簡易檢索 / 詳目顯示

研究生: 郝沛毅
Hao, Pei-Yi
論文名稱: 使用支持向量學習的模糊決策模式-基於核心函式的方法論
Fuzzy Decision Model Using Support Vector Learning – A Kernel Function Based Approach
指導教授: 蔣榮先
Chiang, Jung-Hsien
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 179
中文關鍵詞: 模糊推論模糊聚類支持向量機類神經網路模糊
外文關鍵詞: SVM, neural networks, fuzzy, fuzzy inference, fuzzy clustering
相關次數: 點閱:156下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 支持向量機(Support Vector Machine; SVM) 是最近被提出來的一種機器學習的技術,它以Vapnik的統計學習理論為基礎,SVM不像傳統的機器學習技術以最小化經驗風險(Empirical Risk)為目標 — 即使得訓練資料的分類誤差最小,SVM以最小化結構風險(Structural Risk)為目標 — 即使得未知資料(測試資料)的分類誤差在一個機率上界以下。這種新的機器學習技術等同於最小化推理誤差的上界。
    當建構的模式充滿了不確定及複雜的現象,模糊模式是必須被考慮的,若以Zadeh所提出的模糊系統來表示,模糊決策在概念上是更接近於人類的決策方法。基本上,模糊理論提供了有效的方法擷取『近似於』、『不精確』等現實世界中的獨特特性。在這篇論文中,我們使用各種方法結合模糊理論與支持向量機的概念,嘗試去同時保留支持向量機的優點—即以統計學習理論保證的優良推理能力,與模糊理論的優點—即概念上更接近人類思考,以及能更有效的表達複雜與不確定的系統。具體而言我們提出了下面三種方法:
    方法1: 我們使用之支持向量學習機制,提供了一個架構能夠由訓練資料中萃取支持向量(support vector),並經由適當的設計支持向量機中的核心函式(kernel function),將每一個支持向量經轉化後解讀成為一條模糊『如果-則就』的規則。這樣的做法的好處為—我們不用再事先決定模糊『如果-則就』規則的數目,因為支持向量完全是由支持向量機學習機制自動決定的,以及最後得到的決策機制不再像傳統支持向量機是一個黑箱,而是可以由一條一條的模糊『如果-則就』規則來解讀。最後我們在經由實驗模擬證明其有效性。
    方法二: 我們將傳統的支持向量聚類機做了一個延伸,我們使用了模糊運算子中的『排序加權整合運算子(OWA operator)』,來建立一個適應性個體成長的支持向量聚類機,這樣處理的好處為我們可以得到每一個點對個別叢集的歸屬程度以及各個叢集的中心點。
    方法三: 在這裡我們結合了模糊集合理論與支持向量迴歸機的概念,在此時支持向量迴歸機中要被估計參數如權重與偏差量,不再是一個實數而是一個模糊數(fuzzy number),而且迴歸時的期望輸出也是一個模糊數。所以我們迴歸最後得到的函數也是一個模糊函數,而迴歸的目標是將模糊函數輸出的模糊集合與期望輸出的模糊集合間的相配程度越密切越好。如今我們將一個充滿了曖昧、不確定的的模式使用了Zadeh所提出的模糊系統來表示。其概念更接近人類的思考與更符合現實世界的不確定性。

    Support Vector Machines (SVMs) have been recently introduced as a new technique for solving pattern recognition problems. According to the theory of SVMs, while traditional techniques for pattern recognition are based on the minimization of the empirical risk, that is, on the attempt to optimize the performance on the training set, SVMs minimize the structural risk, that is, the probability of misclassifying yet-to-been-seen patterns for a fixed but unknown probability distribution of the data.
    Fuzziness must be considered in systems where human estimation is influential. In this thesis, we incorporate the concept of fuzzy set theory into the support vector machine decision model in several approaches. We attempt to preserve the advantages of support vector machine (i.e. well generalization ability) and fuzzy set theory (i.e. closer to human thinking).
    First, we propose a fuzzy modeling framework based on support vector machine, a rule-based framework that explicitly characterizes the representation in fuzzy inference procedure. The support vector learning mechanism provides an architecture to extract support vectors for generating fuzzy IF-THEN rules from the training data set, and a method to describe the fuzzy system in terms of kernel functions. Thus, it has the inherent advantage that the model does not have to determine the number of rules in advance. Moreover, the decision model is not a black box anymore.
    Second, we enlarge SVM clustering by using a generalized ordered weighted averaging (OWA) operator to make multi-shpere SV clustering is capable of adaptively growing cell when a new point (but doesn’t belong to any existed cluster) is presented. Each sphere in the feature space corresponds to a cluster in original space and, whereby, it is possible to obtain the grade of fuzzy memberships, as well as cluster prototypes (sphere center) in partition.
    Third, we incorporate the concept of fuzzy set theory into the SVM regression. The parameters to be identified in SVM regression, such as the components within the weight vector and the bias term, are fuzzy numbers. The desired outputs in training samples are also fuzzy numbers. The SVM’s theory characterizes properties of learning machines which enable them to generalize well the unseen data and the fuzzy set theory might be very useful for finding a fuzzy structure in an evaluation system.

    Abstract------------------------------------------------------------------------i Acknowledgments-----------------------------------------------------------------v Table of Contents--------------------------------------------------------------vi List of Tables-----------------------------------------------------------------ix List of Figures-----------------------------------------------------------------x Chapter 1 Introduction----------------------------------------------------------1 1.1 Support Vector Machines----------------------------------------------------1 1.2 Fuzzy Theory---------------------------------------------------------------3 1.3 Motivation-----------------------------------------------------------------5 1.3.1 Support Vector Learning Mechanism for Fuzzy Rule-Based Modeling---------5 1.3.2 Fuzzy SVM Clustering with OWA-based Adaptively Cell Growing-------------6 1.3.3 A Fuzzy Model of Support Vector Machine Regression----------------------7 1.3.4 Redundant Support Vectors Pruning Algorithm-----------------------------8 1.4 Organization of Dissertation ----------------------------------------------9 Chapter 2 An Overview of Statistical Learning Theory---------------------------11 2.1 The General Setting of Learning Problem-----------------------------------11 2.1.1 The Problem of Pattern Recognition-------------------------------------12 2.1.2 The Problem of Regression Estimation-----------------------------------12 2.1.3 The Problem of Density Estimation--------------------------------------13 2.1.4 Setting of the Learning Problem----------------------------------------13 2.1.5 Empirical Risk Minimization Inductive Principle------------------------14 2.2 Consistency and Uniform Convergence for Learning Processes--------------- 15 2.3 Entropy of the Set of Functions and the Related Theory to Uniform Convergence---------------------------------17 2.3.1 Entropy of the Set of Indicator Functions------------------------------17 2.3.2 Entropy of the Set of Real Functions-----------------------------------19 2.4 Three Milestones in Learning Theorem--------------------------------------21 2.5 The Relationship between Growth Function and VC dimension-----------------23 2.6 An Equivalent Definition of the VC Dimension------------------------------25 2.7 A Bound on the Generalization Performance-------------------------------- 28 2.8 Minimizing the Risk Bound by Minimizing the VC Dimension------------------29 2.9 Structural Risk Minimization----------------------------------------------30 Chapter 3 Support Vector Machine Frameworks------------------------------------33 3.1 Support Vector Machine for Classification---------------------------------33 3.1.1 An Optimal Margin Classifier ------------------------------------------32 3.1.2 The Connection Between Margin and VC Dimension-------------------------34 3.1.3 Training Support Vector Machine ---------------------------------------36 3.1.4 Nonlinear Decision Surfaces--------------------------------------------39 3.2 Support Vector Machine for Regression-------------------------------------43 3.3 Support Vector Machine for Clustering-------------------------------------46 Chapter 4 Support Vector Learning Mechanism for Fuzzy Rule-Based Modeling------52 4.1 Fuzzy Inference Systems---------------------------------------------------53 4.1.1 Three Commonly Used Fuzzy Reasoning Mechasisms-------------------------54 4.1.2 Fuzzy Basis Function Inference System----------------------------------55 4.2 The Decision Procedure of Support Vector Machines-------------------------57 4.3 Modeling SVM-based Fuzzy Basis Function Inference System------------------59 4.4 Geometrical Analysis of the Fuzzy Rule Extraction-------------------------65 4.4.1 Comparing with Clustering Partition Based Fuzzy Rule Extracting--------65 4.4.2 Comparing with OLS based Fuzzy Rules Extracting------------------------67 4.5 Experimental Results------------------------------------------------------69 4.5.1 The Iris Pattern Classification Problem--------------------------------69 4.5.2 The Two Spirals Problem------------------------------------------------70 4.5.3 Prediction of the Chaotic Time-Series----------------------------------71 4.5.4 The Ball and Beam Problem----------------------------------------------74 4.6 Concluding Remark---------------------------------------------------------78 Chapter 5 A New Kernel-Based Fuzzy Clustering Approach: Support Vector Clustering with Cell Growing--------------79 5.1 Review of Clustering Methods----------------------------------------------80 5.1.1 Fuzzy Clustering-------------------------------------------------------80 5.1.2 Kernel-based Clustering -----------------------------------------------81 5.2 Proposed Multi-Sphere SV clustering---------------------------------------83 5.3 Fuzzy Memberships Computation and Heuristic Analysis----------------------90 5.3.1 Computation of cluster memberships-------------------------------------90 5.3.2 Estimation of winning cluster validity---------------------------------92 5.3.3 Two heuristic methods to reduce the computation time-------------------94 5.3.4 An incrementally learning algorithm for support vector clustering------96 5.3.4.1 The Kuhn-Trucker (KT) Conditions------------------------------------97 5.3.4.2 Adiabatic increments------------------------------------------------98 5.3.4.3 Bookkeeping: upper limit on increment------------------------------100 5.3.4.4 Recursive Matrix P updates-----------------------------------------101 5.3.4.5 Incremental procedure----------------------------------------------102 5.4 Experimental Results-----------------------------------------------------103 5.4.1 Synthesis Data Set----------------------------------------------------103 5.4.1.1 Unequal Populations Data Set---------------------------------------103 5.4.1.2 Random Noise Data Set----------------------------------------------104 5.4.1.3 The "XO" Data Set--------------------------------------------------105 5.4.2 Handwritten Digits Data Set-------------------------------------------105 5.5 Concluding Remark--------------------------------------------------------109 Chapter 6 A Fuzzy Model of Support Vector Machine Regression------------------110 6.1 Fuzzy Linear Function with Fuzzy Parameters------------------------------111 6.2 The Fitting Degree of two Fuzzy Number-----------------------------------113 6.3 Proposed Fuzzy SVM regression--------------------------------------------114 6.4 Experiment---------------------------------------------------------------119 6.5 Concluding Remark--------------------------------------------------------121 Chapter 7 Pruning Support Vectors in the SVM Framework------------------------123 7.1 Some notes on the SVM framework------------------------------------------124 7.2 An Example of Redundant Support Vectors----------------------------------126 7.3 Support Vector Pruning Algorithm-----------------------------------------128 7.3.1 Method I (Penalty Term Method)----------------------------------------129 7.3.2 Method II (Sensitivity Calculation Method)----------------------------133 7.4 Experiments--------------------------------------------------------------135 7.4.1 Synthesis Experiment--------------------------------------------------135 7.4.2 Face Detection Experiment---------------------------------------------137 7.5 Concluding Remark--------------------------------------------------------140 Chapter 8 Conclusions and Future Directions-----------------------------------141 References--------------------------------------------------------------------145 Appendix 1 SVM-based Fuzzy Inference Systems are Universal Approximators------164 Appendix 2 Derivation of Optimality Condition for Eq.(5.10)-------------------167 Appendix 3 Derivation of Incremental Step in Section 5.5.2--------------------171 Appendix 4 Derivation of Matrix Update Rules Eqs (5.25) and (5.26)------------173 Appendix 5 Proof of Proposition 6.1 - the Fuzzy Linear Function --------------176 List of Publications----------------------------------------------------------178 Vita -------------------------------------------------------------------------179

    [1] S. Abe and M. S. Lan, “A method for fuzzy rules extraction directly from numerical data and its application to pattern classification,” IEEE Trans. Fuzzy Syst., vol. 3, no. 1, pp. 353-361, Feb. 1995.
    [2] S. Amari, N. Murata, K.-R. Müller, M. Ginke, and H. Yang, “Statistical theory of overtraining — Is cross-validation asymptotically effective?” Advances in Neural Information Processing Systems, vol. 8, pp. 176-182, Cambrodge, MA: MIT Press, 1996.
    [3] D. Anguita, S. Ridella, and S. Rovetta. “Circuital implementation of support vector machines.” Electronics Letters, vol. 34, no. 16, 1998.
    [4] C. Bahlmann, B. Haasdonk, and H. Burkhardt. “On-line handwriting recognition with support vector machines--a kernel approach.” In Proc. of the 8th IWFHR, pages 49-54, 2002.
    [5] E. B. Baum, and D. Haussler, “what size net gives valid generalization?” Neural Computation, vol. 1, pp. 151-160, 1989.
    [6] E. B. Baum and K. J. Lang, “Constructing hidden units using examples and queries,” in Advances in Neural Information Processing Systems, vol. 3. San Mateo, CA: Morgan Kaufmann, pp. 904-910, 1991.
    [7] M. Bazaraa, H. Sherali, and C. Shetty. Nonlinear Programming Theory and Algorithms. J. Wiley, New York, 2nd edition, 1993.
    [8] K. P. Bennett and J. A. Blue. “A support vector machine approach to decision trees.” In Proceedings of IJCNN'98, pages 2396-2401, Anchorage, Alaska, 1997.
    [9] K. P. Bennett and A. Demiriz. “Semi-supervised support vector machines.” In Advances in Neural Information Processing Systems 11, pages 368-374. MIT Press, 1998.
    [10] A. M. Bensaid, L. O. Hall, J. C. Bezdek, and L. P. Clarke, M. L. Silbiger, J. A. Arrington, and R. F. Murtagh “Validity-Guided (Re)Clustering with Applications to Image Segmentation”, IEEE Trans. Fuzzy Systems, 4 (2), 112-123, 1996.
    [11] A. Ben-Hur, D. Horn, H.T. Siegelmann and V. Vapnik, “A kernel clustering method,” 15th International Conference on Pattern Recognition (ICPR), pp. 728-731, 2000.
    [12] A. Ben-Hur, D. Horn, H.T. Siegelmann and V. Vapnik, “Support vector clustering,” Journal of Machine Learning Research, vol. 2, pp. 125-137, 2001a.
    [13] A. Ben-Hur, D. Horn, H.T. Siegelmann and V. Vapnik. “A support vector method for clustering,” Advances in Neural Information Processing Systems, vol. 13, pp. 367-373, 2001b.
    [14] J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, 1981.
    [15] J. C. Bezadek, E. C. Tsao, and N. R. Pal, “Fuzzy Kohonen clustering networks,” IEEE Int. Conf. on Fuzzy Systems, San Diego, pp. 1035-1041, 1992.
    [16] C. M. Bishop, Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995.
    [17] V. Blanz, B. Schölkopf, H. Bulthoff, C. Burges, V.N. Vapnik, and T. Vetter, “Comparison of view-based object recognition algorithms using realistic 3D models”. In Proc of ICCANN’96. LNCS Vol. 1112, 251-256, 1996.
    [18] B. E. Boser, I. M. Guyon, and V. N. Vapnik. “A training algorithm for optimal margin classifier,” In Proc. 5th ACM Workshop on Computational Learning Theory, pp. 144-152, Pittsburgh, PA, July 1992.
    [19] C. J. C. Burges. “Simplified support vector decision rules,” In Proc. 13th Inter. Conf. on Machine Learning, pp. 71-77, San Mateo, Morgan Kaufmann, CA, 1996.
    [20] C. J. C. Burges and B. Scholkopf, “Improving the accuracy and speed of support vector learning machines,” In M. Mozer, M. Jordan, and T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 375-381, Cambridge, MA, 1997. MIT Press.
    [21] C. J. C. Burges, “A tutorial on support vector machines for pattern recognition”. Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 955-974, 1998.
    [22] C. J. C. Burges and D. Crisp, “Uniqueness of the SVM solution.” Proceedings of the Twelfth Conference on Neural Information Processing Systems. Cambridge, MA: MIT Press, 1999.
    [23] G. Cauwenberghs and T. Poggio, “Incremental and decremental support vector machine learning”. Advances in Neural Information Processing Systems, MIT Press, Vol. 13, 409-415, Cambridge, MA, 2001.
    [24] C.-C. Chang, C.-W. Hsu, and C.-J. Lin. “The analysis of decomposition methods for support vector machines.” In Proceeding of IJCAI99, SVM workshop, 1999.
    [25] O. Chapelle, P. Haffner, and V. Vapnik. “Svms for histogram-based image classification.” IEEE Transaction on Neural Networks, vol. 10, no. 5, pp. 1055-1064, 1999.
    [26] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares learning algorithm for radial basis function networks,” IEEE Trans. Neural Networks, vol. 2, pp. 302-309, Mar, 1991.
    [27] Y. Y. Chen, “A self-learning fuzzy controller,” IEEE International Conference on Fuzzy Systems, pp. 189 –196, 1992.
    [28] V. Cherkassky and F. Mulier, Learning from Data. John Wiley & Sons, New York, 1998.
    [29] J. –H. Chiang and P. Gader, " Recognition of Handprinted Numerals in VISA card Application Forms", Machine Vision and Applications, 10, 144-149, 1997.
    [30] D. Cohn, and G. Tesauro, “How tight are the Vapnik-Chervonenkis bound?,” Neural Computation, vol. 4, pp. 249-269, 1992.
    [31] R. Collobert and S. Bengio. “SVMtorch: Support vector machines for large-scale regression problems.” Journal of Machine Learning Research, 1:143-160, 2001.
    [32] C. Cortes, and V. N. Vapnik, “Support vector network,” Machine Learning, vol. 20, pp. 273-297, 1995.
    [33] N. Cristianini, C. Campbell, and J. Shawe-Taylor. “Dynamically adapting kernels in support vector machines.” In Advances in Neural Information Processing Systems,, volume 11, pages 204-210, 1999a.
    [34] N. Cristianini, C. Campbell, and J. Shawe-Taylor. “Multiplicative updatings for support vector machines.” In D-Facto Publications, editor, Proceeding of ESANN'99, pages 189-194, Belgium, 1999b.
    [35] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University Press, 2000.
    [36] R. N. Dave and R. Krishnapuram, “Robust Clustering Methods: A Unified View”, IEEE Trans. on Fuzzy Systems, 5(2), 270-293, 1997.
    [37] J. A. Dickerson and B. Kosko, “Fuzzy function learning with covariance ellipsoids,” IEEE Int. Conf. on Neural Networks, San Francisco, pp. 1162-1167, 1993.
    [38] J. A. Dickerson and B. Kosko, “Fuzzy function approximation with ellipsoidal rules,” IEEE Trans. Syst., Man, Cybern., vol. 26, no. 4, pp. 542-560, August, 1996.
    [39] C. Ding and I. Dubchak. “Multi-class protein fold recognition using support vector machines and neural networks.” Bioinformatics, vol. 17, pp. 349-358, 2001.
    [40] H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and V. N. Vapnik, “Support Vector regression machines,” In Advances in Neural Information Processing Systems 9, volume 9, page 155. The MIT Press, 1996.
    [41] D. Dubois and H. Prade, “Operations on fuzzy number,” Int. J. Syst. Sci., vol. 9, pp. 613-626, 1978.
    [42] R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley and Sons, New York, 1973.
    [43] T. Evgeniou, M. Pontil, and T. Poggio. “Regularization networks and support vector machines.” Advances in Computational Mathematics, vol. 13, no. 1, pp. 1-50, 2000.
    [44] B. Everitt, Cluster Analysis, Heinemann Educational Books, London, England, 1974.
    [45] R. Fisher, “The use of multiple measurements in taxonomic problems,” Ann. Eugenics, vol. 7, pt. II, pp. 179-188, 1936.
    [46] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, New York, 1989.
    [47] K. Fukunaga, Introduction to Statistical Pattern Recognition. Orlando: Harcourt Brace Jovanovich, 1972
    [48] P. Gader, M. Mohamed, and J.-H. Chiang, "Handwritten Word Recognition with Character and Inter-Character Neural Networks", IEEE Trans. on Systems, Man, and Cybernetics, 27(1), 158-164, 1997.
    [49] I. Gath And Y. Man, “Detection and separation of ring-shaped clusters using fuzzy clustering”, IEEE Trans. on PAMI, vol. 16, no. 8, 1994.
    [50] S. Geman and E. Bienenstock, “Neural networks and the bias/variance dilemma,” Neural Computation, vol. 4, pp. 1-58, 1992.
    [51] T. V. Gestel, J. Suykens, D. Baestaens, A. Lambrechts, G. Lanckriet, B. Vandaele, B. D. Moor, and J. Vandewalle,” Financial time series prediction using least squares support vector machines within the evidence framework.” IEEE Transactions on Neural Networks, Special Issue on Neural Networks in Financial Engineering, vol. 12, no.4, pp. 809-821, 2001.
    [52] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press, 1981.
    [53] M. Girolami. “Mercer kernel based clustering in feature space.” IEEE Trans. on Neural Networks, vol. 13, no. 3, pp. 780-784, 2002.
    [54] F. Girosi, “An equivalence between sparse approximation and support vector machines.” Neural Computation, vol. 10, no. 6, pp. 1455-1480, 1998.
    [55] I. Guyon, V. Vapnik, and B. Boser, “Structure risk minimization for character recognition,” Advances in Neural Information Processing Systems, vol. 4, pp. 471-479, 1992.
    [56] I. Guyon, B. Boser, and V. Vapnik, “Automatic capacity tuning of very large VC-dimension classifier,” Advances in Neural Information Processing Systems, vol. 5, pp. 147-155, 1993.
    [57] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. “Gene selection for cancer classification using support vector machines.” Machine Learning, vol. 46, pp. 389-422, January 2002.
    [58] B. Hassibi, D.G. Stork, and G.J. Wolff, “Optimal Brain surgeon and general network pruning.” IEEE International Conference on Neural Networks, vol. 1, pp. 293-299, San Francisco, 1992.
    [59] J. Hauser, S. Satry, and P. Kokotovic, “Nonlinear control via approximate input-output linearization: the ball and beam example,” IEEE Trans. Automat. Contr., vol. 37, no. 3, pp. 392-398, March, 1992.
    [60] S. Haykin., Neural Networks – a Comprehensive Foundation. Prentice Hall, New Jersey, 2nd edition, 1999. ISBN 0-13-273350-1.
    [61] B. Heisele, T. Poggio, and M. Pontil. “Face detection in still gray images,” AI Memo 1687, Massachusetts Institute of Technology, 2000.
    [62] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedorward networks are universal approximators,” Neural Networks, vol. 2, pp. 359-366, 1989.
    [63] S. Hua and Z. Sun. “A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach.” Journal of Molecular Biology, vol. 308, pp. 397-407, 2001.
    [64] J. J. Hull, " A Database for Handwritten Text Recognition Research", IEEE Trans. on PAMI, 16, 550-554, 1994.
    [65] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka, “Selecting fuzzy if-then rules for classification probems using genetic algorithms,” IEEE Trans. Fuzzy Syst., vol. 3, no. 3, pp. 260-270, Aug., 1995.
    [66] A. K. Jain and R.C. Dubes. Algorithms for Clustering Data. Prentice Hall, Englewood Cliffs NJ, U.S.A., 1988.
    [67] J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE Trans. Syst., Man, Cybern., vol. 23, no. 3, pp. 665-685, May/June, 1993.
    [68] J.–S. R. Jang and C. Sun, “Neuro-fuzzy modeling and control,” Proceedings of the IEEE, 83, pp. 378-406, 1995.
    [69] T. Joachims. “Text categorization with support vector machines: Learning with many relevant features.” In Claire Nédellec and Céline Rouveirol, editors, Proceedings of the European Conference on Machine Learning, pages 137-142, Berlin, 1998. Springer.
    [70] T. Joachims. “Making large-scale SVM learning practical.” In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods --- Support Vector Learning, pages 169-184, Cambridge, MA, 1999. MIT Press.
    [71] C.-F. Juang and C. -T. Lin, “An on-line self-constructing neural fuzzy inference network and its applications,” IEEE Trans. Fuzzy. Syst., vol. 6, no. 1, pp. 12-32, Feb., 1998.
    [72] A. Kandel, Fuzzy Techniques in Pattern Recognition,. New York: Wiley-Interscience, 1982.
    [73] A. Kandel, Fuzzy Mathematical Techniques with Applications, Reading, MA: Addison-Wesley, 1986.
    [74] N. B. Karayiannis and J. C. Bezdek, “ An Integrated Approach to Fuzzy Learning Vector Quantization and Fuzzy c-Means Clustering”, IEEE Trans. Fuzzy Systems, 5 (4), 622-628, 1997.
    [75] V. Kecman. Learning and Soft Computing, Support Vector Machines, Neural Networks and Fuzzy Logic Models. MIT Press, 2001.
    [76] J. M. Keller, R. Krishnapuram, and F. C.-H. Rhee, “Evidence aggregation networks for fuzzy logic inference,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 761-769, Sept. 1992.
    [77] H. M. Kim and J. M. Mendel, “Fuzzy basis functions: comparisons with other basis functions,” IEEE Trans. on Fuzzy Syst., vol.3, no.2, pp. 158-168, May 1995.
    [78] T. Kohonen, Self-Organization and Associative Memory, 3rd Edition, New York: Springer-Verlag, 1982.
    [79] T. Kohonen, “An introduction to neural computing,” Neural Networks, vol. 1, pp. 3-16, 1988a.
    [80] T. Kohonen, G. Barna, and R Chrisley “Statistical pattern recognition with neural networks: Benchmarking studies,” IEEE Int. Conf. Neural Networks, vol. 1, pp. 61-68, San Diego, CA, 1988b.
    [81] B. Kosko, Fuzzy Engineering. Upper Saddle River, NJ: Prentice Hall, 1988.
    [82] B. Kosko, Neural Networks and Fuzzy Systems, Englewood Ciffs, NJ: Prentice-Hall, 1992a.
    [83] B. Kosko, “Fuzzy systems as universal approximators,” Proc. IEEE Int. Conf. Fuzzy Syst., pp. 1153-1162, San Diego, 1992b.
    [84] R. Krishnapuram and J. M. Keller, " A possibilistic Approach to Clustering", IEEE Trans. Fuzzy System, 1(2), pp 98-110, 1993.
    [85] K. J. Lang and M. J. Witbrock, “Learning to tell two spirals apart,” in Proc. 1988 Connectionist Models Summer School, pp. 52-59, 1989.
    [86] Y. LeCun, L. J.S. Denker, and S.S. Solla, “Optimal brain damage.” Advances in Neural Information Processing Systems, vol. 2, pp. 598-605, San Mateo, CA: Morgan Kaufmann, 1990.
    [87] K.-M. Lee, D.-H. Kwak, and H. Leekwang, “Tuning of fuzzy model by fuzzy neural networks”, Fuzzy Sets and Systems, vol. 76, pp. 47-61, 1995.
    [88] C. -C. Lee, “Fuzzy logic in control systems: fuzzy logic controller, part I,” IEEE Trans. Syst., Man, Cybern., vol. 20, no. 2, pp. 404-418, Mar., 1990.
    [89] C. -C. Lee, “Fuzzy logic in control systems: Fuzzy logic controller, part II,” IEEE Trans. Syst., Man, Cybern., vol. 20, no. 2, pp. 419-435, 1990.
    [90] Y. Lee, Y. Lin, and G. Wahba. “Multicategory support vector machines.” Technical Report 1043, Department of Statistics, University of Wisconsin, Madison WI, 2001. To appear, Proceedings of the 33rd Symposium on the Interface, 2001.
    [91] C. -J. Lin and C. T. Lin, “Reinforcement learning for ART-based fuzzy adaptive learning control networks,” IEEE Trans. Neural Networks, vol.7, pp. 709-731, May 1996.
    [92] C. -J. Lin and C. -T. Lin, “An ART-Based fuzzy adaptive learning control network,” IEEE Trans. Fuzzy Syst., vol. 5, no. 4, pp. 477-496, Nov. 1997.
    [93] C.-J. Lin, “Asymptotic convergence of an SMO algorithm without any assumptions,” IEEE Transactions on Neural Networks, vol. 13, pp. 248-250, 2002a.
    [94] C.-J. Lin, “A formal analysis of stopping criteria of decomposition methods for support vector machines,” IEEE Transactions on Neural Networks, vol. 13, pp. 1045-1052, 2002b.
    [95] C. -T. Lin and C. -S. G. Lee, “Neural-network-based fuzzy logic control and decision system,” IEEE Trans. Computers, vol. 40, no. 12, pp. 1320-1336, 1991.
    [96] C. -T. Lin and C. -S. G. Lee, Neural Fuzzy Systems: A Neural-Fuzzy Synergism to Intelligent Systems. Englewood Cliffs, NJ: Prentice-Hall, 1996.
    [97] Z. -Q. Liu and F. Yan, “Fuzzy neural network in case-based diagnostic system”, IEEE Trans. Fuzzy Syst., vol. 5, no. 2, pp. 209-222, 1997.
    [98] D. G. Luenberger, linear and nonlinear programming. Addison -Wesley Pub., Massachusets, 1984.
    [99] M. C. Mackey and L Glass, “Oscillation and chaos in physiological control systems,” Sicence, vol. 197, pp. 287-289, July 1977.
    [100] O. L. Mangasarian, “Linear and nonlinear separation of patterns by linear programming,” Operations Research, vol. 13, pp. 444-452, 1965.
    [101] O. L. Mangasarian. Nonlinear Programming. McGraw-Hill, New York, NY, 1969.
    [102] P. Massimiliano; V. Alessandro, “Properties of Support Vector Machines,” MIT Artificial Intelligence Laboratory Memo 1612 and Center for Biological and Computational Learning Department of Brain and Cognitive Sciences Paper 152. 1997.
    [103] G. P. McCormick, Nonlinear Programming: Theory, Algorithms, and Application. J. Wiley, New York, NY, 1983.
    [104] J. M. Mendel, “Fuzzy logic systems for engineering: a tutorial,” Proc. IEEE, vol. 83, pp. 345-377, Mar. 1995.
    [105] S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K.-R. Müller. “Fisher discriminant analysis with kernels.” In Y.-H. Hu, J. Larsen, E. Wilson, and S. Douglas, editors, Neural Networks for Signal Processing IX, pages 41-48. IEEE, 1999.
    [106] S. Mika, B. Schölkopf, A. Smola, K.-R. Müller, M. Scholz, and G. Rätsch. “Kernel PCA and de-noising in feature spaces.” In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11, pages 536 - 542, Cambridge, MA, 1999. MIT Press.
    [107] D. C. Montgomery and E. A. Peck, Introduction to Linear Regression Analysis, John Wiley and Sons, Inc., 2nd edition, 1992.
    [108] G. C. Mouzouris and J. M. Mendel, “A single-value-QR decomposition based method for training fuzzy logic systems in uncertain environments,” J. Intell. and Fuzzy Syst., vol. 55, pp. 367-374, 1997.
    [109] S. Mukherjee, E. Osuna, and F. Girosi. “Nonlinear prediction of chaotic time series using a support vector machine.” In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors, Neural Networks for Signal Processing VII - Proceedings of the 1997 IEEE Workshop, New York, 1997.
    [110] S. Mukherjee, Application of Statistical Learning Theory to DNA Microarray Analysis, Ph.D. Thesis, BCS, MIT, June 2001.
    [111] K.-R. Müller, S. Mika, G. Rätsch, and K. Tsuda. “An introduction to kernel-based learning algorithms.” IEEE Transactions on Neural Networks, vol. 12, no. 2, pp. 181-201, 2001.
    [112] J. Nie and D. A. Linkens, “Learning control using fuzzified self-organizing radial basis function network,” IEEE Trans. Fuzzy Syst., vol. 1, no. 4, pp. 280-287, 1993.
    [113] E. Osuna, R. Freund, and F. Girosi., “Training support vector machines: an application to face detection,” Proc. of Computer Vision and Pattern Recognition, pp. 130-136, 1997a.
    [114] E. Osuna, R. Freund, and F. Girosi. “Support vector machines: Training and applications.” A.I. Memo 1602, MIT A. I. Lab., 1997b.
    [115] E. Osuna, R. Freund, and F. Girosi. “An improved training algorithm for support vector machines.” In J. Principe, L. Gile, N. Morgan, and E. Wilson, editors, Neural Networks for Signal Processing VII -Proceedings of the 1997 IEEE Workshop, pages 276-285, New York, 1997c.
    [116] E. Osuna and F. Girosi. “Reducing run-time complexity in SVMs.” In Proceedings of the 14th International Conf. on Pattern Recognition, Brisbane, Australia, 1998.
    [117] N. R. Pal and J. C. Bezdek, “On Cluster Validity for the Fuzzy C-Means Model”, IEEE Trans. on Fuzzy Systems, 3 (3), 370-379, 1995.
    [118] W. Pedrycz, Fuzzy Control and Fuzzy Systems. New York: Wiley, 1989.
    [119] W. Pedrycz, “Fuzzy Multimodels”, IEEE Trans. on Fuzzy Systems, 4 (2), 139-148, 1996.
    [120] W. Pedrycz and M. Reformat, “Rule based modeling of nonlinear relationships,” IEEE Trans. Fuzzy. Syst., vol. 5, no. 2, pp. 256-269. May 1997.
    [121] J. Platt. “Fast training of support vector machines using sequential minimal optimization.” In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel Methods --- Support Vector Learning, pages 185-208, Cambridge, MA, 1999. MIT Press.
    [122] M. Pontil and A. Verri. “Properties of support vector machines.” Neural Computation, vol. 10, pp. 955-974, 1997.
    [123] M. Pontil and A. Verri. “Support vector machines for 3-d object recognition.” IEEE Trans. PAMI, vol. 20, pp. 637-646, 1998.
    [124] G. Rätsch, S. Mika, B. Schölkopf, and K.-R. Müller. “Constructing boosting algorithms from SVMs: an application to one-class classification”. IEEE PAMI, 2002.
    [125] R. Reed, “Pruning algorithms—A survey,” IEEE Trans. Neural Networks, vol. 4, pp. 740–747, Sept. 1993.
    [126] R. D. Ripley, Pattern Recognition and Neural Networks. Cambridge University Press, 1996.
    [127] H. A. Rowley, S. Baluja and T. Kanade, “Neural Network-Based Face Detection,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 20, no. 1, pp. 23-38, 1998.
    [128] W. Rudin, Principles of Mathematical Analysis. New York: McGraw-Hill, 1976.
    [129] A. Ruiz and P.E. Lopez-de-Teruel, “Nonlinear kernel-based statistical pattern analysis,” IEEE Transactions on Neural Networks, vol. 12, no. 1, pp. 16-32, 2001.
    [130] D. E. Rumelhart and J. L. McClelland, eds., Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, Cambridge, MA: MIT Press, 1986.
    [131] C. Saunders, M. O. Stitson, J. Weston, L. Bottou, B. Schölkopf, and A. Smola, “Support Vector machine – reference manual,” Technical Report CSD-TR-98-03, Department of Computer Science, Royal Holloway, University of London Egham, UK, 1998.
    [132] M .Schmidt. “Identifying speaker with support vector networks,” in Interface ’96 Proceedings, Sydney, 1996.
    [133] B. Schölkopf, C. Burges, and V. N. Vapnik, “Extracting support data for a given task,” In U. M. Fayyad and R. Uthurusamy, editors, Proceedings, First International Conference on Knowledge Discovery & Data Mining, Menlo Park, CA, 1995. AAAI Press.
    [134] B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997a.
    [135] B. Schölkopf, K., Sung, C.J.C., Burges, F., Girosi, P., Niyogi, T., Poggio, and V. N. Vapnik, “Comparing support vector machines with gaussian kernels to radial basis function classifiers.” IEEE Trans. Sign. Processing, vol. 45, pp. 2758-2765, 1997b.
    [136] B. Schölkopf, P. Y. Simard, A. J. Smola, and V. N. Vapnik. “Prior knowledge in support vector kernels.” In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural information processings systems, volume 10, pages 640-646, Cambridge, MA, 1998a. MIT Press.
    [137] B. Schölkopf, A. Smola, K.-R Müller, “Nonlinear component analysis as a eigenvalue problem” Neural Computation, vol. 10, pp. 1299-1319, 1998b.
    [138] B. Schölkopf, C.J.C. Burges, and A.J. Smola, Advances in Kernel Method—Support Vector Learning, MIT Press, Cambridge, MA, 1999a.
    [139] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola and R. C. Williamson, “Estimating the support of a high-dimensional distribution”. Microsoft Research Corporation Technical Report MSR-TR-99-87, 1999b.
    [140] B. Scholkopf, R. Williamson, A.J. Smola, and J. Shawe-Taylor. “Single-class support vector machines”. In J. Buhmann, W. Maass, H. Ritter, and N. Tishby, editors, Dagstuhl-Seminar-Report 235, pages 19 - 20, 1999c.
    [141] B. Scholkopf, R.C. Williamson, A.J. Smola, J. Shawe-Taylor, “SV estimating of distribution’s support,” In Neural Information Processing Systems, 1999d.
    [142] B. Schölkopf, S. Mika, C. J. C. Burges, P. Knirsch, K.-R. Müller, G. Rätsch, and A. Smola, “Input space vs. feature space in kernel-based method,” IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 1000-1017, Sep., 1999e.
    [143] B. Schölkopf, A. Smola, R. Williamson, and P. L. Bartlett. “New support vector algorithms.” NeuroCOLT Technical Report NC-TR-98-031, Royal Holloway College, University of London, UK, 1998. Published in Neural Computation vol. 12, no. 5, pp. 1207-1245, 2000a.
    [144] B. Schölkopf, R.C. Williamson, A.J. Smola, J. Shawe-Taylor, and J. Platt. “Support vector method for novelty detection.” In Neural Information Processing Systems, 2000b.
    [145] J. Shawe-Taylor and N. Cristianini. “Margin distribution and soft margin.” In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 349-358, Cambridge, MA, 2000a. MIT Press.
    [146] J. Shawe-Taylor and G. Karakoulas. “Towards a strategy for boosting regressors.” In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 247-258, Cambridge, MA, 2000b. MIT Press.
    [147] P. K. Simpson, “Fuzzy min-max neural networks—part 1: classification,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 776-786, Sept. 1992.
    [148] P. K. Simpson, “Fuzzy min-max neural networks—part 2: clustering,” IEEE Trans. Neural Networks, vol. 1, no. 1, pp. 32-43, Sept. 1993.
    [149] A. J. Smola, B. Schölkopf, and K. –R. Muller, “The connection between regularization operators and support vector kernels,” Neural Networks, vol. 11, pp. 637-649, 1998a.
    [150] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression”. NeuroCOLT2 Technical Report NC2-TR-1998-030, 1998b.
    [151] A. J. Smola. Learning with Kernels. PhD thesis, Technische Universität Berlin, 1998c.
    [152] A. J. Smola and B. Schölkopf, “From regularization operations to support vector kernels,” In Advance in Neural Information Processing Systems, vol. 10, pp.343-349, San, Mateo, CA, 1998d.
    [153] A. J. Smola and B. Schölkopf, “On a kernel-based method for pattern recognition, regression, approximation and operator inversion,” Algorithmica, vol. 22, pp.211-231, 1998e.
    [154] A. J. Smola, T. Frieb, and B. Schölkopf, “Semiparameter support vector and linear programming machine.” In Advance in Neural Information processing systems, vol. 10, pp.637-649, 1998f.
    [155] A. J. Smola, A. Elisseeff, B. Schölkopf, and R. C. Williamson, “Entropy numbers for convex combinations and MLPs,” In A, J. Smola, P. L. Bartlett, B. Schölkopf and D. Schuurmans, editors, Advance in Large Margin Classifiers, Cambridge, MA, 2000, MIT Press.
    [156] A. J. Smola and P.L. Bartlett. “Sparse greedy gaussian process regression.” In Advances in Neural Information Processing Systems 13, 2001.
    [157] M. Sugeno and M. Nishida, “Fuzzy control of a model car,” Fuuzy Set Syst., vol. 16, pp. 103-113, 1985a.
    [158] M. Sugeno, “An introductory survey of fuzzy control,” Inform. Sci., vol. 36, pp. 59-83, 1985b.
    [159] M. Sugeno, Ed., Industrial Applications of Fuzzy Control, New York: Elsevier, 1985c.
    [160] M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative modeling,” IEEE Trans. Fuzzy Systems, vol. 1, no. 1, pp. 7-31, 1993.
    [161] C. -T. Sun, “Rule base structure identification in an adaptive network based fuzzy inference system,” IEEE Trans. Fuzzy Syst., vol. 2, pp. 64-73. Feb. 1994.
    [162] K. –K. Sung, “Learning and example selection for object and pattern recognition,” MIT, Artificial Intelligence Laboratory and Center for Biological and Computational Learning, Cambridge, MA, 1996.
    [163] J. A. K. Suykens and J. Vandewalle. “Least squares support vector machine classifiers.” Neural Processing Letters, vol. 9, no. 3, pp. 293-300, 1999.
    [164] J. A. K. Suykens, J. Vandewalle, and B. De Moor. “Optimal control by least squares support vector machines”. Neural Networks, vol. 14, no. 1, pp. 23-35, 2001.
    [165] N. A. Syed, H. Liu and K.K. Sung, “Incremental learning with support vector machines,” in Proc. Int. Joint Conf. on Artificial Intelligence (IJCAI-99), 1999.
    [166] H. Takagi and M. Sugeno, “Derivation of fuzzy control rules from human operator’s control action,” in Proc. IFAC Symp. Fuzzy Inform., Knowledge Representation and Decision Analysis, pp. 55-60, July 1983.
    [167] H. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. on Syst., Man, and Cybern., vol. 1, pp. 116-132, Jan 1985.
    [168] H. Takagi, “Fusion technology of fuzzy theory and neural networks – survey and future direction,” Proc. Internat. Conf. on Fuzzy Logic and Neural Networks, Lizuka, pp. 13-26, 1990.
    [169] H. Takagi, I. Hayashi: “NN-driven fuzzy reasoning,” Int. J. Approximate Reasoning, vol. 5, pp. 191-212, 1991.
    [170] H. Tankaka, S. Uejima, and K. Asai, “Fuzzy linear regression model,” International Conference on Applied Systems Reasearch and Cybernetics, Acapulco, Mexico, pp. 12-15, 1980.
    [171] H. Tankaka, S. Uejima, and K. Asai, “Linear regression analysis with fuzzy model,” IEEE. Trans. On Syst., Man, and Cyber., vol. 12, no. 6, pp. 903-907, 1982.
    [172] H. Tanaka, “Fuzzy Data analysis by possibilitic linear models,” Fuzzy Sets and Systems, vol. 24, pp. 363-375, 1987.
    [173] D. Tax., and R. Duin, “Support vector domain description”. Pattern Recognition Letters, vol. 20, pp. 1191-1199, 1999.
    [174] K. Tsuda, M. Kawanabe, and G. Rätsch. “A new discriminative kernel from probabilistic models.” In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural information processings systems, volume 14, 2002. In press.
    [175] Y. Tsukamoto, “A approach to fuzzy reasoning method,” in M. M. Gupta, R. K. Ragade, and R. R. Yager, Eds., Advances in Fuzzy Set Theory and Application. Amsterdam: North-Holland, pp. 137-149, 1979.
    [176] T. Van Gestel, J. Suykens, Jr. De Brabanter, B. De Moor, and J. Vandewalle, “Kernel canonical correlation analysis and least squares support vector machines.” In Proc. of the International Conference on Artificial Neureal Networks (ICANN 2001), Vienna, Austria, pages 381-386, Aug. 2001.
    [177] T. Van Gestel, J.A.K. Suykens, G. Lanckriet, A. Lambrechts, B. De Moor, and J. Vandewalle, “Bayesian framework for least squares support vector machine classifiers, gaussian processes and kernel fisher discriminant analysis.” Neural Computation, vol. 14, no. 5, pp. 1115-1147, May 2002.
    [178] V. N. Vapnik and A. Lerner, “Pattern recognition using generalized portrait method”, Automation and Remote Control, 24, 1963.
    [179] V. N. Vapnik and A. Ja. Cherveonenkis, “A note on one class of perceptrons”, Automation and Remote Control, 25, 1964.
    [180] V. N. Vapnik and A. Lerner. “Pattern recognition using generalized portrait method,” Automation and Remote Control, vol. 24, 1965.
    [181] V. N. Vapnik and A. Ja. Chervonenkis. “On the uniform convergence of relative frequencies of events to their probabilities,” Theory of Probab. And its Application, vol. 16, no. 2, pp. 264-280, 1971.
    [182] V. N. Vapnik and A. Ja. Cherveonenkis, Theory of Pattern Recognition, Nauka, Moscow, 1974.
    [183] V. N. Vapnik, Estimation of Dependencies Based on Empirical Data. Springer-Verlag, New York, 1982.
    [184] V. N. Vapnik and A. Ja. Cherveonenkis, “The necessary and sufficient conditions for consistency of the method of empirical risk minimization,” Yearbook of the Academy of Sciences of the USSR on Recognition, Classification, and Forecasting, vol. 2, pp. 217-249, Nauka, Moscow, 1989 (in Russian). English translation: Pattern Recognition and Image Analysis, vol. 1, no. 3, pp. 284-305,1991.
    [185] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer-Verlag, New York, 1995.
    [186] V. N. Vapnik, S. Golowich, and A. J. Smola, “Support vector method for function approximation, regression estimation, and signal processing.” In M. Mozer, M. Jordan, and, T. Petsche, editors, Advances in Neural Information Processing Systems 9, pages 281-287, Cambridge, MA, 1997. MIT Press.
    [187] V .N. Vapnik. “An overview of statistical learning theory,” IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 988-999, Sep., 1999.
    [188] L. X. Wang and J. M. Mendel, “Fuzzy basis functions, universal approximation, and orthogonal least-squares learning,” IEEE Trans. on Neural Networks, vol. 3, no. 5, pp. 807-814, Sep., 1992a.
    [189] L. X. Wang, “Fuzzy systems are universal approximators,” in Proc. IEEE Int. Conf. Fuzzy Systems, San Diego, CA, pp. 1163-1170, Mar. 1992b.
    [190] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples,” IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, pp. 1414-1427, Nov./Dec. 1992c.
    [191] L. X. Wang and J. M. Mendel, “Back-propagation fuzzy systems as nonlinear dynamic system identifiers,” in Proc. IEEE 1992 Int. Conf. Fuzzy Systems, San Diego, CA, pp. 1409-1418, Mar. 1992d.
    [192] M. K. Warmuth, G. Rätsch, M. Mathieson, J. Liao, and C. Lemmen. “Active learning in the drug discovery process.” In T.G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural information processings systems, volume 14, 2002. In press.
    [193] A.S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization by weight-elimination with approach to forecasting.” Advances in Neural Information Processing Systems, vol. 3, pp. 875-882, San Mateo, CA: Morgan Kaufmann, 1991.
    [194] C. K. I. Williams and C. E. Rasmussen. “Gaussian processes for regression.” In D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, editors, Advances in Neural Information Processing Systems 8, pages 514-520. MIT Press, 1996.
    [195] X. L. Xie, G. Beni, “A validity measure for fuzzy clustering”. IEEE Transactions Pattern Analysis and Machine Intelligence, PAMI- 13(8): 841--847, August 1991.
    [196] R. R. Yager, “On solving fuzzy mathematical relationships,” Inform. Contr., vol. 41, pp. 29-55, 1979.
    [197] R. R. Yager, “ Implementing fuzzy logic controllers using a neural network framework,” Fuzzy Sets and Systems, vol. 48, pp. 53-64, 1992.
    [198] R. R. Yager, “ Families of OWA Operators”, Fuzzy Sets and Systems, vol. 59, pp. 125-148, 1993.
    [199] M.-H. Yang and N. Ahuja. “A geometric approach to train support vector machines.” In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, volume 1, pages 430-437, 2000.
    [200] L. A. Zadeh, “Fuzzy sets,” Informat. Control, vol. 8 pp. 338-353, 1965.
    [201] L. A. Zadeh, “Fuzzy algorithm,” Informat. Control, vol. 12 pp. 94-102, 1968.
    [202] L. A. Zadeh, “Similarity relations and fuzzy orderings,” Informat. Sci, vol. 3, pp. 177-200, 1971.
    [203] L. A. Zadeh, “A rationale for fuzzy control,” Trans. ASME. J. Dynam. Syst. Measur. Control, vol. 94, pp. 3-4, 1972.
    [204] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Trans. Syst. Man. Cybern., vol.3, pp. 28-44, 1973.
    [205] L. A. Zadeh, “The concept of linguistic variable and its application to approximate reasoning—I,” Inform.Sci., vol. 8, pp. 199-249, 1975.
    [206] L. A Zadeh, “Fuzzy Sets as a basis for a theory of possibility,” Fuzzy, Sets and Systems, vol. 1, pp. 3-28, 1978.
    [207] L. A. Zadeh, “The theory of approximate reasoning,” in Machine Intelligence, vol. 9, J. Hayes, D. Michie, and L. Mikulich, Eds. New York: Halstead Press, pp, 149-194, 1979.
    [208] A. Zien, G. Rätsch, S. Mika, B. Schölkopf, T. Lengauer, and K.-R. Müller. “Engineering support vector machine kernels that recognize translation initiation sites.” BioInformatics, vol. 16, no. 9, pp. 799-807, 2000.
    [209] H. J. Zimmermann, Fuzzy Set Theory and Its Applications. Boston: Kluwer Academic Publisher, 1985.
    [210] H. J. Zimmermann, Fuzzy Sets, Decision Making, and Expert Systems. Boston: Kluwer Academic Publisher, 1987.

    下載圖示 校內:立即公開
    校外:2003-08-06公開
    QR CODE