簡易檢索 / 詳目顯示

研究生: 江馥宇
Jiang, Fu-Yu
論文名稱: 建構具備正交極化之多階光頻振幅編碼 以抑制相位雜訊
Multilevel Spectral-Amplitude-Coding with Embedded Orthogonal Polarizations to Reduce Phase Noises
指導教授: 黃振發
Huang, Jen-Fa
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 57
中文關鍵詞: 相位引致強度雜訊極化光頻振幅編碼
外文關鍵詞: phase-induced intensity noise, polarization, spectral-amplitude-coding
相關次數: 點閱:109下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   光分碼多重存取技術(optical code-division multiple-access, OCDMA)允許多個使用者同時非同步地存取網路系統,因此適合應用於區域網路(local area networks, LANs)中。而在光頻振幅編碼(spectral-amplitude-coding, SAC)的光分碼多重存取技術中,可供使用的寬頻光源波長數目和編碼長度相關,亦即最大的波長數限制了系統使用者的總數。為了增加系統容量,減少各波長間隔或增加光源頻寬的相關研究是正在努力的方向。雖然光頻振幅編碼技術可在理論上完全消除其他使用者的多重擷取干擾(multiple access interference, MAI),而萃取出預期使用者的信號;但在使用者多的情形下,所產生的相位引致強度雜訊(phase-induced intensity noise, PIIN)會降低系統的效能。
      在本篇論文中,我們提出了多階光頻振幅編碼系統。此系統利用Hadamard code的類正交序碼特性,建構了以布雷格光纖光柵(fiber Bragg gratings, FBGs)為基礎的編/解碼器,且每一編/解碼器對提供給兩個使用者共用。在相同使用者數目的條件下,和先前的光頻振幅編碼系統作比較,我們提出的架構不僅僅是編/解碼器數目減少一半,所需的編碼長度亦為一半。由於我們使用了多階光頻振幅編碼,較大強度的訊號所引起的相位引致強度雜訊會降低系統效能,更甚於較低強度訊號所引起的。為了抑制相位引致強度雜訊,我們提出了兩種方法。第一,共用同一編碼器的兩個使用者以相互正交的極化狀態傳送光訊號;第二,從接收端來看,我們架構了多路平衡檢測器(multiple balanced detectors, MBD) 來抑制雜訊。第一種方法,是利用當兩個光訊號的極化狀態為正交時,不會引起相位引致強度雜訊。第二種方法,則是利用當較低功率的光源照射在光檢測器上時,所引起的相位引致強度雜訊也較小。
      總結來說,在我們所提出的系統架構中,可以減少所需的編碼長度和編/解碼器數目,且能抑制雜訊以逹到較佳的系統效能。

      Due to optical code-division multiple-access (OCDMA) techniques allow multiple users access the network asynchronously and simultaneously, they are suitable applications in local area networks (LANs). With regard to spectral-amplitude-coding (SAC) technology, the maximum number of serviceable wavelengths dictates the code length for coding, i.e., the number of users can be accommodated in the network. Therefore, such spectrum-sliced systems are straining to accommodate either smaller wavelength spacing or wider wavelength ranges in order to continue the growth in capacity. Although the data bits can be recovered without the influence of multiple access interference (MAI) theoretically in SAC-OCDMA systems, there is still phase-induced intensity noise (PIIN) which can deteriorate system performance especially when a large number of users are involved.

      In this thesis, we propose a multilevel SAC-OCDMA system based on the pseudo-orthogonality of Hadamard code properly written in the fiber Bragg Gratings (FBGs). Each encoder/decoder pair is shared by two users. In our proposal, not merely the number of encoder/decoder pairs but also the required code length can be reduced to half as compared with previous systems at the same number of subscribers. Since we use multilevel spectral coding, PIIN induced by high intensities deteriorates the system performance more than low intensities. To suppress PIIN, users sharing the same encoder transmit signals on mutually orthogonal polarizations, and a new receiver structure with multiple balanced detectors (MBD) is employed. The first method utilizes the fact that PIIN vanishes if the polarizations of signals are mutually orthogonal. The other applies the idea that less power of optical signals impinging on the photodetector induces less PIIN power.

      To sum up, the proposed system can reduce the code length and the number of codecs, and achieves better system performance which is mainly limited by PIIN.

    CONTENTS Chapter 1 Introduction 1 1.1 The Development of Optical CDMA Technology 1 1.2 The Review of Spectral-Amplitude-Coding 3 1.3 The Concept of Polarization-Division Multiplexing 6 1.4 The Motive of Our Research 8 1.5 Thesis Preview 9 Chapter 2 Overviews on Polarization of Light and Optical Devices 10 2.1 Polarization Properties of Light 10 2.2 Polarization Mode Dispersion 13 2.3 Optical Devices 16 Chapter 3 Multilevel Optical CDMA Network Coding 24 3.1 Hadamard Code 24 3.2 System Configuration 26 3.3 Encoding/decoding Example 31 Chapter 4 System Performance Analyses 34 4.1 Interference Limit of SAC-OCDMA Systems 34 4.2 Evaluation of Proposed System Performance 38 Chapter 5 Conclusions 49 References 50 Appendix A  Formula for PIIN Power 54

    [1] R.L. Pickholtz, D.L. Schilling, and L.B. Milstein, “Theory of spread-spectrum communications - a tutorial,” IEEE Trans. Commun., vol. 30, no.5 pp. 855-884, May 1982.
    [2] N. Karafolas and D. Uttamchandani, “Optical fiber code division multiple access networks: a review,” Optical Fiber Technology, vol. 2, pp. 149-168, Apr. 1996.
    [3] G.R. Cooper and R.W. Nettleton, "A spread spectrum technique for high-capacity mobile communications", IEEE Trans. Vehicular Tech., vol. VT-27, no.4, pp 264-275, Nov. 1978.
    [4] E. Marom and O.G. Ramer, “Encoding-decoding optical fiber network,” Electron. Lett., vol. 14, no. 3, pp. 48, 1978.
    [5] D. Zaccarin, and M. Kavehrad, “An optical CDMA system based on spectral encoding of LED,” IEEE Photon. Technol. Lett., vol. 4, no. 4, pp. 479-482, Apr. 1993.
    [6] M. Kavehrad, and D. Zaccarin, “Optical code-division-multiplexed systems based on spectral encoding of noncoherent sources,” IEEE J. Lightwave Technol., vol. 13, no. 3, pp. 534-545, Mar. 1995.
    [7] J.F. Huang and D.Z. Hsu, “Fiber-grating-based optical CDMA spectral coding with nearly orthogonal M-sequence codes,” IEEE Photon. Technol. Lett., vol. 12, pp. 1252-1254, Sept. 2000.
    [8] E.D.J. Smith, P.T. Gough, and D.P. Taylor, “Noise limits of optical spectral-encoding CDMA systems,” Electron. Lett., vol. 31, no. 17, pp. 1469-1470, 1995.
    [9] X. Zhou, H.M.H. Shalaby, C. Lu, and T. Cheng, “Code for spectral amplitude coding optical CDMA systems,” Electron. Lett., vol. 36, pp. 728–729, Apr. 13, 2000.
    [10] Z. Wei, H.M.H. Shalaby, and H. Ghafouri-Shiraz, “Modified quadratic congruence codes for fiber Bragg-grating-based spectral-amplitude-coding optical CDMA systems,” IEEE J. Lightwave Technol., vol. 19, pp. 1274-1281, Sept. 2001.
    [11] I.B. Djordjevic and B. Vasic, “Novel combinatorial constructions of optical orthogonal codes for incoherent optical CDMA systems,” IEEE J. Lightwave Technol., vol. 21, no. 9, pp. 1869-1875, Sep. 2001.
    [12] K. Sekine, S. Sasaki, and N. Kikuchi, “10 Gbit/s four-channel wavelength- and polarisation-division multiplexing transmission over 340 km with 0.5 nm channel spacing,” Electron. Lett., vol. 31, pp. 49-50, Jan. 1995.
    [13] H. Sotobayashi, W. Chujo, and K. Kitayama, “1.6-b/s/Hz 6.4-Tb/s QPSK-OCDM/ WDM (4 OCDM × 40 WDM × 40 Gb/s) transmission experiment using optical hard thresholding,” IEEE Photon. Technol. Lett., vol. 14, pp. 555-557, Apr. 2002.
    [14] C.D. Poole, N.S. Bergano, R.E. Wagner, and H.J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” IEEE J. Lightwave Technol., vol. 6, pp. 1185-1190, Jul. 1988.
    [15] C.D. Poole and R.E. Wagner, “Phenomenological approach to polarisation dispersion in long single-mode fibres,” Electron. Lett., vol. 22, pp. 1029-1030, Sept. 1986.
    [16] M.I. Hayee, M.C. Cardakli, A.B. Sahin, and A.E. Willner, “Doubling of bandwidth utilization using two orthogonal polarizations and power unbalancing in a polarization-division-multiplexing scheme,” IEEE Photon. Technol. Lett., vol. 13, pp. 881-883, Aug. 2001.
    [17] B.A. Robson, The Theory of Polarization Phenomena. Oxford: Clarendon Press, 1974.
    [18] D.S. Kliger, J.W. Lewis, and C.E. Randall, Polarized Light in Optics and spectroscopy. Boston: Academic Press, 1990.
    [19] A.E. Willner, S.M. Reza Motaghian Nezam, L. Yan, Z. Pan, and M.C. Hauer, “Monitoring and control of polarization–related impairments in optical fiber systems,” IEEE J. Lightwave Technol., vol. 22, no. 1, pp. 106-125, Jan. 2004.
    [20] T. Erdogan, “Fiber grating spectra,” IEEE J. Lightwave Technol., vol. 15, no. 8, pp. 1277-1294, Aug. 1997.
    [21] K.O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” IEEE J. Lightwave Technol., vol. 15, no. 8, pp. 1263-1276, Aug. 1997.
    [22] F. Heismann, “Analysis of a reset-free polarization controller for fast automatic polarization stabilization in fiber-optic transmission systems,” IEEE J. Lightwave Technol., vol. 12, no. 4, pp. 690-699, Apr. 1994.
    [23] S. Walkin and J. Conradi, “Multilevel signaling for increasing the reach of 10 Gb/s lightwave systems,” IEEE J. Lightwave Technol., vol. 17, pp. 2235-2248, Nov. 1999.
    [24] J.W. Goodman, Statistical Optics. New York: Wiley, 1985.
    [25] E.D.J. Smith, R.J. Blaikie, and D.P. Taylor, “Performance enhancement of spectral- amplitude-coding optical CDMA using pulse-position modulation,” IEEE Trans. Commun., vol. 46, pp. 1176-1185, Sept. 1998.
    [26] J.S. Lee, “Signal-to-noise ratio of spectrum-sliced incoherent light sources including optical modulation effects,” IEEE J. Lightwave Technol., vol. 14, no. 10, pp. 2197-2201, Oct. 1996.
    [27] M. Nazarathy, W.V. Sorin, D.M. Baney, and S.A. Newton, “Spectral analysis of optical mixing measurements,” IEEE J. Lightwave Technol., vol. 7, no. 7, pp. 1083–1096, July 1989.
    [28] R.A. Griffin, D.D. Sampson, and D.A. Jackson, “Coherence coding for photonic code-division multiple access networks,” IEEE J. Lightwave Technol., vol. 13, no. 9, pp. 1826-1837, Sept. 1995.
    [29] T. Demeechai, “Polarization statistics modeling of beat noise in optical on-off-keying networks,” Optics Communications, vol. 226, pp. 205-210, Oct. 2003.
    [30] E. Hecht, Optics-3rd ed. Mass: Addison Wesley, 1998.

    下載圖示 校內:2008-07-14公開
    校外:2008-07-14公開
    QR CODE