簡易檢索 / 詳目顯示

研究生: 陳怡靜
Chen, Yi-Jing
論文名稱: 掃描電位顯微鏡對氧化鋅錫薄膜電晶體於偏壓應力後表面電位之研究
Surface potential variation of Zinc Tin Oxide thin film transistors after bias stress investigated by Scanning Electrical Potential Microscopy
指導教授: 陳貞夙
Chen, Jen-Sue
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 178
中文關鍵詞: 薄膜電晶體臨界電壓施加應力後的回復掃描電位顯微鏡
外文關鍵詞: thin film transistor, threshold voltage, recovery after bias stress, scanning electrical potential microscopy
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是利用溶液法製備氧化鋅錫薄膜電晶體(Zinc Tin Oxide thin film transistors, ZTO TFT),薄膜電晶體經過穩定性操作後,再利用掃描電位顯微鏡量測氧化鋅錫表面電位的變化。主動層選用氧化鋅錫的目的是避免添加鎵或銦等貴重金屬,製程所需的價格較便宜且無毒性,薄膜電晶體的電性表現也與添加貴重金屬後所製成的元件相同,對於未來的應用相當有潛力。再者利用旋轉塗佈法/溶液法,可連續鍍製薄膜製程,製作環境不需要使用真空設備,具有簡單、低成本、以及高生產率優勢。
    研究的第一部分為針對不同ZTO主動層厚度(分別為4nm、13nm、22nm)的薄膜電晶體於各種操作後的表現與穩定性量測。首先ZTO主動層在厚度只有4nm的條件下,此薄膜電晶體元件擁有高場效載子遷移率8~10cm2/Vs,次臨界斜率表現為~0.5V/decade,電流開關比約108;當ZTO薄膜厚度調整到13nm與20nm時,其場效載子遷移率分別可到18 cm2/Vs和22 cm2/Vs。於此同時,有鑑於薄膜電晶體在實際應用上,元件會受到正負偏壓反覆施加操作,並且受到背光源影響,因此實驗中利用雷射照光(波長為532nm),亦或搭配施加偏壓(分別施加0或+20或-20伏特)探討電晶體的穩定性,操作包含正閘極偏壓應力、負閘極偏壓應力、正閘極偏壓加照光應力、負閘極偏壓加照光應力與照光應力,並對偏壓或照光移除後元件回復的狀況進行紀錄。
    第二部分的研究則是對於不同厚度的薄膜電晶體元件,施加不同條件的偏壓或與照光操作,在回復2000、4000、8000秒時,利用掃描電位顯微鏡量測從源極到主動層與從主動層到汲極的接觸電位差,由接觸電位差可以得到回復時間的表面電位變化(ΔSP)。在此不考慮電極與主動層的接觸電位差差異(ΔCPDAl-ZTO),只考慮元件在施加不同穩定性操作後主動層的接觸電位差部分,其接觸電位差與起始狀態的接觸電位差差異,也就是主動層的表面電位變化(ΔSPZTO)。如此判斷的原因是來自於掃描電位顯微鏡的試片準備方式,接地的部分只有在主動層,而鋁電極處於浮動(floating)的狀態,在沒有接地的狀況下,元件表面容易累積電荷,影響接觸電位差量測結果。
    其中主動層厚度為4nm的薄膜電晶體元件在穩定性測試操作後,ΔSPZTO較其他兩種厚度的薄膜電晶體明顯,而主動層厚度為20nm時,任何穩定性操作後量測掃描電位顯微鏡的ΔSPZTO均小於30mV。原因是當主動層厚度變厚時,元件在穩定性測試操作後臨界電壓值的偏移(ΔVTH)小,同時掃描電位電位顯微鏡的偵測深度有限,造成主動層厚度增加後,元件發生在主動層與介電層的電荷變化無法被儀器偵測到。以主動層厚度在4nm的薄膜電晶體來說,當施加正閘極偏壓、正閘極偏壓照光應力與負閘極偏壓照光應力後,ΔVTH大於7V,同時表面電位的變化是明顯的,與起始狀態的表面電位變化可達30mV以上。因此我們將ΔVTH與表面電位變化(ΔSP)相互對照,用band diagram說明倆著之間的關係,了解其接觸電位差與臨界電壓之間的相關性。

    In this study, solution-processed zinc tin oxide thin film transistors (ZTO TFTs) are fabricated to avoid using gallium or indium precious metals. Using solution process, the thin films can be continuously deposited by spin coating in ambience (no vacuum environment is needed), resulting in advantages of low cost and high productivity.
    The ZTO TFT with active layer of 4nm, 13nm, and 20nm in thickness without passivation layer are examined by Scanning Electrical Potential Microscopy (SEPM) after different stability operations. Based on the results, the correlation between the variation of contact potential difference (CPD) and transistor threshold voltage shift (ΔVTH) is explored.
    In the first part of this study, basic electric performances of 4nm-ZTO TFT, 13nm-ZTO TFT and 20nm-ZTO TFT, and the stability tests including positive bias stress (PBS), negative bias stress (NBS), positive-bias with illumination stress (PBIS), negative-bias with illumination stress (NBIS) and light illumination stress (IS) are presented. In this experiment, the light wavelength is 532nm and the intensity is 5μW/cm2. The 4nm-ZTO TFT has high field-effect carrier mobility of 8~10cm2/Vs, subthreshold swing slope of ~ 0.5V/decade, and the on/off current ratio about 108, while 13nm-ZTO TFT has field-effect carrier mobility of 18cm2/Vs, subthreshold swing slope of ~ 1V/decade and the on/off current ratio of 106, and 20nm-ZTO TFT has field-effect carrier mobility of 22cm2/Vs, subthreshold swing slope of ~ 4V/decade and the on/off current ratio of 104.
    In the second part of this study, CPD is measured after stability test, at recovery time of 2000s, 4000s and 8000s, respectively. The CPD is measured along a path from Al source electrode to ZTO active layer, and from ZTO active layer to Al drain electrode. We do not consider the contact potential difference between the Al electrode and the active layer (CPDAl-ZTO) but the surface potential change of the ZTO active layer (ΔSPZTO) at recovery time of 2000s, 4000s and 8000s after stability test. The reason of data judgment based on the setup of SEPM, where the active layer is grounded and the electrode is at floating state. There may be charge accumulation at Al electrode, which will influence CPD measurement.
    For TFTs with active layers of different thicknesses, the 4nm-ZTO TFT has more pronounced CPD variation than the 13nm-ZTO TFT and 20nm-ZTO TFT on the ZTO active layer after stability test. This observation suggests that the trap-and- release of electrons at the interface between active layer and dielectric in transistor can be detected by SEPM only for substantially thin active layer. The relationship between change of CPD and the VTH shift of TFTs can be explained by band bending.

    摘要 I ABSTRACT III 誌謝 XII Extended abstract V 目錄 XIV 圖目錄 XVIII 表目錄 XXIV 第一章 緒論 1 1-1前言 1 1-2研究動機 4 第二章 理論基礎與文獻回顧 5 2-1薄膜電晶體結構 5 2-1.1簡介 5 2-1.2薄膜電晶體操作原理 7 2-1.3薄膜電晶體特性量測與參數計算 10 2.2薄膜電晶體電性穩定性 15 2.2.1正閘極偏壓、正閘極偏壓照光應力測試 16 2.2.2負閘極偏壓、負閘極偏壓照光應力 20 2-3原子力顯微鏡(ATOMIC FORCE MICROSCOPY) 23 2-3.1 AFM基本介紹 23 2-3.2回饋系統與影像產生原理 27 2-4表面電位顯微鏡(SCANNING ELECTRICAL POTENTIAL MICROSCOPY) 29 2-4.1表面電位顯微鏡背景 29 2-4.2接觸電位差和表面電位 30 2-4.3 表面電位顯微鏡之操作架構 32 2-4.4 表面電位顯微鏡在薄膜電晶體上的應用 34 第三章 實驗方法與步驟 39 3-1實驗材料 39 3-1.1實驗相關藥品與耗材 39 3-1.2 基板材料 39 3-2元件製備流程 40 3-2.1前置作業 40 3-2.2薄膜電晶體主動層溶液製備 40 3-2.3薄膜電晶體製備 41 3-2.4 掃描電位顯微鏡之試片製作 43 3-3 量測步驟 45 3-3.1電性量測條件 45 3-3.2表面電位量測條件 47 3-4分析儀器 53 第四章 結果與討論 54 4-1薄膜電晶體轉移特性曲線結果 55 4-1.1不同主動層厚度薄膜電晶體初始狀態的轉移特性曲線 55 4-1.2不同主動層厚度薄膜電晶體施加閘極偏壓與照光下穩定性量測 62 4-2表面電位數值判讀 69 4-2.1定義量測數值意義 69 4-2.2不同主動層厚度於起始狀態的鋁電極與主動層功函數 73 4-3 施加正閘極偏壓應力對於不同主動層厚度薄膜電晶體之轉移特性曲線與表面電位變化關係 75 4-3.1 4nm-ZTO薄膜電晶體施加正閘極偏壓應力之轉移特性曲線與表面電位變化關係 76 4-3.2 13nm-ZTO薄膜電晶體施加正閘極偏壓應力之轉移特性曲線與表面電位變化關係 83 4-3.3 20nm-ZTO薄膜電晶體施加正閘極偏壓應力之轉移特性曲線與表面電位變化關係 88 4-3.4不同主動層厚度薄膜電晶體施加正閘極偏壓應力之轉移特性曲線與表面電位變化關係 93 4-4.不同主動層厚度元件施加負閘極偏壓轉移特性曲線與表面電位變化關係 95 4-4.1 4nm-ZTO薄膜電晶體施加負閘極偏壓應力之轉移特性曲線與表面電位變化關係 96 4-4.2 13nm-ZTO薄膜電晶體施加負閘極偏壓應力之轉移特性曲線與表面電位變化關係 100 4-4.3 20nm-ZTO薄膜電晶體施加負閘極偏壓應力之轉移特性曲線與表面電位變化關係 105 4-4.4不同主動層厚度薄膜電晶體施加負閘極偏壓應力之轉移特性曲線與表面電位變化關係 109 4-5不同主動層厚度施加正閘極偏壓照光應力轉移特性曲線與表面電位變化關係 111 4-5.1 4nm-ZTO薄膜電晶體施加正閘極偏壓照光應力之轉移特性曲線與表面電位變化關係 112 4-5.2 13nm-ZTO薄膜電晶體施加正閘極偏壓照光應力之轉移特性曲線與表面電位變化關係 119 4-5.3 20nm-ZTO薄膜電晶體施加正閘極偏壓照光應力之轉移特性曲線與表面電位變化關係 124 4-5.4不同主動層厚度薄膜電晶體施加正閘極偏壓照光應力之轉移特性曲線與表面電位變化關係 128 4-6 不同主動層厚度元件施加負閘極偏壓照光應力之轉移特性曲線與表面電位變化關係 130 4-6.1 4nm-ZTO薄膜電晶體施加負閘極偏壓照光應力之轉移特性曲線與表面電位變化關係 131 4-6.2 13nm-ZTO薄膜電晶體施加負閘極偏壓照光應力之轉移特性曲線與表面電位變化關係 135 4-6.3 20nm-ZTO薄膜電晶體施加負閘極偏壓照光應力之轉移特性曲線與表面電位變化關係 140 4-6.4不同主動層厚度薄膜電晶體施加負閘極偏壓照光應力之轉移特性曲線與表面電位變化關係 144 4-7 不同主動層厚度薄膜電晶體施加照光應力之轉移特性曲線與表面電位變化關係 146 4-7.1 4nm-ZTO薄膜電晶體施加照光應力之轉移特性曲線與表面電位變化關係 147 4-7.2 13nm-ZTO薄膜電晶體施加照光應力之轉移特性曲線與表面電位變化關係 150 4-7.3 20nm-ZTO薄膜電晶體施加照光應力之轉移特性曲線與表面電位變化關係 153 4-7.4不同主動層厚度薄膜電晶體施加照光應力之轉移特性曲線與表面電位變化關係 156 第五章 結論 158 參考文獻 159 附錄 166 AFM: 166 基本操作順序 166 KPM以AFM TAPPING MODE基本操作為為基礎 170 事前準備 170 量測樣品部分 177

    [1] K.-H. Kim and J.-K. Song, "Technical evolution of liquid crystal displays," NPG Asia Materials, vol. 1, p. 29-36 ( 2009).
    [2] J. F. Conley Jr, "Instabilities in amorphous oxide semiconductor thin-film transistors," IEEE Transistors in Device and Materials Reliability, vol. 10, p. 460-475, (2010).
    [3] S. K. Park, Y.-H. Kim, H.-S. Kim, and J.-I. Han, "High performance solution-processed and lithographically patterned zinc–tin oxide thin-film transistors with good operational stability," Electrochemical and Solid-State Letters, vol. 12, p. 256-258 (2009).
    [4] S.-J. Seo, C. G. Choi, Y. H. Hwang, and B.-S. Bae, "High performance solution-processed amorphous zinc tin oxide thin film transistor," Journal of Physics D: Applied Physics, vol. 42, 035106 (2009)
    [5] M.-G. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks, "Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing," Nature materials, vol. 10, p. 382-388(2011).
    [6] J. S. Lee, Y.-J. Kwack, and W.-S. Choi, "Low-temperature solution-processed zinc-tin-oxide thin-film transistor and its stability," Journal of the Korean Physical Society, vol. 59, p. 3055-3059 (2011).
    [7] C. Kim, N.-H. Lee, Y.-K. Kwon, and B. Kang, "Effects of film thickness and Sn concentration on electrical properties of solution-processed zinc tin oxide thin film transistors," Thin Solid Films, vol. 544, p. 129-133 (2013).
    [8] B. D. Ahn, H. J. Jeon, and J.-S. Park, "Effects of Ga: N Addition on the Electrical Performance of Zinc Tin Oxide Thin Film Transistor by Solution-Processing," ACS applied materials & interfaces, vol. 6, p. 9228-9235 (2014).
    [9] S. J. Kim, A. R. Song, S. S. Lee, S. Nahm, Y. Choi, K.-B. Chung, "Independent chemical/physical role of combustive exothermic heat in solution-processed metal oxide semiconductors for thin-film transistors," Journal of Materials Chemistry C, vol. 3, p. 1457-1462 (2015).
    [10] T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In–Ga–Zn–O thin-film transistors," Science and Technology of Advanced Materials, vol. 11, 044305 (2010).
    [11] Donald A. Neamen, "Semiconductor Physics and Devices: Basic Principles," Third Edition.
    [12] J. F. Wager, D. A. Keszler, and R. E. Presley, Transparent electronics: Springer, 2008.
    [13] S. R. Thomas, P. Pattanasattayavong, and T. D. Anthopoulos, "Solution-processable metal oxide semiconductors for thin-film transistor applications," Chemical Society Reviews, vol. 42, p. 6910-6923 (2013).
    [14] J. H. Song, K. S. Kim, Y. G. Mo, R. Choi, and J. K. Jeong, "Achieving High Field-Effect Mobility Exceeding 50 cm2/Vs in In-Zn-Sn-O Thin-Film Transistors," IEEE Electron Device Letters, vol. 35, p. 853-855 (2014).
    [15] CR Kagan and P. Andry,Thin Film Transistor, ( Marcel Dekker, New York, 2003).
    [16] T.-C. Chen, T.-C. Chang, C.-T. Tsai, T.-Y. Hsieh, S.-C. Chen, C.-S. Lin, et al., "Behaviors of InGaZnO thin film transistor under illuminated positive gate-bias stress," Applied Physics Letters, vol. 97, 112104 (2010).
    [17] S. Han and S. Y. Lee, "High performance of full swing logic inverter using all n-types amorphous ZnSnO and SiZnSnO thin film transistors," Applied Physics Letters, vol. 106, 212104 ( 2015).
    [18] M. J. Powell, "The physics of amorphous-silicon thin-film transistors," Transactions On Electron Devices, vol. 36, p. 2753-2763 (1989).
    [19] J. G. Um, M. Mativenga, and J. Jang, "Mechanism of positive bias stress-assisted recovery in amorphous-indium-gallium-zinc-oxide thin-film transistors from negative bias under illumination stress," Applied Physics Letters, vol.103, 033501 (2013).
    [20] L.-C. Liu, J.-S. Chen, and J.-S. Jeng, "Role of oxygen vacancies on the bias illumination stress stability of solution-processed zinc tin oxide thin film transistors," Applied Physics Letters, vol. 105, 023509, (2014).
    [21] J.-H. Shin, J.-S. Lee, C.-S. Hwang, S.-H. K. Park, W.-S. Cheong, M. Ryu, et al., "Light effects on the bias stability of transparent ZnO thin film transistors," Etri Journal, vol. 31, p. 62-64 (2009).
    [22] K. H. Ji, J.-I. Kim, H. Y. Jung, S. Y. Park, R. Choi, U. K. Kim, et al., "Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors," Applied Physics Letters, vol. 98, 103509 (2011).
    [23] K. H. Ji, J.-I. Kim, Y.-G. Mo, J. H. Jeong, S. Yang, C.-S. Hwang, et al., "Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With and Gate Dielectrics," IEEE Electron Device Letters, vol. 31, p. 1404-1406 (2010).
    [24] H. Oh, S.-M. Yoon, M. K. Ryu, C.-S. Hwang, S. Yang, and S.-H. K. Park, "Photon-accelerated negative bias instability involving subgap states creation in amorphous In–Ga–Zn–O thin film transistor," Applied physics letters, vol. 97, 183502 (2010).
    [25] A. Suresh and J. Muth, "Bias stress stability of indium gallium zinc oxide channel based transparent thin film transistors," Applied Physics Letters, vol. 92, 033502 (2008).
    [26] S.-J. Seo, J. H. Jeon, Y. H. Hwang, and B.-S. Bae, "Improved negative bias illumination instability of sol-gel gallium zinc tin oxide thin film transistors," Applied Physics Letters, vol. 99, 152102 (2011.
    [27] B. Ryu, H.-K. Noh, E. Choi, and K. Chang, "O-vacancy as the origin of negative bias illumination stress instability in amorphous In-Ga-Zn-O thin film transistors," Applied Physics Letters 97, 022108 (2010)
    [28] G. Binnig, C. F. Quate, and C. Gerber, "Atomic force microscope," Physical review letters, vol. 56, p. 930 (1986).
    [29] J. M. Wallace, "Applications of atomic force microscopy for the assessment of nanoscale morphological and mechanical properties of bone," Bone, vol. 50, p. 420-427 (2012).
    [30] T. Albrecht, P. Grütter, D. Horne, and D. Rugar, "Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity," Journal of Applied Physics, vol. 69, pp. 668-673 (1991).
    [31] 吳依亭,林登松, "研究原子力顯微鏡對於掃描 Z 高度量測訊號誤差," 國立交通大學,物理研究所碩士論文(2005).
    [32] W. Melitz, J. Shen, A. C. Kummel, and S. Lee, "Kelvin probe force microscopy and its application," Surface Science Reports, vol. 66, pp. 1-27, 2011.
    [33] 肇啟東, "利用Kelvin探真技術研究功能材料的光電行為," 吉林大學博士學位論文, 2008年.
    [34] J. Itoh, Y. Nazuka, S. Kanemaru, T. Inoue, H. Yokoyama, and K. Shimizu, "Microscopic characterization of field emitter array structure and work function by scanning Maxwell‐stress microscopy," Journal of Vacuum Science & Technology B, vol. 14, p. 2105-2109 (1996).
    [35] M. Saint Jean, S. Hudlet, C. Guthmann, and J. Berger, "Charge dynamics and time evolution of contact potential studied by atomic force microscopy," Physical Review B, vol. 56, 15391 (1997).
    [36] A. Ulman, "Characterization of Organic Thin Films," Momentum Press,Momentum Press, New York,113 (2010).
    [37] L. Kronik and Y. Shapira, "Surface photovoltage phenomena: theory, experiment, and applications," Surface Science Reports, vol. 37, p. 1-206 (1999).
    [38] T. Yeh, Q. Zhu, D. Buchholz, A. Martinson, R. Chang, and T. Mason, "Amorphous transparent conducting oxides in context: Work function survey, trends, and facile modification," Applied Surface Science, vol. 330, p. 405-410 (2015).
    [39] R. D. Chandra, M. Rao, K. Zhang, R. R. Prabhakar, C. Shi, J. Zhang, et al., "Tuning Electrical Properties in Amorphous Zinc Tin Oxide Thin Films for Solution Processed Electronics," ACS Applied Materials & Iinterfaces, vol. 6, p. 773-777 ( 2013).
    [40] N. Zhang, Y. Hu, and X. Liu, "Transparent organic thin film transistors with WO3/Ag/WO3 source-drain electrodes fabricated by thermal evaporation," Applied Physics Letters, vol. 103, 033301 (2013).
    [41] G. Gonçalves, P. Barquinha, L. Pereira, N. Franco, E. Alves, R. Martins, et al., "High mobility a-IGO films produced at room temperature and their application in TFTs," Electrochemical and Solid-State Letters, vol. 13, p. 20-22 (2010).
    [42] Y. Li, C.-Y. Xu, B.-Y. Zhang, and L. Zhen, "Work function modulation of bilayer MoS2 nanoflake by backgate electric field effect," Applied Physics Letters, vol. 103, 033122 (2013).
    [43] Y. Zhang, Q. Chen, A. P. Alivisatos, and M. Salmeron, "Dynamic charge carrier trapping in quantum dot field effect transistors," Nano letters, vol. 15, pp. 4657-4663 (2015).
    [44] R. Yang, C. Zhu, J. Meng, Z. Huo, M. Cheng, D. Liu, "Isolated nanographene crystals for nano-floating gate in charge trapping memory," Scientific reports, vol. 3 (2013).
    [45] C. Sommerhalter, T. W. Matthes, T. Glatzel, A. Jäger-Waldau, and M. C. Lux-Steiner, "High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy," Applied Physics Letters, vol. 75, p. 286-288 (1999).
    [46] S. Y. Park, S. Kim, J. Yoo, K.-H. Lim, E. Lee, K. Kim, "Aqueous zinc ammine complex for solution-processed ZnO semiconductors in thin film transistors," RSC Advances, vol. 4, pp. 11295-11299 (2014).
    [47] B. S. Yang, S. Park, S. Oh, Y. J. Kim, J. K. Jeong, C. S. Hwang , "Improvement of the photo-bias stability of the Zn–Sn–O field effect transistors by an ozone treatment," Journal of Materials Chemistry, vol. 22, p. 10994-10998 (2012).
    [48] T. Jun, K. Song, Y. Jung, S. Jeong, and J. Moon, "Bias stress stable aqueous solution derived Y-doped ZnO thin film transistors," Journal of Materials Chemistry, vol. 21, p. 13524-13529 (2011).
    [49] Y. S. Rim, W. Jeong, B. Du Ahn, and H. J. Kim, "Defect reduction in photon-accelerated negative bias instability of InGaZnO thin-film transistors by high-pressure water vapor annealing," Applied Physics Letters, vol. 102,143503, (2013).
    [50] J. Kim, B. Lägel, E. Moons, N. Johansson, I. Baikie, W. R. Salaneck, et al., "Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison," Synthetic metals, vol. 111, p. 311-314, 2000.
    [51] J. Huang, Z. Xu, and Y. Yang, "Low-work-function surface formed by solution-processed and thermally deposited nanoscale layers of cesium carbonate," Advanced Functional Materials, vol. 17, p. 1966-1973 (2007).
    [52] C. Rezende, R. Gouveia, M. Da Silva, and F. Galembeck, "Detection of charge distributions in insulator surfaces," Journal of Physics: Condensed Matter, vol. 21, 263002 (2009).
    [53] M. Nonnenmacher, M. o’Boyle, and H. Wickramasinghe, "Kelvin probe force microscopy," Applied physics letters, vol. 58, pp. 2921-2923 (1991).
    [54] 張清林, "瞬態表面光伏測試系統的建立及其在功能材料光生電荷性質研究中的應用," 吉林大學博士學位論文, 2006
    [55] Z.Zhang, V.Quemener, C.-H.Lin, B.G.Svensson and L.J.Brillson, "Characterization of polishing induced defects and hydrofluoric acid passivation effect in ZnO", Applied Physics Letters, vol. 103, 072107 (2013)

    無法下載圖示 校內:2025-12-31公開
    校外:2025-12-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE