簡易檢索 / 詳目顯示

研究生: 林哲聿
Lin, Che-Yu
論文名稱: 層狀過渡金屬硫化物為基底之類異質接面雙極電晶體與可調式邏輯反向器
Quasi-heterojunction bipolar transistor and tunable logic inverter based on layered transition metal dichalcogenides
指導教授: 蘇炎坤
Su, Yan-Kuin
共同指導教授: 藍彥文
Lan, Yann-Wen
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 108
語文別: 英文
論文頁數: 78
中文關鍵詞: 二維材料異質接面雙極性電晶體共振穿隧現象極性可控雙閘場效電晶體互補式金屬氧化物半導體
外文關鍵詞: 2D materials, heterojunction bipolar transistors, resonant tunneling phenomenon, Polarity-controllable, dual gate field effect transistors, CMOS
相關次數: 點閱:130下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們研究的主要目的集中在基於二維材料的元件製造與降低生產成本上。我們透過許多材料特徵技術,例如原子力顯微鏡、掃描式電子顯微鏡、穿透式電子顯微鏡、拉曼光譜儀和光激發光系統來研究材料品質和特性。
    首先,我們嘗試透過使用WSe2-MoS2異質水平結構來製作元件。其電流與電壓特性顯示,在正向電壓時電流是低的,而反向電壓時電流卻是急劇增加的。這整流特性可以支持MoS2和WSe2之間存在水平n-p接面的特徵。然後,我們已經展示了利用單層的WSe2-MoS2水平接面作為導電之p-n通道的準異質接面雙極電晶體。從電性結果來看,在我們的二維準異質接面雙極電晶體中能實現的最大共射極電流增益約為3左右。有趣的是,我們還從電性量測中觀察到負微分電阻特性。我們認為引起負微分電阻特性是由於在基極區和集極區中施加高電壓時形成量子井而造成共振穿隧現象。
    此外,我們還展示了採用MoS2材料的場效電晶體,該電晶體可在同一元件中選擇性操作p型或n型特性。且該元件具有可調整的臨界電壓(Vth),可以透過添加一層等離子化的介電層在上閘極結構上來改變該臨界電壓。由於成長相對較薄的介電層促進了氧的過量,這使得在該介電層中產生負電荷,而不是在底部介電層中常見的正電荷。因此,造成臨界電壓位移並且上閘極結構特性從典型的n型切換到p型,而在施加下閘極電壓時仍保持n型行為。通過施加上閘極脈衝,甚至可以進一步微調元件臨界電壓的特性。因此,這已經證明了具有可調整元件特性的互補邏輯反相器。與現有研究相比,我們的元件可以節省幾乎兩倍單個元件的處理時間和價格。這個概念對於未來製造先進元件是非常有用和有價值的。
    未來準異質接面雙極電晶體可通過減少基極區寬度及摻雜射極,可以大大改善電流增益過小和電流密度過小的問題。我們還將提供有效的隔離機制,以防止電壓信號混合進入我們的雙閘極元件。然後,為了獲得理想的轉換電壓並確保反向器完全電壓匹配,在將來的設計中,兩個器件(p型和n型)的尺寸應相同。我們相信這些發現對於新型電子產品的未來發展將是引人入勝的。

    In this thesis, the main purpose of our research is focused on the fabrication of the 2D-material based devices and lower the cost of production. Plenty of material characterization techniques such as atomic force microscopy、scanning electron microscope、transmission electron microscopy、raman spectrometer and photoluminescence system have been used to study the quality and characteristics.
    First, we tried to fabricate the device by using the lateral WSe2-MoS2 heterostructure. The current-voltage characteristics exhibits that current is low in the forward bias whereas current is abruptly increase in the reverse bias. This rectifying characteristic is displayed to support lateral n-p junction formation between MoS2 and WSe2. Then, we have demonstrated the quasi-heterojunction bipolar transistors utilizing a monolayer of the lateral WSe2-MoS2 junctions as the conducting p-n channel. From the result of electrical characteristics, the maximum common-emitter current gain achieved is around 3 in our prototype two-dimensional quasi-heterojunction bipolar transistors. Interestingly, we also observe the negative differential resistance in the electrical characteristics. We think that the NDR behavior is caused by resonant tunneling phenomenon due to the formation of quantum well under applying high bias voltages in the base region and collector region.
    Furthermore, we also have exhibited the MoS2–based field effect transistor with the selective operation of either p-type or n-type characteristic in the same device. The device is built with an adjustable threshold voltage (Vth), which can be varied by adding a layer of plasma-oxidized dielectric at the top gate structure. This facilitates a surplus of oxygen due to the relatively thin grown dielectric layer and creation of negative charges in that layer instead of the usual ones of positive polarization in the bottom dielectric layer. Consequently, the Vth shifts and the top gate structure switch from the typical n-type to p-type while n-type behaviour remains in the application of bottom-gate voltages. And the Vth for device characteristics can be slightly adjusted further by applying a gate pulse input. Accordingly, the complementary logic inverters with the adjustable device characteristics have been demonstrated. Compared to the existing research, our device could save almost twice the process time and price of an individual device. This concept is useful and valuable for the future fabrication of advanced devices.
    In the future, we can be greatly improved the problems of the small current gain and small current density by reducing the base region and doping the emitter region for the quasi-heterojunction bipolar transistor. And we will also give the effective isolation mechanism to prevent bias signals from mixing for our dual gate device. Then, in order to get the ideal switching voltage and ensure the inverter fully voltage matched, the dimension for two devices (p-type and n-type) should be the same in the future design. We believe that these discoveries will be fascinating and promising for the future development of new type electronics.

    Abstract(in chinese) II Abstract(in English) IV Acknowledgment(in chinese) VII Content VIII Table Captions XI Figure Captions XII Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 The Development and Feature of two-dimensional (2D) Materials 2 1.3 The Challenge of Two-dimensional (2D) Materials Fabrication 3 1.4 Organization of This Thesis 4 Chapter 2 Introduction of experiment equipment 6 2.1 Chemical Vapor Deposition (CVD) 6 2.2 Plasma Enhanced Atomic Layer Deposition (PEALD) 7 2.3 Atomic Force Microscopy (AFM) 8 2.4 Transmission Electron Microscopy (TEM) 8 2.5 Photoluminescence (PL) 10 2.6 Raman spectrometer 12 Chapter 3 Atomic-monolayer two-dimensional lateral quasi-heterojunction bipolar transistors with resonant tunneling phenomenon 16 3.1 Motivation 16 3.2 Experimental Details 18 3.3 Materials and np junction characterization 19 3.4 NPN and PNP HBT characterization 21 3.5 Devices theoretical calculations 23 3.6 Compared with Si based transistors and other materials 27 3.7 Summary 27 Chapter 4 Polarity-controllable MoS2 transistor for adjustable complementary logic inverter application 40 4.1 Motivation 40 4.2 Experimental Details 42 4.3 Materials characterization 43 4.4 Polarity-controllable device characterization 43 4.4.1 Top gate and back gate device measured characterization 43 4.4.2 Device mechanisms 44 4.4.3 Devices theoretical calculations 46 4.4.4 CMOS inverter application 52 4.5 Adjustable device characterization 53 4.5.1 The effect of gate voltage pulse at various durations and mechanisms 53 4.5.2 CMOS inverter application 54 4.6 Compared with other materials-based CMOS inverters 54 4.7 Summary 55 Chapter 5 Conclusion and Future Prospects 68 5.1 Conclusion 68 5.2 Future Prospects 69 Reference 70 Publication List of Che-Yu Lin 78

    [1] P. R. Wallace, "The Band Theory of Graphite," Physical Review, vol. 71, no. 9, pp. 622-634, 1947.
    [2] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, no. 5696, p. 666-669, 2004.
    [3] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater., vol. 6, no. 3, pp. 183-191, 2007.
    [4] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, "Single-layer MoS2 transistors," Nat. Nanotechnol., vol. 6, p. 147-150, 2011.
    [5] G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S. K. Banerjee, and L. Colombo, "Electronics based on two-dimensional materials," Nat. Nanotechnol., Review Article vol. 9, p. 768-779, 2014.
    [6] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, "Electronics and optoelectronics of two-dimensional transition metal dichalcogenides," Nat. Nanotechnol., Review Article vol. 7, p. 699-712, 2012.
    [7] H. S. a. J. Y. Masahiro Tsuchiya, "Room Temperature Observation of Differential Negative Resistance in an AlAs/GaAs/AlAs Resonant Tunneling Diode," Jpn. J. Appl. Phys., vol. 24, no. 6, pp. L466-L468, 1985.
    [8] T. J. Shewchuk, P. C. Chapin, P. D. Coleman, W. Kopp, R. Fischer, and H. Morkoç, "Resonant tunneling oscillations in a GaAs-AlxGa1-xAs heterostructure at room temperature," Appl. Phys. Lett., vol. 46, no. 5, pp. 508-510, 1985.
    [9] R. Sekiguchi, Y. Koyama, and T. Ouchi, "Subterahertz oscillations from triple-barrier resonant tunneling diodes with integrated patch antennas," Appl. Phys. Lett., vol. 96, no. 6, p. 062115-062115-3, 2010.
    [10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science, vol. 306, no. 5696, pp. 666-669, 2004.
    [11] C. M. Torres, Y.-W. Lan, C. Zeng, J.-H. Chen, X. Kou, A. Navabi, J. Tang, M. Montazeri, J. R. Adleman, M. B. Lerner, Y.-L. Zhong, L.-J. Li, C.-D. Chen, and K. L. Wang, "High-Current Gain Two-Dimensional MoS2-Base Hot-Electron Transistors," Nano Lett., vol. 15, no. 12, pp. 7905-7912, 2015.
    [12] A. Politano, M. S. Vitiello, L. Viti, D. W. Boukhvalov, and G. Chiarello, "The role of surface chemical reactivity in the stability of electronic nanodevices based on two-dimensional materials “beyond graphene” and topological insulators," FlatChem, vol. 1, pp. 60-64, 2017.
    [13] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim, "Two-dimensional atomic crystals," PNAS, vol. 102, no. 30, pp. 10451-10453, 2005.
    [14] K. F. Mak, C. Lee, J. Hone, J. Shan, and T. F. Heinz, "Atomically Thin MoS2: A New Direct-Gap Semiconductor," Phys. Rev. Lett., vol. 105, no. 13, p. 136805-136805-4, 2010.
    [15] L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov, and L. A. Ponomarenko, "Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures," Science, vol. 335, no. 6071, pp. 947-950, 2012.
    [16] C.-H. Lee, G.-H. Lee, A. M. van der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T. F. Heinz, J. Guo, J. Hone, and P. Kim, "Atomically thin p–n junctions with van der Waals heterointerfaces," Nat. Nanotechnol., vol. 9, p. 676-681, 2014.
    [17] B. W. H. Baugher, H. O. H. Churchill, Y. Yang, and P. Jarillo-Herrero, "Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide," Nat. Nanotechnol., vol. 9, p. 262-267, 2014.
    [18] A. Pospischil, M. M. Furchi, and T. Mueller, "Solar-energy conversion and light emission in an atomic monolayer p–n diode," Nat. Nanotechnol., vol. 9, p. 257-261, 2014.
    [19] J. S. Ross, P. Klement, A. M. Jones, N. J. Ghimire, J. Yan, D. G. Mandrus, T. Taniguchi, K. Watanabe, K. Kitamura, W. Yao, D. H. Cobden, and X. Xu, "Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions," Nat. Nanotechnol., vol. 9, p. 268-272, 2014.
    [20] D. Sarkar, X. Xie, W. Liu, W. Cao, J. Kang, Y. Gong, S. Kraemer, P. M. Ajayan, and K. Banerjee, "A subthermionic tunnel field-effect transistor with an atomically thin channel," Nature, vol. 526, p. 91-95, 2015.
    [21] B. Radisavljevic, M. B. Whitwick, and A. Kis, "Integrated Circuits and Logic Operations Based on Single-Layer MoS2," ACS Nano, vol. 5, no. 12, pp. 9934-9938, 2011.
    [22] H. Wang, L. Yu, Y.-H. Lee, Y. Shi, A. Hsu, M. L. Chin, L.-J. Li, M. Dubey, J. Kong, and T. Palacios, "Integrated Circuits Based on Bilayer MoS2 Transistors," Nano Lett., vol. 12, no. 9, pp. 4674-4680, 2012.
    [23] A. Sanne, R. Ghosh, A. Rai, M. N. Yogeesh, S. H. Shin, A. Sharma, K. Jarvis, L. Mathew, R. Rao, D. Akinwande, and S. Banerjee, "Radio Frequency Transistors and Circuits Based on CVD MoS2," Nano Lett., vol. 15, no. 8, pp. 5039-5045, 2015.
    [24] A. P. Chandrakasan and R. W. Brodersen, "Minimizing power consumption in digital CMOS circuits," Proc. IEEE, vol. 83, no. 4, pp. 498-523, 1995.
    [25] D.-H. Kang, J. Shim, S. K. Jang, J. Jeon, M. H. Jeon, G. Y. Yeom, W.-S. Jung, Y. H. Jang, S. Lee, and J.-H. Park, "Controllable Nondegenerate p-Type Doping of Tungsten Diselenide by Octadecyltrichlorosilane," ACS Nano, vol. 9, no. 2, pp. 1099-1107, 2015.
    [26] H.-Y. Park, S. R. Dugasani, D.-H. Kang, J. Jeon, S. K. Jang, S. Lee, Y. Roh, S. H. Park, and J.-H. Park, "n- and p-Type Doping Phenomenon by Artificial DNA and M-DNA on Two-Dimensional Transition Metal Dichalcogenides," ACS Nano, vol. 8, no. 11, pp. 11603-11613, 2014.
    [27] H. Liu, A. T. Neal, M. Si, Y. Du, and P. D. Ye, "The Effect of Dielectric Capping on Few-Layer Phosphorene Transistors: Tuning the Schottky Barrier Heights," IEEE Electron Device Lett., vol. 35, no. 7, pp. 795-797, 2014.
    [28] J. Na, M.-K. Joo, M. Shin, J. Huh, J.-S. Kim, M. Piao, J.-E. Jin, H.-K. Jang, H. J. Choi, J. H. Shim, and G.-T. Kim, "Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation," Nanoscale, 10.1039/C3NR04218A vol. 6, no. 1, pp. 433-441, 2014.
    [29] C. Lau, T. Srimani, M. D. Bishop, G. Hills, and M. M. Shulaker, "Tunable n-Type Doping of Carbon Nanotubes through Engineered Atomic Layer Deposition HfOX Films," ACS Nano, vol. 12, no. 11, pp. 10924-10931, 2018.
    [30] S. Ogawa and N. Shiono, "Generalized diffusion-reaction model for the low-field charge-buildup instability at the Si-SiO2 interface," Phys. Rev. B, vol. 51, no. 7, pp. 4218-4230, 1995.
    [31] S. Chakravarthi, A. Krishnan, V. Reddy, C. F. Machala, and S. Krishnan, "A comprehensive framework for predictive modeling of negative bias temperature instability," in 2004 IEEE International Reliability Physics Symposium. Proceedings, 25-29 April 2004, pp. 273-282.
    [32] L. Tsetseris, X. J. Zhou, D. M. Fleetwood, R. Schrimpf, and S. T. Pantelides, Physical mechanisms of negative-bias temperature instability. 2005, pp. 142103-142103.
    [33] M. A. Alam, H. Kufluoglu, D. Varghese, and S. Mahapatra, "A comprehensive model for PMOS NBTI degradation: Recent progress," Microelectron. Reliab., vol. 47, no. 6, pp. 853-862, 2007.
    [34] A. Boogaard, A. Y. Kovalgin, and R. Wolters, "Negative Charge in Plasma Oxidized SiO2 Layers," ECS Trans., vol. 35, no. 4, pp. 259-272, 2011.
    [35] W. Liao, L. Wang, L. Chen, W. Wei, Z. Zeng, X. Feng, L. Huang, W. C. Tan, X. Huang, K. W. Ang, and C. Zhu, "Efficient and reliable surface charge transfer doping of black phosphorus via atomic layer deposited MgO toward high performance complementary circuits," Nanoscale, vol. 10, no. 36, pp. 17007-17014, 2018.
    [36] L. Wang, W. Liao, S. Xu, X. Gong, C. Zhu, and K.-W. Ang, "Unipolar n-Type Conduction in Black Phosphorus Induced by Atomic Layer Deposited MgO," IEEE Electron Device Lett., vol. 40, no. 3, pp. 471-474, 2019.
    [37] U. Maver, T. Velnar, M. Gaberšček, O. Planinšek, and M. Finšgar, "Recent progressive use of atomic force microscopy in biomedical applications," "TrAC, Trends Anal. Chem.", vol. 80, pp. 96-111, 2016.
    [38] P. Das, "Optical Properties of Low Dimensional Structures Using Cathodoluminescence in a High Resolution Scanning Electron Microscope," 2014.
    [39] D. Heiman, Photoluminescence spectroscopy. 2004.
    [40] D. C. Harris, Quantitative Chemical Analysis, 7th ed. 2006. W. H. Freeman and Company.
    [41] https://commons.wikimedia.org/wiki/File:Raman_energy_levels.svg (accessed.
    [42] S. M. Sze, Physics of Semiconductor Devices, 3rd ed. ed. 2007. Wiley-Interscience.
    [43] H. Kroemer, "Theory of a Wide-Gap Emitter for Transistors," Proc. IRE, vol. 45, no. 11, pp. 1535-1537, 1957.
    [44] H. Kroemer, "Heterostructure bipolar transistors and integrated circuits," Proc. IEEE, vol. 70, no. 1, pp. 13-25, 1982.
    [45] F. Ali, A. Gupta, and A. Higgins, "Advances in GaAs HBT power amplifiers for cellular phones and military applications," in IEEE 1996 Microwave and Millimeter-Wave Monolithic Circuits Symposium. Digest of Papers, 17-19 June 1996, pp. 61-66.
    [46] A. v. Bezooijen, D. Prikhodko, and A. H. M. v. Roermund, "Biasing Circuits for Voltage Controlled GSM Power Amplifiers," in 2003 33rd European Microwave Conference, 2-10 Oct. 2003, pp. 277-280.
    [47] J. D. Cressler, "SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications," IEEE Trans. Microwave Theory Tech., vol. 46, no. 5, pp. 572-589, 1998.
    [48] H. Terrones, F. López-Urías, and M. Terrones, "Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides," Scientific Reports, Article vol. 3, p. 1549-1555, 2013.
    [49] P. Rivera, J. R. Schaibley, A. M. Jones, J. S. Ross, S. Wu, G. Aivazian, P. Klement, K. Seyler, G. Clark, N. J. Ghimire, J. Yan, D. G. Mandrus, W. Yao, and X. Xu, "Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures," Nature Communications, Article vol. 6, p. 6242-6247, 2015.
    [50] H. Fang, C. Battaglia, C. Carraro, S. Nemsak, B. Ozdol, J. S. Kang, H. A. Bechtel, S. B. Desai, F. Kronast, A. A. Unal, G. Conti, C. Conlon, G. K. Palsson, M. C. Martin, A. M. Minor, C. S. Fadley, E. Yablonovitch, R. Maboudian, and A. Javey, "Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides," Proceedings of the National Academy of Sciences, vol. 111, no. 17, pp. 6198-6202, 2014.
    [51] M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin, H.-L. Tang, M.-L. Tsai, C.-W. Chu, K.-H. Wei, J.-H. He, W.-H. Chang, K. Suenaga, and L.-J. Li, "Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface," Science, vol. 349, no. 6247, pp. 524-528, 2015.
    [52] M.-H. Chiu, M.-Y. Li, W. Zhang, W.-T. Hsu, W.-H. Chang, M. Terrones, H. Terrones, and L.-J. Li, "Spectroscopic Signatures for Interlayer Coupling in MoS2–WSe2 van der Waals Stacking," ACS Nano, vol. 8, no. 9, pp. 9649-9656, 2014.
    [53] P. Agnihotri, P. Dhakras, and J. U. Lee, "Bipolar Junction Transistors in Two-Dimensional WSe2 with Large Current and Photocurrent Gains," Nano Lett., vol. 16, no. 7, pp. 4355-4360, 2016.
    [54] R. T. Bate, "Electronically Controllable Superlattice. ," vol. 22, p. 407, 1977. Bull. Amer. Phys. Soc.
    [55] P. J. Stiles, "The artificial superlattice in a two-dimensional system," Surf. Sci., vol. 73, pp. 252-257, 1978.
    [56] A. C. Warren, D. A. Antoniadis, H. I. Smith, and J. Melngailis, "Surface superlattice formation in silicon inversion layers using 0.2-µm period grating-gate electrodes," IEEE Electron Device Lett., vol. 6, no. 6, pp. 294-296, 1985.
    [57] S. Y. Chou, D. R. Allee, R. F. Pease, and J. S. Harris, "Lateral resonant tunneling transistors employing field-induced quantum wells and barriers," Proc. IEEE, vol. 79, no. 8, pp. 1131-1139, 1991.
    [58] D. J. Griffiths, "Introduction to Quantum Mechanics," 2005, sec. Problem 1.18. Pearson Education.
    [59] W. Liu, W. Cao, J. Kang, and K. Banerjee, "High-Performance Field-Effect-Transistors on Monolayer WSe2," ECS Trans., vol. 58, no. 7, pp. 281-285, 2013.
    [60] M. Lundstrom, Note on Heterostructure fundamentals. 1995.
    [61] A. Carvalho and A. H. C. Neto, "Donor and acceptor levels in semiconducting transition-metal dichalcogenides," Phys. Rev. B, vol. 89, no. 8, p. 081406-081406-5, 2014.
    [62] L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y.-J. Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim, C. Casiraghi, A. H. C. Neto, and K. S. Novoselov, "Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films," Science, vol. 340, no. 6138, pp. 1311-1314, 2013.
    [63] M. Salmani-Jelodar, Y. Tan, and G. Klimeck, "Single Layer MoS2 Band Structure and Transport," in 2011 International Semiconductor Device Research Symposium (ISDRS), 7-9 Dec. 2011, pp. 1-2.
    [64] A. Kumar and P. K. Ahluwalia, "Tunable dielectric response of transition metals dichalcogenides MX2 (M=Mo, W; X=S, Se, Te): Effect of quantum confinement," Physica B, vol. 407, no. 24, pp. 4627-4634, 2012.
    [65] H. S. Nguyen, D. Vishnevsky, C. Sturm, D. Tanese, D. Solnyshkov, E. Galopin, A. Lemaître, I. Sagnes, A. Amo, G. Malpuech, and J. Bloch, "Realization of a Double-Barrier Resonant Tunneling Diode for Cavity Polaritons," Phys. Rev. Lett., vol. 110, no. 23, p. 236601-236601-5, 2013.
    [66] I. Perez-Wurfl, R. Krutsinger, J. T. Torvik, and B. Van Zeghbroeck, "4H-SiC bipolar junction transistor with high current and power density," Solid-State Electron., vol. 47, no. 2, pp. 229-231, 2003.
    [67] S. Krishnaswami, A. Agarwal, R. Sei-Hyung, C. Capell, J. Richmond, J. Palmour, S. Balachandran, T. P. Chow, S. Bayne, B. Geil, K. Jones, and C. Scozzie, "1000-V, 30-A 4H-SiC BJTs with high current gain," IEEE Electron Device Lett., vol. 26, no. 3, pp. 175-177, 2005.
    [68] E. F. Crabbe, B. S. Meyerson, J. M. C. Stork, and D. L. Harame, "Vertical profile optimization of very high frequency epitaxial Si- and SiGe-base bipolar transistors," in Proceedings of IEEE International Electron Devices Meeting, 5-8 Dec. 1993, pp. 83-86.
    [69] S. S. Iyer, G. L. Patton, J. M. C. Stork, B. S. Meyerson, and D. L. Harame, "Heterojunction bipolar transistors using Si-Ge alloys," IEEE Trans. Electron Devices, vol. 36, no. 10, pp. 2043-2064, 1989.
    [70] X. Huili, P. M. Chavarkar, S. Keller, S. P. DenBaars, and U. K. Mishra, "Very high voltage operation (>330 V) with high current gain of AlGaN/GaN HBTs," IEEE Electron Device Lett., vol. 24, no. 3, pp. 141-143, 2003.
    [71] Z. Wang, "Fully adjustable CMOS current window comparator," Microelectron. J., vol. 22, no. 5, pp. 85-88, 1991.
    [72] A. Tangel and K. Choi, "“The CMOS Inverter” as a Comparator in ADC Designs," Analog Integrated Circuits and Signal Processing, vol. 39, no. 2, pp. 147-155, 2004.
    [73] O. Aytar and A. Tangel, Employing threshold inverter quantization (TIQ) technique in designing 9-Bit folding and interpolation CMOS analog-to-digital converters (ADC). 2011.
    [74] J. Park, D. Kang, J. Kim, and H. Yu, "Efficient Threshold Voltage Adjustment Technique by Dielectric Capping Effect on MoS2 Field-Effect Transistor," IEEE Electron Device Lett., vol. 38, no. 8, pp. 1172-1175, 2017.
    [75] D. K. Schroder, "Electrical characterization of defects in gate dielectrics," in Defects in Microelectronic Materials and Devices: CRC Press, 2008, pp. 135-178.
    [76] H.-Y. Park, M.-H. Lim, J. Jeon, G. Yoo, D.-H. Kang, S. K. Jang, M. H. Jeon, Y. Lee, J. H. Cho, G. Y. Yeom, W.-S. Jung, J. Lee, S. Park, S. Lee, and J.-H. Park, "Wide-Range Controllable n-Doping of Molybdenum Disulfide (MoS2) through Thermal and Optical Activation," ACS Nano, vol. 9, no. 3, pp. 2368-2376, 2015.
    [77] D. M. Fleetwood, "Border traps and bias-temperature instabilities in MOS devices," Microelectron. Reliab., vol. 80, pp. 266-277, 2018.
    [78] L. Kai-Shin, W. Bo-Wei, L. Lain-Jong, L. Ming-Yang, C. Chia-Chin Kevin, H. Cho-Lun, L. Chang-Hsien, C. Yi-Ju, C. Chun-Chi, W. Chien-Ting, C. Min-Cheng, S. Jia-Min, Y. Wen-Kuan, C. Yu-Lun, Y. Fu-Liang, and H. Chenming, "MoS2 U-shape MOSFET with 10 nm channel length and poly-Si source/drain serving as seed for full wafer CVD MoS2 availability," in 2016 IEEE Symposium on VLSI Technology, 14-16 June 2016, pp. 1-2.
    [79] A. Nipane, D. Karmakar, N. Kaushik, S. Karande, and S. Lodha, "Few-Layer MoS2 p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation," ACS Nano, vol. 10, no. 2, pp. 2128-2137, 2016.
    [80] V. V. Afanas’ev, D. Chiappe, C. Huyghebaert, I. Radu, S. De Gendt, M. Houssa, and A. Stesmans, "Band alignment at interfaces of few-monolayer MoS2 with SiO2 and HfO2," Microelectron. Eng., vol. 147, pp. 294-297, 2015.
    [81] K. Choi, H. N. Alshareef, H. C. Wen, H. Harris, H. Luan, Y. Senzaki, P. Lysaght, P. Majhi, and B. H. Lee, "Effective work function modification of atomic-layer-deposited-TaN film by capping layer," Appl. Phys. Lett., vol. 89, no. 3, p. 032113-032113-3, 2006.
    [82] S. L. Howell, D. Jariwala, C.-C. Wu, K.-S. Chen, V. K. Sangwan, J. Kang, T. J. Marks, M. C. Hersam, and L. J. Lauhon, "Investigation of Band-Offsets at Monolayer–Multilayer MoS2 Junctions by Scanning Photocurrent Microscopy," Nano Lett., vol. 15, no. 4, pp. 2278-2284, 2015.
    [83] V. Semiconductor, "The General Properties of Si, Ge, SiGe, SiO2 and Si3N4," 2002.
    [84] K. Yamada, "Extended abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials : August 20-22, 1986, Tokyo, Tokyo Prince Hotel," Tokyo, 1986: Japan Soc. of Applied Physics, pp. 257-260.
    [85] C.-C. Wu, D. Jariwala, V. K. Sangwan, T. J. Marks, M. C. Hersam, and L. J. Lauhon, "Elucidating the Photoresponse of Ultrathin MoS2 Field-Effect Transistors by Scanning Photocurrent Microscopy," The Journal of Physical Chemistry Letters, vol. 4, no. 15, pp. 2508-2513, 2013.
    [86] M. Bigang, S. P. Devireddy, Z. Celik-Butler, W. Fang, A. Zlotnicka, T. Hsing-Huang, and P. J. Tobin, "Low-Frequency Noise in Submicrometer MOSFETs With HfO2, HfO2/Al2O3 and HfAlOx Gate Stacks," IEEE Trans. Electron Devices, vol. 51, no. 8, pp. 1315-1322, 2004.
    [87] J. Kang, E.-C. Lee, K. J. Chang, and Y.-G. Jin, "H-related defect complexes in HfO2: A model for positive fixed charge defects," Appl. Phys. Lett., vol. 84, no. 19, pp. 3894-3896, 2004.
    [88] A. Neugroschel, G. Bersuker, R. Choi, and B. H. Lee, "Effect of the Interfacial SiO2 Layer in High-k HfO2 Gate Stacks on NBTI," IEEE Trans. Device Mater. Reliab., vol. 8, no. 1, pp. 47-61, 2008.
    [89] G. Gu, M. G. Kane, J. E. Doty, and A. H. Firester, "Electron traps and hysteresis in pentacene-based organic thin-film transistors," Appl. Phys. Lett., vol. 87, no. 24, p. 243512-243512-3, 2005.
    [90] A. B. Sachid, S. B. Desai, A. Javey, and C. M. Hu, "High-gain monolithic 3D CMOS inverter using layered semiconductors," (in English), Appl. Phys. Lett., Article vol. 111, no. 22, p. 5, Nov 2017, Art no. 222101.
    [91] X. X. He, W. Chow, F. C. Liu, B. Tay, and Z. Liu, "MoS2/Rubrene van der Waals Heterostructure: Toward Ambipolar Field-Effect Transistors and Inverter Circuits," (in English), Small, Article vol. 13, no. 2, p. 6, Jan 2017, Art no. 1602558.
    [92] T. Das, X. Chen, H. Jang, I. K. Oh, H. J. Kim, and J. H. Ahn, "Highly Flexible Hybrid CMOS Inverter Based on Si Nanomembrane and Molybdenum Disulfide," (in English), Small, Article vol. 12, no. 41, pp. 5720-5727, 2016.
    [93] Y. J. Park, A. K. Katiyar, A. T. Hoang, and J.-H. Ahn, "Controllable P- and N-Type Conversion of MoTe2 via Oxide Interfacial Layer for Logic Circuits," Small, vol. 15, no. 28, p. 1901772-1901780, 2019.
    [94] H. Kim, D. Y. Jeong, S. Lee, and J. Jang, "A High-Gain Inverter With Low-Temperature Poly-Si Oxide Thin-Film Transistors," (in English), IEEE Electron Device Lett., Article vol. 40, no. 3, pp. 411-414, 2019.
    [95] M. S. Yeh, G. L. Luo, F. J. Hou, P. J. Sung, C. J. Wang, C. J. Su, C. T. Wu, Y. C. Huang, T. C. Hong, T. S. Chao, B. Y. Chen, K. M. Chen, Y. C. Wu, M. Izawa, M. Miura, M. Morimoto, H. Ishimura, Y. J. Lee, W. F. Wu, and W. K. Yeh, "Ge FinFET CMOS Inverters With Improved Channel Surface Roughness by Using In-Situ ALD Digital O-3 Treatment," (in English), Ieee Journal of the Electron Devices Society, Article; Proceedings Paper vol. 6, no. 1, pp. 1227-1232, 2018.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE