| 研究生: |
李明曄 Lee, Ming-Yeh |
|---|---|
| 論文名稱: |
臺灣地區細懸浮微粒減量對策之空氣品質改善有效性評析 Effectiveness of Fine Particulate Matters Control Measures on Ambient Concentration in Taiwan |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 249 |
| 中文關鍵詞: | 控制策略 、細懸浮微粒 、硫氧化物 、氮氧化物 、CMAQ |
| 外文關鍵詞: | Fine particulate matter, Control scenarios, Sulfate, nitrate, CMAQ model |
| 相關次數: | 點閱:109 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討細懸浮微粒(PM2.5)管制策略對於臺灣地區空氣品質之改善成效性與管制重點污染物,研究工作主要分為兩部分,(1)各策略情境排放量計算推估與(2)應用第三代空氣品質模式(Model-3/CMAQ)進行臺灣地區細懸浮微粒(PM2.5)空氣品質模擬。
本研究共有三情境,包含:(一)103年基準情境 (二)109年清淨空氣計畫減量情境與 (三)清淨空氣計畫減量下額外減量策略情境。考慮排放源自然成長後之基準年排放量推估SOx排放量為121.3千噸、NOx排放量為404.4千噸與PM2.5排放量73.5千噸,經空氣品質模式進行一、四、七、十月份模擬,結果顯示臺灣地區平均PM2.5濃度為21.9μg/m3,與103年全臺監測站平均濃度28.7μg/m3比較為低估,全臺平均模擬濃度以四月份29.7μg/m3 > 一月份28.0μg/m3 > 十月份19.7μg/m3 > 七月份10.3μg/m3,各月PM2.5濃度最高分佈於中部南投與高屏地區,原生性PM2.5於各月份為PM2.5質量濃度中最高佔比,另外於一、四、十月份之中部、雲嘉南以及高屏空品區硝酸鹽濃度佔比則大於硫酸鹽。以模擬PM2.5濃度與硫酸鹽、硝酸鹽與原生性PM2.5濃度進行相關性比較,結果以硝酸鹽相關性最高(r=0.926),其次為原生性PM2.5(r=0.797)與硫酸鹽(r=0.700),顯示PM2.5濃度變化應與硝酸鹽濃度變化較相關。
經清淨空氣行動計畫減量計算後,SOx排放量為103.4千噸、NOx排放量為246.2千噸與PM2.5排放量59.7千噸,使用空氣品質模式進行一、四、七、十月份模擬,模擬後全臺平均PM2.5濃度為17.5μg/m3,與基準年PM2.5濃度比較,PM2.5全臺平均改善率為20.1%,各月份PM2.5改善率最高為十月(18.3%) > 四月(17.2%) > 一月(14.4%) > 七月(14.3%),各月份PM2.5濃度於南投與台南高雄內陸地區改善率最高。模擬PM2.5濃度與硫酸鹽、硝酸鹽與原生性PM2.5相關性結果以硝酸鹽相關性最高(r=0.916),其次為原生性PM2.5(r=0.825)與硫酸鹽(r=0.760),與基準年比較,由於NOx排放量減量相對較大,硝酸鹽與PM2.5相關性減少,而原生性PM2.5與硫酸鹽之相關性相對有提高,但仍以硝酸鹽與PM2.5濃度變化相關性最高。
延續清淨空氣行動計畫後再推動電力業使用天然氣、全面淘汰二行程機車以及推廣清潔燃料等額外減量策略後,SOx排放量為61.8千噸、NOx排放量為204.3千噸與PM2.5排放量54.8千噸,使用空氣品質模式進行一、四、七、十月份模擬,模擬後結果平均PM2.5濃度為15.6μg/m3,與基準年比較PM2.5濃度改善率為28.8%。各月份進一步改善效益最高為四月份(10.5%) >十月份(10.0%) > 七月份(8.6%) > 一月份(5.5%),各月份改善區域主要分佈於中部以南區域。
解析SOx、NOx與PM2.5單位排放減量與硫酸鹽、硝酸鹽與原生性PM2.5¬濃度改善關係,並以NOx改善性作為權數1進行比較,情境二改善效益計算結果以SOx減量改善效益最低,為減量NOx排放之大氣PM2.5濃度改善效益之0.49倍,而減量排放PM2.5之改善效益最高,為減量NOx效益之9.38倍;情境三改善效益計算仍以SOx減量改善效益最低,為減量NOx效益之0.53倍,而減量排放PM2.5之改善效益最高,為減量NOx效益之4.88倍。綜合比較模擬PM2.5與硫酸鹽、硝酸鹽與原生性PM2.5濃度相關性解析,以及濃度改善率關係,NOx減量應能改善發生高PM2.5濃度之區域與時間,而減少PM2.5排放則應可對全臺灣地區不同月份皆有所改善。
This study estimated the effect of PM2.5 control measures on ambient concentration in Taiwan. Air quality model (CMAQ) was conducted to simulate the concentration of PM2.5 under three different control scenarios. Three scenarios were evaluated, which include base case and two controlled cases. The results of PM2.5 concentration simulation showed that the high PM2.5 concentrations were observed in central and southern Taiwan, especially at Taichung and Kaohsiung area. Annual average concentration of PM2.5 for Case A and Case B present 20.1% and 28.8% reduction, respectively, as compared to those of basics case. The results also implied that control NOx emissions may result in significant improvement on airborne PM2.5 concentration in episode day in Taiwan, and control primary PM2.5 emissions may improve airborne PM2.5 concentration in all months. However the result also indicates that the preliminary control plan could not attain the air quality standard. More control measures to reduce much more emissions from various emission sources should be developed in the future.
1. Appel, K. W., Chemel, C., Roselle, S. J., Francis, X. V., Hu, R.-M., Sokhi, R. S., Galmarini, S. (2012). Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains. Atmospheric Environment, 53, 142-155.
2. Bari, A., Ferraro, V., Wilson, L. R., Luttinger, D., & Husain, L. (2003). Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmospheric Environment, 37(20), 2825-2835.
3. Buonocore, J. J., Dong, X., Spengler, J. D., Fu, J. S., & Levy, J. I. (2014). Using the Community Multiscale Air Quality (CMAQ) model to estimate public health impacts of PM2.5 from individual power plants. Environ Int, 68, 200-208.
4. Cabada, J. C., Rees, S., Takahama, S., Khlystov, A., Pandis, S. N., Davidson, C. I., & Robinson, A. L. (2004). Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite. Atmospheric Environment, 38(20), 3127-3141.
5. Che, W., Zheng, J., Wang, S., Zhong, L., & Lau, A. (2011). Assessment of motor vehicle emission control policies using Model-3/CMAQ model for the Pearl River Delta region, China. Atmospheric Environment, 45(9), 1740-1751.
6. Chemel, C., Fisher, B. E. A., Kong, X., Francis, X. V., Sokhi, R. S., Good, N., Folberth, G. A. (2014). Application of chemical transport model CMAQ to policy decisions regarding PM2.5 in the UK. Atmospheric Environment, 82, 410-417.
7. Chen, L., Zhao, H., Han, B., & Bai, Z. (2014). Combined use of WEPS and Models-3/CMAQ for simulating wind erosion source emission and its environmental impact. Sci Total Environ, 466-467, 762-769.
8. Cheng, S., Chen, D., Li, J., Wang, H., & Guo, X. (2007). The assessment of emission-source contributions to air quality by using a coupled MM5-ARPS-CMAQ modeling system: A case study in the Beijing metropolitan region, China. Environmental Modelling & Software, 22(11), 1601-1616.
9. Choi, J.-K., Heo, J.-B., Ban, S.-J., Yi, S.-M., & Zoh, K.-D. (2012). Chemical characteristics of PM2.5 aerosol in Incheon, Korea. Atmospheric Environment, 60, 583-592.
10. Choi, J. K., Heo, J. B., Ban, S. J., Yi, S. M., & Zoh, K. D. (2013). Source apportionment of PM(2).(5) at the coastal area in Korea. Sci Total Environ, 447, 370-380.
11. Chow, J. C., Chen, L. W. A., Watson, J. G., Lowenthal, D. H., Magliano, K. A., Turkiewicz, K., & Lehrman, D. E. (2006). PM2.5chemical composition and spatiotemporal variability during the California Regional PM10/PM2.5Air Quality Study (CRPAQS). Journal of Geophysical Research: Atmospheres, 111(D10).
12. Chow, J. C., Watson, J. G., Fujita, E. M., Lu, Z., Lawson, D. R., & Ashbaugh, L. L. (1994). Temporal and spatial variations of PM2.5 and PM10 aerosol in the Southern California air quality study. Atmospheric Environment, 28(12), 2061-2080.
13. Chuang, M. T., Fu, J. S., Jang, C. J., Chan, C. C., Ni, P. C., & Lee, C. T. (2008). Simulation of long-range transport aerosols from the Asian Continent to Taiwan by a southward Asian high-pressure system. Sci Total Environ, 406(1-2), 168-179.
14. Dechapanya, W., Russell, M., & Allen, D. T. (2004). Estimates of Anthropogenic Secondary Organic Aerosol Formation in Houston, Texas Special Issue ofAerosol Science and Technologyon Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology, 38(sup1), 156-166.
15. Djalalova, I., Delle Monache, L., & Wilczak, J. (2015). PM2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmospheric Environment, 119, 431-442.
16. Duan, J., Tan, J., Yang, L., Wu, S., & Hao, J. (2008). Concentration, sources and ozone formation potential of volatile organic compounds (VOCs) during ozone episode in Beijing. Atmospheric Research, 88(1), 25-35.
17. Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., . . . Streets, D. G. (2008). Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmospheric Environment, 42(9), 2023-2036.
18. Gan, C. M., Binkowski, F., Pleim, J., Xing, J., Wong, D., Mathur, R., & Gilliam, R. (2015). Assessment of the aerosol optics component of the coupled WRF–CMAQ model using CARES field campaign data and a single column model. Atmospheric Environment, 115, 670-682.
19. Gilliam, R. C., Hogrefe, C., & Rao, S. T. (2006). New methods for evaluating meteorological models used in air quality applications. Atmospheric Environment, 40(26), 5073-5086.
20. Grosjean, D. (1989). Parameterization of the formation potential of secondary organic aerosols. Atmospheric Environment, 23(8).
21. Grosjean, D. (1992). In situ organic aerosol formation during a smog episode-Estimated production and chemical functionality. Atmospheric Environment, 26A(6), 953-963.
22. Gsella, A., de Meij, A., Kerschbaumer, A., Reimer, E., Thunis, P., & Cuvelier, C. (2014). Evaluation of MM5, WRF and TRAMPER meteorology over the complex terrain of the Po Valley, Italy. Atmospheric Environment, 89, 797-806.
23. Han, X., Zhang, M., Tao, J., Wang, L., Gao, J., Wang, S., & Chai, F. (2013). Modeling aerosol impacts on atmospheric visibility in Beijing with RAMS-CMAQ. Atmospheric Environment, 72, 177-191.
24. Harrison, I. C. a. R. M. (1984). Ozone-secondary aerosol-visibility relationships in noth-west england. The Science of The Total Environment, 37, 87-100.
25. Hasheminassab, S., Daher, N., Ostro, B. D., & Sioutas, C. (2014). Long-term source apportionment of ambient fine particulate matter (PM2.5) in the Los Angeles Basin: a focus on emissions reduction from vehicular sources. Environ Pollut, 193, 54-64.
26. Huang, K., Fu, J. S., Gao, Y., Dong, X., Zhuang, G., & Lin, Y. (2014). Role of sectoral and multi-pollutant emission control strategies in improving atmospheric visibility in the Yangtze River Delta, China. Environ Pollut, 184, 426-434.
27. Hutzell, W. T., Luecken, D. J., Appel, K. W., & Carter, W. P. L. (2012). Interpreting predictions from the SAPRC07 mechanism based on regional and continental simulations. Atmospheric Environment, 46, 417-429.
28. Im, U., Markakis, K., Unal, A., Kindap, T., Poupkou, A., Incecik, S., . . . Mihalopoulos, N. (2010). Study of a winter PM episode in Istanbul using the high resolution WRF/CMAQ modeling system. Atmospheric Environment, 44(26), 3085-3094.
29. Kaneyasu, N., Yamamoto, S., Sato, K., Takami, A., Hayashi, M., Hara, K., . . . Hatakeyama, S. (2014). Impact of long-range transport of aerosols on the PM2.5 composition at a major metropolitan area in the northern Kyushu area of Japan. Atmospheric Environment, 97, 416-425.
30. Kim, B. M., Teffera, S., & Zeldin, M. D. (2000). Characterization of PM25and PM10in the South Coast Air Basin of Southern California: Part 1—Spatial Variations. Journal of the Air & Waste Management Association, 50(12), 2034-2044.
31. Kleeman, M. J., Ying, Q., Lu, J., Mysliwiec, M. J., Griffin, R. J., Chen, J., & Clegg, S. (2007). Source apportionment of secondary organic aerosol during a severe photochemical smog episode. Atmospheric Environment, 41(3), 576-591.
32. Li, X., & Rappenglück, B. (2014). A WRF–CMAQ study on spring time vertical ozone structure in Southeast Texas. Atmospheric Environment, 97, 363-385.
33. Lin, Y., Cheng, M., Ting, W., & Yeh, C. (2006). Characteristics of gaseous HNO2, HNO3, NH3 and particulate ammonium nitrate in an urban city of Central Taiwan. Atmospheric Environment, 40(25), 4725-4733.
34. M.I., K. (2002). Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere, 49, 675-684.
35. Park, S.-S., Cho, S.-Y., Jung, C.-H., & Lee, K.-H. (2016). Characteristics of water-soluble inorganic species in PM10 and PM2.5 at two coastal sites during spring in Korea. Atmospheric Pollution Research, 7(2), 370-383.
36. Penkett, S., Jones, B., Brice, K., & Eggleton, A. (2007). The importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur dioxide in cloud and rainwater. Atmospheric Environment, 41, 154-168.
37. Querol, X., Alastuey, A., Ruiz, C. R., Artiñano, B., Hansson, H. C., Harrison, R. M., . . . Schneider, J. (2004). Speciation and origin of PM10 and PM2.5 in selected European cities. Atmospheric Environment, 38(38), 6547-6555.
38. Robarge W.P., W. J. T., McCulloch R.B., Murray G. (2002). Atmospheric concentrations of ammonia and ammonium at an agricultural site in the southeast United States. Atmospheric Environment, 36, 1661-1674.
39. Stein, A. F., Isakov, V., Godowitch, J., & Draxler, R. R. (2007). A hybrid modeling approach to resolve pollutant concentrations in an urban area. Atmospheric Environment, 41(40), 9410-9426.
40. Stelson, A., & Seinfeld, J. (2007). Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environment, 41, 126-135.
41. Wang, L., Wei, Z., Wei, W., Fu, J. S., Meng, C., & Ma, S. (2015). Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model. Atmospheric Environment, 122, 723-736.
42. Wang, S., Zheng, J., Fu, F., Yin, S., & Zhong, L. (2011). Development of an emission processing system for the Pearl River Delta Regional air quality modeling using the SMOKE model: Methodology and evaluation. Atmospheric Environment, 45(29), 5079-5089.
43. Woo, J.-H., Choi, K.-C., Kim, H. K., Baek, B. H., Jang, M., Eum, J.-H., . . . Yoo, S. H. (2012). Development of an anthropogenic emissions processing system for Asia using SMOKE. Atmospheric Environment, 58, 5-13.
44. Wu, Y., Hao, J., Fu, L., Hu, J., Wang, Z., & Tang, U. (2003). Chemical characteristics of airborne particulate matter near major roads and at background locations in Macao, China. The Science of The Total Environment, 317(1-3), 159-172.
45. Xia, D., Jiang, B., & Xie, Y. (2016). Modeling and analysis of PM2.5 generation for key factors identification in China. Atmospheric Environment, 134, 208-216.
46. Yu, S., Eder, B., Dennis, R., Chu, S.-H., & Schwartz, S. E. (2006). New unbiased symmetric metrics for evaluation of air quality models. Atmospheric Science Letters, 7(1), 26-34.
47. Yu, Y., Sokhi, R. S., Kitwiroon, N., Middleton, D. R., & Fisher, B. (2008). Performance characteristics of MM5–SMOKE–CMAQ for a summer photochemical episode in southeast England, United Kingdom. Atmospheric Environment, 42(20), 4870-4883.
48. Zhang, H., Chen, G., Hu, J., Chen, S. H., Wiedinmyer, C., Kleeman, M., & Ying, Q. (2014). Evaluation of a seven-year air quality simulation using the Weather Research and Forecasting (WRF)/Community Multiscale Air Quality (CMAQ) models in the eastern United States. Sci Total Environ, 473-474, 275-285.
49. Zhang, R., Bian, Q., Fung, J. C. H., & Lau, A. K. H. (2013). Mathematical modeling of seasonal variations in visibility in Hong Kong and the Pearl River Delta region. Atmospheric Environment, 77, 803-816.
50. Zhang, Y., Huang, W., Cai, T., Fang, D., Wang, Y., Song, J., . . . Zhang, Y. (2016). Concentrations and chemical compositions of fine particles (PM2.5) during haze and non-haze days in Beijing. Atmospheric Research, 174-175, 62-69.
51. Zhang, Y., Zhang, X., Wang, L., Zhang, Q., Duan, F., & He, K. (2016). Application of WRF/Chem over East Asia: Part I. Model evaluation and intercomparison with MM5/CMAQ. Atmospheric Environment, 124, 285-300.
52. 王建鈞. (2005). 台灣地區空氣污染物排放處理系統之建立研究-以SMOKE為基礎. (碩士), 國立雲林科技大學, 雲林縣.
53. 伍孟璟. (2014). 使用CMAQ-HDDM探討台灣地區臭氧之非線性 反應及估算高臭氧區的來源貢獻量: 2011年個案分析. (碩士), 國立中央大學, 桃園縣.
54. 江勝偉. (2007). 氣象因子與大氣懸浮微粒含碳量變異關聯性研究. (碩士), 國立成功大學, 台南市.
55. 江瑋哲. (2013). 大氣中細懸浮微粒化學組成及來源貢獻分析研究. (碩士), 朝陽科技大學, 台中市.
56. 余曼瑋. (2015). 境內與境外排放源對臺灣空氣品質影響之模擬研究. (碩士), 國立雲林科技大學, 雲林縣.
57. 李沛瑜. (2014). 不同重要污染源對空氣品質影響之模擬研究. (碩士), 國立雲林科技大學, 雲林縣.
58. 李哲瑋. (2016). 斗六地區PM2.5與酸性氣膠季節特徵分佈探討. (碩士), 國立雲林科技大學, 雲林縣.
59. 李崑瑋. (2014). 台中都會區金屬元素特性及應用正矩陣因子法解析大氣細懸浮微粒之污染來源及其貢獻量. (碩士), 國立中興大學, 台中市.
60. 底宗鴻. (2008). 高雄地區陸域及鄰近海域懸浮微粒物化特性分析及時空分佈探討. (碩士), 國立中山大學, 高雄市.
61. 林建宏. (2008). 大氣懸浮微粒濃度及化學組成與氣象因子變異關聯性研究. (碩士), 國立成功大學, 台南市.
62. 林鼎鈞. (2013). 車輛使用酒精汽油對臺南地區臭氧濃度變化影響研究. (碩士), 國立成功大學, 台南市.
63. 洪晟閔. (2014). 不同方法模擬分析境外長程傳輸對台灣空氣品質影響之比較研究. (碩士), 國立雲林科技大學, 雲林縣.
64. 張立鵬. (2009). 大氣超細微粒物化特性與環境因子關連性研究. (博士), 國立成功大學, 台南市.
65. 張鴻良. (2015). 台灣地區細懸浮微粒減量之防制成本與效益分析. (碩士), 國立成功大學, 台南市.
66. 許志祥. (2015). 探討細懸浮微粒PM2.5自動與手動分析之相關性. (碩士), 國立屏東科技大學, 屏東縣.
67. 許家綺. (2015). 2011-2015年台灣都會區細懸浮微粒(PM2.5)成分濃度變化、污染來源推估及對能見度影響. (碩士), 國立中央大學, 桃園縣.
68. 陳泓銘. (2014). 台灣大氣中細懸浮微粒之時空特性分析. (碩士), 國立高雄大學, 高雄市.
69. 曾亞潔. (2013). 不同排放源對台灣細懸浮微粒及其組成份影響之模擬研究. (碩士), 國立雲林科技大學, 雲林縣.
70. 曾韋勳. (2012). 高屏大氣懸浮微粒於不同天氣型態之特徵與氣象因子關聯性研究. (碩士), 國立成功大學, 台南市.
71. 楊智翰. (2013). 境外不同區域長程傳輸對台灣空氣品質影響之模擬研究. (碩士), 國立雲林科技大學, 雲林縣.
72. 楊鈞淇. (2014). 利用數值模式探討地形效應對空氣品質所造成之影響. (碩士), 長榮大學, 台南市.
73. 廖哲甫. (2006). 空氣污染事件日次微米微粒水溶性離子組成及氣相前驅物之研究. (碩士), 國立成功大學, 台南市.
74. 劉玲君. (2011). 大氣細懸浮微粒的化學組成及其硝酸鹽量測之探討. (碩士), 國立中興大學, 台中市.
75. 劉銘凱. (2007). 空氣品質改善策略之長期模擬評估. (碩士), 國立雲林科技大學, 雲林縣.
76. 蔡長佑. (2013). 境外長程傳輸對台灣細懸浮微粒及其組成份影響之模擬研究. (碩士), 國立雲林科技大學, 雲林縣.
77. 蔡德明. (2006). 應用Models-3/CMAQ以PCcluster研究高速公路網與電廠對南高屏地區臭氧濃度之影響. (博士), 國立成功大學, 台南市.
78. 蔡瀛逸. (1999). 台灣中部都會及沿海地區能見度與大氣氣膠化學特性關係之研究. (博士), 國立中興大學, 台中市.
79. 鄧雅涵. (2015). 環境細懸浮微粒(PM2.5)之監測特性及其管制策略之研究. (碩士), 國立臺北科技大學, 台北市.
80. 鄭宇翰. (2013). 氣候變遷影響臺灣空氣品質之數值模擬研究. (碩士), 長榮大學, 台南市.
81. 盧彥廷. (2015). 都會區汽油車輛排放對街道鄰近區域大氣有害空氣污染物濃度之影響. (碩士), 國立成功大學, 台南市.
82. 盧梅芳. (2001). 大氣細懸浮微粒(PM2.5)污染來源及分析-化學質量平衡法受體模式應用. (碩士), 國立高雄第一科技大學, 高雄市.
83. 賴力瑋. (2013). 應用數值模式討論東亞生質燃燒對台灣空氣品質之影響. (碩士), 長榮大學, 台南市.
84. 賴威帆. (2009). 應用氣流軌跡與大氣微粒成份解析粒狀物污染事件日特徵. (碩士), 國立成功大學, 台南市.
85. 賴軍佑. (2011). 境外傳輸之懸浮微粒及其前驅物對台灣之長期影響模擬分析. (碩士), 國立雲林科技大學, 雲林縣.
86. 薛智遠. (2011). 北部地區細懸浮微粒化學成份及來源貢獻暨民眾細懸浮微粒暴露之研究. (碩士), 朝陽科技大學, 台中市.
87. 謝宜璋. (2014). 不同版本區域多尺度空氣品質模式之性能評估與比較分析. (碩士), 國立雲林科技大學, 雲林縣.
88. 簡珊萍. (2013). 探討區域尺度氣候變遷對台灣地區氣象場及汙染物濃度模擬的影響. (碩士), 國立中央大學, 桃園縣.
89. 顏廷先. (2009). 大氣懸浮微粒監測站空間分佈與監測值特徵關係之研究. (碩士), 國立成功大學, 台南市.
90. 魏海青. (2014). 台灣北、中、南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估. (碩士), 國立中央大學, 桃園縣.
91. 行政院環境保護署,(2008),空氣品質指標調整規劃及細懸浮微粒(PM2.5)空氣品質改善策略推動與效期評估
92. 行政院環境保護署,(2011),推動總量管制及細懸浮微粒管制策略
93. 行政院環境保護署,(2013),細懸浮微粒(PM2.5)管制策略研擬集減量分析分析
94. 行政院環境保護署,(2013),臺灣細懸浮微粒(PM2.5)成因分析與管制策略研擬
95. 行政院環境保護署,(2015),臺灣細懸浮微粒(PM2.5)成分與行程速率分析