| 研究生: |
黃馨慧 Huang, Xin-Hei |
|---|---|
| 論文名稱: |
氧化鉿-氧化鈦閘極介電薄膜之特性研究 Characterization of HfOx/TiOx thin films for gate dielectric application |
| 指導教授: |
陳貞夙
Chen, Jen-Sue |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 高介電常數介電層 、等效二氧化矽厚度 、漏電流密度 、電容器 |
| 外文關鍵詞: | High-k dielectric, EOT, Leakage current density, MOS capacitor |
| 相關次數: | 點閱:85 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了克服元件微縮過程中遇到的諸多問題,多晶矽閘極與二氧化矽介電層需以金屬閘極與高介電常數材料取代之。本研究主要探討HfOx-TiOx介電薄膜疊層的材料性質與電性表現之間的關係,並配合純HfOx、純TiOx為對照組,藉以評估其作為積體電路閘極介電層之可行性。
HfOx-TiOx疊層介電薄膜以磁控濺鍍法製作於矽基板上,經過300℃退火,並搭配W為金屬閘極形成MOS (Metal-Oxide-Semiconductor) 結構電容器。MOS電容器的電容—電壓 (C-V) 曲線以阻抗分析儀在100 kHz及1 MHz兩種頻率下進行量測,之後再進行修正;電流—電壓 (I-V) 曲線則以半導體參數分析儀量得。材料分析方面,使用高解析穿透式電子顯微鏡觀察薄膜截面影像,判斷薄膜厚度與其微結構。另以X光光電子能量分析儀被用來進行介電層薄膜及矽基板間的化學鍵結狀態分析,藉以觀察薄膜的電性表現、材料性質隨著疊層變換的情況。
C-V量測果顯示,初鍍的試片雖然等效二氧化矽厚度 (EOT) 小於2 nm,但I-V量測顯示其漏電流過大。經300℃退火後,TiOx/HfOx、HfOx/TiOx的MOS疊層電容器的EOT值均略微增大,但TiOx/HfOx的MOS疊層電容器之漏電流值比相同EOT之二氧化矽介電層的漏電流密度還要小6個級數,而比相同EOT之HfO2介電層的漏電流密度小1~2級數。
藉由XPS分析結果,可知薄膜在初鍍時,Hf及Ti之化學鍵結已呈現氧化態,300℃退火後,其鍵結狀態沒有太大的改變。從HRTEM影像,發現無論退火前後,所有試片皆有中介層產生於介電層與Si基材的界面之間,且所有介電層薄膜是非晶質結構。此外,退火後的HfOx/TiOx、TiOx/HfOx的MOS疊層電容器之介電層已經混合而形成HfTiOx一層介電氧化層。
Device in integrated circuits are continuously shrunk to reach higher device density, faster operation speed and lower power consumption. However, many problems are encountered while scaling. To overcome those problems, the poly-Si gate electrode and SiO2 dielectric should be replaced by metal gate electrodes and high-k dielectrics. In this study, we investigate the electrical and material properties of alternative stacking of HfOx -TiOx (HfOx/TiOx and TiOx/HfOx) dielectric films, and compare their performance with pure HfOx and pure TiOx dielectric films.
Alternative stacking of HfOx and TiOx dielectric thin films were deposited on Si substrates by sputtering from Hf and Ti targets, respectively. Post-deposition annealing at 300℃ was performed to eliminate the defects within the dielectrics or at the interface. The dielectric layers were covered with a W electrode to form metal-oxide-semiconductor (MOS) capacitors. MOS capacitors with various stacked dielectrics were studied electrically using capacitance-voltage (C-V) and current–voltage (I-V) analysis. The thicknesses of films were determined by high-resolution transmission electron microscopy (HRTEM), and the microstructure was also characterized. X-ray photoelectron spectroscopy (XPS) was applied for chemical bonding analysis between dielectric films and Si substrate.
The C-V curves are measured at two frequencies (100 kHz and 1 MHz) under a designated equivalent circuit of capacitor and resistor in parallel. A modified C-V curve corresponding to the equivalent circuit with an additional serial resistor can be calculated from the two C-V curves measured at 100 kHz and 1 MHz. EOT was extracted from the accumulation capacitance of the modified C-V curves. All as-deposited dielectric layers possess an EOT of less than 2 nm. However, the leakage current of this sample is too large to be practical.
After annealing, the EOT values of both HfOx/TiOx and TiOx/HfOx increase slightly. However, in comparison with the SiO2 benchmark line and HfO2 benchmark line, the leakage current densities of annealed TiOx/HfOx dielectric could be lowered by 6 orders and 1~2 orders, respectively. From HRTEM images, an interfacial layer still forms at the interface between the high-k dielectrics and Si substrate and the dielectric films are amorphous. Additionally, the bilayer dielectric (HfOx/TiOx and TiOx/HfOx) actually had mixed together after annealing. From the XPS spectra, the as-deposited dielectric films had already been oxidized, and the annealed dielectric films have similar chemical binding energy.
[1] R. M. C. de Almeida and I. J. R. Baumvol, "Reaction-diffusion in high-k dielectrics on Si," Surface Science Reports 49, 1 (2003).
[2] E. P. Gusev, D. A. Buchanan, E. Cartier, A. Kumar, D. DiMaria, S. Guha, A. Callegari, S. Zafar, P. C. Jamison, D. A. Neumayer, M. Copel, M. A. Gribelyuk, H. O. Schmidt, C. D’Emic, P. Kozlowski, K. Chan, N. Bojarczuk, L. A. Ragnarsson, P. Ronsheim, K. Rim, R. J. Fleming, A. Mocuta, and A. Ajmera, "Ultrathin high-k gate stacks for advanced CMOS devices," Technical Digest - International Electron Devices Meeting, 451 (2001).
[3] B. Yu, H. Wang, C. Riccobene, Q. Xiang, and M.-R. Lin, "Limits of Gate-Oxide scaling in Nano-transistors," IEEE Symposium on VLSI Tech. Dig., 90 (2000).
[4] Y.-C. Yeo, T.-J. King, and C. Hu, "MOSFET gate leakage modeling and selection guide for alternative gate dielectrics based on leakage considerations," IEEE Transactions on Electron Devices 50, 1027 (2003).
[5] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-kappa gate dielectrics: Current status and materials properties considerations," Journal of Applied Physics 89, 5243 (2001).
[6] K. Iwamoto, Y. Kamimuta, A. Ogawa, Y. Watanabe, S. Migita, W. Mizubayashi, Y. Morita, M. Takahashi, H. Ota, T. Nabatame, and A. Toriumi, "Experimental evidence for the flatband voltage shift of high-k metal-oxide-semiconductor devices due to the dipole formation at the high-k/SiO2 interface," Applied Physics Letters 92, 132907 (2008).
[7] K. Kita and A. Toriumi, "Origin of electric dipoles formed at high-k/SiO2 interface," Applied Physics Letters 94, 132902 (2009).
[8] Y. Oshima, M. Shandalov, Y. Sun, P. Pianetta, and P. C. McIntyre, "Hafnium oxide/germanium oxynitride gate stacks on germanium: Capacitance scaling and interface state density," Applied Physics Letters 94, 183102 (2009).
[9] Y. Yamamoto, K. Kita, K. Kyuno, and A. Toriumi, "Study of la-induced flat band voltage shift in Metal/HfLaOx/SiO2/Si capacitors," Japanese Journal of Applied Physics Part 1 46, 7251 (2007).
[10] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and Andre.R.Leblanc, "Design of ion-implanted MOSFET's with very small physical dimensions," IEEE J. Solid-State Circuits 9, 256 (1974).
[11] "The International Technology Roadmap for Semiconductors," (2010_update).
[12] R. M. Wallace and G. D. Wilk, "Exploring the limits of gate dielectric scaling," Semiconductor International June, 153 (2001).
[13] S. M. Sze, "Physics of Semiconductor," New York: Wiley, 1981.
[14] D.G.Scholm and J. H. Haeni, "A Thermodynamic approach th selecting alternative gate dielectrcs," MRS Bulletin Mar, 198 (2002).
[15] K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, "Field effect transistors with SrTiO3 gate dielectric on Si," Applied Physics Letters 76, 1324 (2000).
[16] S. J. Wang, C. K. Ong, S. Y. Xu, P. Chen, W. C. Tjiu, J. W. Chai, A. C. H. Huan, W. J. Yoo, J. S. Lim, W. Feng, and W. K. Choi, "Crystalline zirconia oxide on silicon as alternative gate dielectrics," Applied Physics Letters 78, 1604 (2001).
[17] A. Kumar, D. Rajdev, and D. L. Douglass, "Effect of Oxide Defect Structure on the Electrical Properties of ZrO2," Journal of the American Ceramic Society 55, 439 (1972).
[18] S.-W. Nam, J.-H. Yoo, S. Nam, H.-J. Choi, D. Lee, D.-H. Ko, J. H. Moon, J.-H. Ku, and S. Choi, "Influence of annealing condition on the properties of sputtered hafnium oxide," Journal of Non-Crystalline Solids 303, 139 (2002).
[19] M. Balog, M. Schieber, S. Patai, and M. Michman, "Thin films of metal oxides on silicon by chemical vapor deposition with organometallic compounds. I," Journal of Crystal Growth 17, 298 (1972).
[20] M. Balog, M. Schieber, M. Michman, and S. Patai, "Chemical vapor deposition and characterization of HfO2 films from organo-hafnium compounds," Thin Solid Films 41, 247 (1977).
[21] M. Lee, Z. H. Lu, W. T. Ng, D. Landheer, X. Wu, and S. Moisa, "Interfacial growth in HfOxNy gate dielectrics deposited using [(C2H 5)2N]4Hf with O2 and NO," Applied Physics Letters 83, 2638 (2003).
[22] Z. M. Rittersma, F. Roozeboom, M. A. Verheijen, J. G. M. van Berkum, T. Dao, J. H. M. Snijders, E. Vainonen-Ahlgren, E. Tois, M. Tuominen, and S. Haukka, "HfSiO4 Dielectric Layers Deposited by ALD Using HfCl4 and NH2(CH2)3Si(OC2H5)3 Precursors," Journal of the Electrochemical Society 151, C716 (2004).
[23] G. D. Wilk, R. M. Wallace, and J. M. Anthony, "Hafnium and zirconium silicates for advanced gate dielectrics," Journal of Applied Physics 87, 484 (2000).
[24] P. F. Lee, J. Y. Dai, K. H. Wong, H. L. W. Chan, and C. L. Choy, "Growth and characterization of Hf-aluminate high-k gate dielectric ultrathin films with equivalent oxide thickness less than 10 angstrom," Journal of Applied Physics 93, 3665 (2003).
[25] D. H. Triyoso, R. I. Hegde, S. Zollner, M. E. Ramon, S. Kalpat, R. Gregory, X. D. Wang, J. Jiang, M. Raymond, R. Rai, D. Werho, D. Roan, J. B. E. White, and P. J. Tobin, "Impact of titanium addition on film characteristics of HfO2 gate dielectrics deposited by atomic layer deposition," Journal of Applied Physics 98, 054104 (2005).
[26] X. F. Wang, Q. Li, P. F. Lee, J. Y. Dai, and X. G. Gong, "Characterization of the interface between the Hf-based high-k thin film and the Si using spatially resolved electron energy-loss spectroscopy," Micron 41, 15 (2010).
[27] Y. Li and Q. Xu, "Wet etching characteristics of a HfSiON high- k dielectric in HF-based solutions," Journal of Semiconductors 31, 036001 (2010).
[28] K. Yamamoto, W. Deweerd, M. Aoulaiche, M. Houssa, S. De Gendt, S. Horii, M. Asai, A. Sano, S. Hayashi, and M. Niwa, "Electrical and physical characterization of remote plasma oxidized HfO2 gate dielectrics," IEEE Transactions on Electron Devices 53, 1153 (2006).
[29] K.-I. Seo, D.-I. Lee, P. Pianetta, H. Kim, K. C. Saraswat, and P. C. McIntyre, "Chemical states and electrical properties of a high-k metal oxide/silicon interface with oxygen-gettering titanium-metal-overlayer," Applied Physics Letters 89, 142912 (2006).
[30] H. Kim, P. C. McIntyre, C. O. Chui, K. C. Saraswat, and S. Stemmer, "Engineering chemically abrupt high-k metal oxide/silicon interfaces using an oxygen-gettering metal overlayer," Journal of Applied Physics 96, 3467 (2004).
[31] V. Misra, G. P. Heuss, and H. Zhong, "Use of metal-oxide-semiconductor capacitors to detect interactions of Hf and Zr gate electrodes with SiO2 and ZrO2," Applied Physics Letters 78, 4166 (2001).
[32] C. Changhwan and J. C. Lee, "Scaling equivalent oxide thickness with flat band voltage (VFB) modulation using in situ Ti and Hf interposed in a metal/high-k gate stack," Journal of Applied Physics 108, 064107 (2010).
[33] Y. Zhao, K. Kita, K. Kyuno, and A. Toriumi, "Band gap enhancement and electrical properties of La2O3 films doped with Y2O3 as high-k gate insulators," Applied Physics Letters 94, 042901 (2009).
[34] M. JI, L. WANG, Y. XIONG, and J. DU, "Electrical characteristics of MOS capacitor using amorphous Gd2O3-doped HfO2 insulator," Journal of Rare Earths 28, 396 (2010).
[35] D. J. Lichtenwalner, J. S. Jur, A. I. Kingon, M. P. Agustin, Y. Yang, S. Stemmer, L. V. Goncharova, T. Gustafsson, and E. Garfunkel, "Lanthanum silicate gate dielectric stacks with subnanometer equivalent oxide thickness utilizing an interfacial silica consumption reaction," Journal of Applied Physics 98, 024314 (2005).
[36] K. Eisenbeiser, J. M. Finder, Z. Yu, J. Ramdani, J. A. Curless, J. A. Hallmark, R. Droopad, W. J. Ooms, L. Salem, S. Bradshaw, and C. D. Overgaard, "Field effect transistors with SrTiO3 gate dielectric on Si," Applied Physics Letters 76, 1324 (2000).
[37] G. He, L. Zhu, Z. Sun, Q. Wan, and L. Zhang, "Integrations and challenges of novel high-k gate stacks in advanced CMOS technology," Progress in Materials Science 56, 475 (2011).
[38] T. B. Massalski, J. L. Murray, L. H. Bennet, and H. Baker, "Binary Alloy Phase Diagrams," Ohio: American Society for metal, 1987.
[39] I. Barin, "Thermochemical datas of pure substances," 3rded ed New York: VCH, 1995.
[40] R. B. van Dover, "Amorphous lanthanide-doped TiOx dielectric films," Applied Physics Letters 74, 3041 (1999).
[41] K. J. Hubbard and D. G. Schlom, "Thermodynamic stability of binary oxides in contact with silicon," Journal of Materials Research 11, 2757 (1996).
[42] S. J. Rhee, F. Zhu, H.-S. Kim, C. H. Choi, C. Y. Kang, M. Zhang, T. Lee, I. Ok, S. A. Krishnan, and J. C. Lee, "Hafnium Titanate bilayer structure multimetal dielectric nMOSCAPs," IEEE Electron Device Letters 27, 225 (2006).
[43] F. Chen, X. Bin, C. Hella, X. Shi, W. L. Gladfelter, and S. A. Campbell, "A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics," Microelectronic Engineering 72, 263 (2004).
[44] K. Honda, A. Sakai, M. Sakashita, H. Ikeda, S. Zaima, and Y. Yasuda, "Pulsed Laser Deposition and Analysis for Structural and Electrical Properties of HfO2–TiO2 Composite Films," Japanese Journal of Applied Physics 43, 1571 (2004).
[45] T. Y. Hoffmann, "Integrating high-k/metal gates: gate-first or gate-last?," Solid State Technology 53, 20 (2010).
[46] E. H. Nicollian and J. R. Brews, "MOS (Metal Oxide Semiconductor) Physics and Technology," New Jersey: Wiley, 2003.
[47] D. K. Schroder, Semiconductor material and device characterization, 2006.
[48] S. M. Sze, Physics of Semiconductor Devices, second ed. New York: Wiley, 1981.
[49] S. M. Sze and K. K. Ng, "Physics of Semiconductor Devices," Wiley-interscience, 2007.
[50] E.H.Rhoderick and R.H.Williams, Metal-Semiconductor contacts, Second ed. New York: Oxford Science Publications, 1988.
[51] C.-W. Sohn, H. C. Sagong, E.-Y. Jeong, D.-Y. Choi, M. S. Park, J.-S. Lee, Y. Kang Chang , J. Raj, and Y.-H. Jeong, "Analysis of Abnormal Upturns in Capacitance-Voltage Characteristics for MOS Devices With High-k Dielectrics," IEEE Electron Device Letters 32, 434 (2011).
[52] K. J. Yang and C. Hu, "MOS capacitance measurements for high-leakage thin dielectrics," IEEE Transactions onElectron Devices 46, 1500 (1999).
[53] X. Guo and T. P. Ma, "Tunneling leakage current in oxynitride: dependence on oxygen/nitrogen content," Electron Device Letters, IEEE 19, 207 (1998).
[54] M. K. Bera and C. K. Maiti, "Electrical properties of SiO2/TiO2 high-k gate dielectric stack," Materials Science in Semiconductor Processing 9, 909 (2006).
[55] Q. A. Tao, A. Kueltzo, M. Singh, G. Jursich, and C. G. Takoudis, "Atomic Layer Deposition of HfO2, TiO2, and HfxTi1-xO2 Using Metal (Diethylamino) Precursors and H2O," Journal of the Electrochemical Society 158, G27 (2011).
[56] S. H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, "Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFET's," Electron Device Letters, IEEE 18, 209 (1997).
[57] H. L. Chang and M. S. Liang, "Oxygen vacancy estimation of high-k metal gate using thermal dynamic model," Applied Physics Letters 97, 041912 (2010).
[58] J. F. Moulder, W. F. Stickle, P. E. Sobol, and K.D.Bomben, "Handbook of X-ray Photoelectron Spectroscopy," Minnesota:Physical Electronics Inc., 1995.
[59] G. D. Wilk and R. M. Wallace, "Electrical properties of hafnium silicate gate dielectrics deposited directly on silicon," Applied Physics Letters 74, 2854 (1999).
[60] D. Brassard and M. A. E. Khakani, "Thermal behavior of the microstructure and the electrical properties of magnetron-sputtered high-k titanium silicate thin films," Journal of Applied Physics 103, 114110 (2008).