., 97, 6961 (1993).
    81.吳明立,微乳化系統製備雙金屬奈米粒子之研究,成功大學化學工程系博士論文(2001).
    82.B. L. Sharma, Metal-semiconductor Schottky barrier junctions and their applications, Plenum, New York (1984).
    83.D. A. Neamen, Semiconductor Physics and Devices, Irwin, Boston (1997).
    84.G. Eftekhari, “Variation in the effective Richardson constant of metal /GaAs and metal/InP contacts due to the effect of processing parameters,” Phys. Stat. Sol. A, 140, 194 (1993).
    85.L. P. Petersson, H. M. Dannetun, S. R. Karlsson and I. Lundstrőm, “Surface reaction of Pd studied with a hydrogen sensitive MOS structure and photoelectron spectroscopy,” Phys. Scripta, 25, 818 (1982).
    86.J. Fogelberg, M. Eriksson, H. Dannetun, and L-G. Petersson, “Kinetic modeling of hydrogen adsorption/absorption in thin films on hydrogen-sensitive field-effect devices: observation of large hydrogen-induced dipoles at the Pd-SiO2 interface,” J. Appl. Phys., 78(2), 988 (1995).
    87.L. G. Petersson, H. M. Dannetun, J. Fogelberg, and I. Lundstrőm, “Hydrogen adsorption states at the external and internal palladium surfaces of a palladium-silicon dioxide-silicon structure,” J. Appl. Phys., 58 (1), 404 (1985).
    88.M. Eriksson and L. G. Ekedahl, “Hydrogen adsorption states at the Pd/SiO2 interface and simulation of the response of a Pd metal-oxide-semiconductor hydrogen sensor,” J. Appl. Phys., 83 (8), 3947 (1998).
    89.M. Eriksson, I. Lundstrőm and L. G. Ekedahl, “A model of Temkin isotherm behavior for hydrogen adsorption at Pd-SiO2 interface,” J. Appl. Phys., 82 (6), 3143 (1997).
    90.M. Johansson, I. Lundstrőm, and L. G. Ekedahl, “Bridging the pressure gap for palladium metal-insulator-semiconductor hydrogen sensors in oxygen containing environments,” J. Appl. Phys., 84 (1), 44 (1998).
    91.W. P. Kang and Y. Gürbüz, “Comparison and analysis of Pd- and Pt-GaAs Schottky diodes hydrogen detection,” J. Appl. Phys., 75 (12), 8175 (1994).
    92. R. J. Silbey and R. A. Alberty, Physical chemistry, Wiley, New York (2001).
    93.周彥伊,以無電鍍法製備鈀蕭特基二極體氫氣感測器之研究,國立成功大學化學工程學系碩士論文(2001).
    94.Z. Q. Shi and W. A. Anderson, “Nearly ideal Schottky contacts of n-InP,” in proceedings of the Third Int Conf Indium Phosphide Relat Mater, Cardiff, Wales, UK, 535 (1991).
    95.Z. Q. Shi, R. L. Wallace and W. A. Anderson, “High-barrier height Schottky diodes on n-InP by deposition on cooled substrates,” Appl. Phys. Lett., 59(4), 446 (1991).
    96.Z. Q. Shi and W. A. Anderson, “MIS diodes on n-InP having an improved interface,” Solid-State Electron., 34 (3), 285 (1991).
    97.周彥伊,鈀/磷化銦蕭特基二極體氫氣感測器之製備、特性分析及感測研究,國立成功大學化學工程學系博士論文(2005).
    98.J. Fogelberg and L. Petersson, “Kinetic modeling of the H2-O2 reaction on Pd and of its influence on the hydrogen response of a hydrogen sensitive Pd metal-oxide-semiconductor device,” Sur. Sci., 350, 91 (1996).
    99.W. Medlin, A. E. Lutz, R. Bastasz and A. H. McDaniel, “The response of palladium metal-insulator-semiconductor devices to hydrogen- oxygen mixtures: comparisons between kinetic models and experiment,” Sens. Acurators B, 96, 290 (2003).
    100.H. I. Chen and Y. I. Chou, “Evaluation of the perfection of the Pd-InP Schottky interface from the energy viewpoint of hydrogen adsorbates,” Semicond. Sci. Technol., 19, 39 (2004).
    101.Y. I. Chou, C. M. Chen, W. C. Liu, and H. I. Chen, “A new Pd/InP Schottky hydrogen sensor fabricated by electrophoretic deposition with Pd nanoparticles,” IEEE Electron Device Lett., 26, 62 (2005).
    102.C. C. Cheng, Y. Y. Tsai, K.W. Lin, H. I. Chen, C. T. Lu, and W. C. Liu, “Hydrogen sensing characteristics of a Pt-oxide-Al0.3Ga 0.7As MOS Schottky diode,” Sens. Acurators B, 99(2-3), 425 (2004).

    下載圖示 校內:立即公開
    校外:2005-07-25公開
    QR CODE