簡易檢索 / 詳目顯示

研究生: 方文郁
Effendi, Sefli Sri Wahyu
論文名稱: 用合成生物學重新編程大腸桿菌Nissle打造穩健低碳之生物製造底盤
Reprogramming Escherichia coli Nissle using synthetic biology towards a robust chassis for the low-carbon footprint biomanufacturing
指導教授: 吳意珣
Ng, I-Son
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 194
外文關鍵詞: Escherichia coli, Nissle 1917, synthetic biology, recombinant protein, auxiliary modules, T7 RNA polymerase, p-coumaric acid, ferulic acid, carbonic anhydrase, non-native ribulose pathway, low-carbon footprint
相關次數: 點閱:40下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The pressing need for climate change mitigation has focused on transitioning from traditional-based chemical manufacturing to sustainable process alternatives. Of bio-based materials, the phenolic group is one of the versatile fine chemicals. It had a remarkable value of $1.92 billion in 2022 due to its importance in the pharmaceutical and nutraceutical industries. However, the natural extraction of such compounds from plants involves chemical processes, endangers the environment, and causes land overexploitation. Recently, microbial cell factories (MCF) have emerged as an outright direction for a sustainable approach. With comprehensive genomic databases and genetic tools, Escherichia coli strains are gaining immense interest as robust chassis, thus expecting to be the next bio-successor for valued chemical synthesis.
    p-coumaric acid (pCA) is a critical precursor in the biosynthetic route for varied phenolics. Nevertheless, in vivo production of pCA from carbon feedstock presents low yield and challenges due to the complexity of pathway manipulations and genetic regulatory designs. Regulating highly active tyrosine ammonia lyase from Rhodotorula toluroides (RtTAL) has been proposed to produce pCA from an inexpensive shortcut substrate (i.e., tyrosine) via in vitro whole-cell (WC) biocatalyst in a one-step reaction. Considered the function of pharmaceutical materials, a probiotic workhorse of E. coli Nissle (EcN) was used to produce pCA. EcN was engineered by fine-tuning the genetic design of T7 regulation, thus successfully converting tyrosine into pCA and degrading tyrosine excess in the simulated gut environment. As the versatile precursor, pCA was further utilized for producing ferulic acid (FA), a potent antioxidant agent. Due to the complex heterologous pathway, the FA pathway was dissociated into upstream and downstream modules for pCA transformation and FA synthesis, respectively. Unexpectedly, engineered EcN yielded poor FA titer due to trade-off phenomena between biomass and metabolites. In FA production, E. coli C43 strain accumulated a higher FA titer of 972.6 mg/L due to its capability to attenuate T7 orthogonality using a stepwise culture.
    The spent coffee ground (SCG) was used as a starting material for producing pCA using solid-liquid extraction to repress the production cost of FA synthesis. The crude pCA was converted to FA using C43 strain in a one-pot reaction at the optimum conditions, thus acquiring 2.07 mM FA and 66.8% yield within 9 h. Due to possessing radical scavenging activities, FA extract was utilized as a booster for the growth of Cyanobacterium aponinum and its C-phycocyanin content, thus promoting the circular economy. Moreover, by using Life Cycle Assessment (LCA), FA biosynthesis from either tyrosine or pCA from SCG extract has the lowest environmental impact and greenhouse gas emissions when compared to a conventional chemical process.
    Due to its acidophilic nature, the potential of EcN was further harnessed to port the CO2-fixing pathway, expecting to circumvent the deleterious CO2 emission during chemical biosynthesis. To reinforce heterotrophic CO2 fixation, intracellular CO2 availability was increased by engaging carbonic anhydrase from human II (hCAII) which was designated under dual promoters from E. coli sigma70 and heat shock protein, aiming to eliminate the inducer usage and stimulate hCAII activity under heat environments, respectively. EcN expressing solely optimized hCAII or lysine decarboxylase (CadA) acquired the highest precipitated CaCO3 of 70 mg or cadaverine titer of 22.99 g/L, respectively. Co-expression of hCAII with CadA in EcN simultaneously sequestered CO2 release up to 79.4% and recycled into biomass instead of cadaverine. On the other hand, reconstructing artificial CO2-fixing bypasses from autotrophs via ribose-1,5-bisphosphate (R15P) or ribulose-5-phosphate (Ru5P) successfully reinforces CO2 fixation in EcN. The functional application was conducted for simultaneous CO2 recycling during 5-aminolevulinic acid (5-ALA) production. Through pathway manipulation from xylose, the recycled flux toward the CO2-fixing pathway was strengthened, thus accumulating the highest biomass and 5-ALA titer via R15P and Ru5P routes, respectively.
    In conclusion, major works in this study attempted to harness EcN as a promising chemical producer with low environmental impact in FA production and an efficient low-carbon footprint chassis in cadaverine and 5-ALA production. However, EcN still needs sophisticated engineering for certain metabolic regulations and chemicals.

    Disclaimer on Author Copyright i Abstract ii Acknowledgment iv Table of contents v List of figures x List of tables xiv Abbreviations xvi Chapter 1 Introduction 1 1.1 Preface and research motivation 1 1.2 Research scope and framework of dissertation 3 Chapter 2 Literature review 7 2.1 Escherichia coli as a versatile microbial cell factory 7 2.1.1 A treasure trove and current status 7 2.1.2 The distinctive of probiotic E. coli Nissle 1917 (EcN) 8 2.2 System metabolic engineering in cell factory 11 2.2.1 System biology 11 2.2.2 Synthetic biology 13 2.2.3 Evolutionary engineering and directed evolution 16 2.3 Peculiarities of metabolic pathways in E. coli 18 2.3.1 Native existing pathways 18 2.3.2 Non-native existing pathway 20 2.3.3 Selection of target products 22 2.4 Process operation of engineered E. coli 24 2.4.1 Batch fermentation 25 2.4.2 In vitro biosynthesis 25 2.4.2 Microbial consortia system 27 2.5 Low-carbon footprint platforms in the chemical biosynthesis chain 29 2.5.1 Carboxylation system 29 2.5.2 Artificial CO2-fixing utilization 30 Chapter 3 Materials and methods 32 3.1 Chemicals and materials 32 3.2 Experimental instruments 34 3.3 Experimental procedures 36 3.3.1 Genetic engineering strain and cultivation 36 3.3.1.1 Plasmid DNA extraction 36 3.3.1.2 Polymerase Chain Reaction (PCR) 36 3.3.1.3 Gel extraction and purification 37 3.3.1.4 Enzyme digestion 38 3.3.1.5 DNA ligation 38 3.3.1.6 Gene integration into the chromosome and resistance removal 38 3.3.1.7 Chemical competent cell preparation 39 3.3.1.8 Transformation of plasmid by heat shock in E. coli 39 3.3.1.9 Cell culture and induction 39 3.3.2 Protein analysis 40 3.3.2.1 Cell disruption 40 3.3.2.2 Protein quantification using the Bradford method 40 3.3.2.3 Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) 40 3.3.3 Characterization techniques 41 3.3.3.1 Determination of plasmid copy number (PCN) 41 3.3.3.2 Examination of mRNA expression levels using qRT-PCR 42 3.3.3.3 High-Performance Liquid Chromatography (HPLC) analysis 42 Chapter 4 Robust whole-cell biocatalyst of engineered tyrosine ammonia lyase in Escherichia coli for p-Coumaric acid biotransformation 43 4.1 Background 43 4.2 Materials and methods 44 4.2.1 DNA synthesis and construction of TALs plasmid in E. coli 44 4.2.2 Characterization of TAL for pCA production via in vivo and in vitro 45 4.2.3 Enzyme purification and kinetic analysis 46 4.2.4 Reusability of whole-cell 46 4.3 Results and discussions 47 4.3.1 Gene selection and characterization via in vivo and in vitro assay 47 4.3.2 Effect of protein partners and cultural temperature on RtTAL activity 49 4.3.3 Effect of fusion partner TrxA-tag 51 4.3.4 Purification and kinetic parameters of RtTAL 52 4.3.5 Reusability of whole-cell biocatalysts 53 4.4 Conclusion 55 Chapter 5 Reprogramming T7RNA polymerase in Escherichia coli Nissle 1917 under specific lac operon for efficient p-Coumaric Acid production 56 5.1 Background 56 5.2 Materials and methods 57 5.2.1 Plasmid construction 57 5.2.2 X-gal plate for β-galactosidase detection 58 5.2.3 Fluorescence intensity measurement 59 5.2.4 Acid resistance assay 59 5.2.5 In vitro simulated gastric assay 59 5.3 Results and discussions 60 5.3.1 New insight into lac operon of EcN and its derivatives 60 5.3.2 Genetic behavior of T7RNAP integrated at Lambda and HK022 sites 62 5.3.3 Heterologous expression of RtTAL in ET7 chassis 64 5.3.4 Optimization of enzymatic activity with GroELS and medium condition 67 5.3.5 Chassis durability in acid conditions and simulated gut fluids (SGF) system 70 5.4 Conclusion 72 Chapter 6 High value ferulic acid biosynthesis using modular design in engineered Escherichia coli chassis 73 6.1 Background 73 6.2 Materials and methods 74 6.2.1 DNA synthesis and construction of expression plasmids 74 6.2.2 One-pot and stepwise synthesis of ferulic acid from tyrosine 74 6.2.3 Determination of intracellular ATP level 75 6.3 Results and discussions 75 6.3.1 Optimization of pCA synthetic pathway 75 6.3.2 Modular design of FA synthetic pathway 77 6.3.3 Efficiency of cofactors supply via in vitro and in vivo 79 6.3.4 Enzymatic cascade reaction for FA biosynthesis in a one-pot system 80 6.3.5 Enhanced FA production via stepwise culture 82 6.4 Conclusion 84 Chapter 7 Sustainable and one-pot bioconversion of spent coffee grounds to ferulic acid for Cyanobacterium aponinum cultivation enhancement 85 7.1 Background 85 7.2 Materials and methods 86 7.2.1 Materials preparation 86 7.2.2 Kinetic modeling of solid-liquid extraction 86 7.2.3 One-pot bioconversion of FA from SCG extracts 87 7.2.4 Analytical assay of pCA and FA production 88 7.2.5 Antioxidant assays 88 7.2.6 Purification of FA 89 7.2.7 FA utilization for Cyanobacteria aponinum culture 90 7.2.8 Life cycle assessment (LCA) of FA production 90 7.3 Results and discussions 90 7.3.1 Validation of extraction kinetic model 90 7.3.2 Growth kinetics and FA production in semi–in–vivo biosynthesis 92 7.3.3 Optimization of one-pot FA biosynthesis via in vitro 94 7.3.4 Antioxidant activity of pCA and FA 96 7.3.5 Purification of FA using ion-exchang resin 97 7.3.6 Functional utilization of FA in Cyanobacteria culture and Life Cycle Assessment 98 7.4 Conclusion 101 Chapter 8 Simultaneous carbon dioxide sequestration and utilization for cadaverine production using dual promoters in engineered Escherichia coli strains 102 8.1 Background 102 8.2 Materials and methods 103 8.2.1 Preparation and construction of expression plasmids in E. coli 103 8.2.2 Cultivation condition 104 8.2.3 CO2 hydration activity and biomineralization analysis 105 8.2.4 Quantification of biomass, carbon content, and CO2 release 105 8.3 Results and discussions 106 8.3.1 Efficiency of the single and dual promoters for sfGFP 106 8.3.2 Proof-of-function by expression of hCAII in different E. coli strains 108 8.3.3 Concurrent CO2 utilization and cadaverine production 111 8.3.4 CO2 sequestration of recombinant E. coli strains 113 8.4 Conclusion 115 Chapter 9 Non-native pathway engineering CO2 assimilation in Escherichia coli Nissle for 5-ALA synthesis 116 9.1 Background 116 9.2 Materials and methods 117 9.2.1 Plasmid construction 117 9.2.2 Culture conditions 119 9.2.3 Calculation of the CO2 assimilation capability by element analysis 119 9.2.4 Analysis of 5-ALA production 119 9.3 Results and discussions 120 9.3.1 Genetic design of artificial CO2-assimilating pathways via ribulose route 120 9.3.2 Comparative efficiency of CO2-fixing strains for 5-ALA production 122 9.3.3 Fine-tuning carbon flux using CRISPRi 124 9.4 Conclusion 127 Chapter 10 Concluding remarks and perspectives 128 References 131 Appendix 160 Achievements 172

    1. Abd El-wahaab, B., Shehab, W.S. and El-Shwiniy, W.H., 2022. Synthesis, spectrophotometric, spectroscopic, microbial studies and analytical applications of Cu (II) and Zn (II) complexes of chalcone ligand. Chemical Papers, pp.1-14.
    2. Alam, P., Siddiqi, K., Chturvedi, S.K. and Khan, R.H., 2017. Protein aggregation: from background to inhibition strategies. International Journal of Biological Macromolecules, 103, pp.208-219.
    3. Alara, O.R. and Abdurahman, N.H., 2019. Kinetics studies on effects of extraction techniques on bioactive compounds from Vernonia cinerea leaf. Journal of Food Science and Technology, 56, pp.580-588.
    4. Almhjell, P.J., Boville, C.E. and Arnold, F.H., 2018. Engineering enzymes for noncanonical amino acid synthesis. Chemical Society Reviews, 47(24), pp.8980-8997.
    5. Alonso‐Gutierrez, J., Koma, D., Hu, Q., Yang, Y., Chan, L.J., Petzold, C.J., Adams, P.D., Vickers, C.E., Nielsen, L.K., Keasling, J.D. and Lee, T.S., 2018. Toward industrial production of isoprenoids in Escherichia coli: Lessons learned from CRISPR‐Cas9 based optimization of a chromosomally integrated mevalonate pathway. Biotechnology and Bioengineering, 115(4), pp.1000-1013.
    6. Altman, T., Travers, M., Kothari, A., Caspi, R. and Karp, P.D., 2013. A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinformatics, 14, pp.1-15.
    7. Antonovsky, N., Gleizer, S. and Milo, R., 2017. Engineering carbon fixation in E. coli: from heterologous RuBisCO expression to the Calvin–Benson–Bassham cycle. Current Opinion in Biotechnology, 47, pp.83-91.
    8. Antonovsky, N., Gleizer, S., Noor, E., Zohar, Y., Herz, E., Barenholz, U., Zelcbuch, L., Amram, S., Wides, A., Tepper, N. and Davidi, D., 2016. Sugar synthesis from CO2 in Escherichia coli. Cell, 166(1), pp.115-125.
    9. Arnold, F.H., Wintrode, P.L., Miyazaki, K. and Gershenson, A., 2001. How enzymes adapt: lessons from directed evolution. Trends in Biochemical Sciences, 26(2), pp.100-106.
    10. Baba, T., Ara, T., Hasegawa, M., Takai, Y., Okumura, Y., Baba, M., Datsenko, K.A., Tomita, M., Wanner, B.L. and Mori, H., 2006. Construction of Escherichia coli K‐12 in‐frame, single‐gene knockout mutants: the Keio collection. Molecular Systems Biology, 2(1), pp.2006-0008.1
    11. Backes, J.G., Traverso, M., 2022. Life cycle sustainability assessment as a metrics towards SDGs agenda 2030. Current Opinion Green Sustainable Chemistry, 38, 100683.
    12. Bae, Y.M., Song, H. and Lee, S.Y., 2021. Salt, glucose, glycine, and sucrose protect Escherichia coli O157: H7 against acid treatment in laboratory media. Food Microbiology, 100, p.103854.
    13. Baeshen, M.N., Al-Hejin, A.M., Bora, R.S., Ahmed, M.M., Ramadan, H.A., Saini, K.S., Baeshen, N.A. and Redwan, E.M., 2015. Production of biopharmaceuticals in E. coli: current scenario and future perspectives. Journal of Microbiology and Biotechnology, 25(7), pp.953-962.
    14. Becker, N.A., Peters, J.P., Lionberger, T.A. and Maher III, L.J., 2013. Mechanism of promoter repression by Lac repressor–DNA loops. Nucleic Acids Research, 41(1), pp.156-166.
    15. Bhandari, B.K., Lim, C.S. and Gardner, P.P., 2021. TISIGNER. com: web services for improving recombinant protein production. Nucleic Acids Research, 49(W1), pp.W654-W661.
    16. Blum-Oehler, G., Oswald, S., Eiteljörge, K., Sonnenborn, U., Schulze, J., Kruis, W. and Hacker, J., 2003. Development of strain-specific PCR reactions for the detection of the probiotic Escherichia coli strain Nissle 1917 in fecal samples. Research in Microbiology, 154(1), pp.59-66.
    17. Boo, Y.C., 2019. p-Coumaric acid as an active ingredient in cosmetics: A review focusing on its antimelanogenic effects. Antioxidants, 8(8), p.275.
    18. Borkowski, O., Ceroni, F., Stan, G.B. and Ellis, T., 2016. Overloaded and stressed: whole-cell considerations for bacterial synthetic biology. Current Opinion in Microbiology, 33, pp.123-130.
    19. Bose, H. and Satyanarayana, T., 2021. Mitigating global warming through carbonic anhydrase-mediated carbon sequestration. Climate Change and Green Chemistry of CO2 Sequestration, pp.197-229.
    20. Brader, P., Stritzker, J., Riedl, C.C., Zanzonico, P., Cai, S., Burnazi, E.M., Ghani, E.R., Hricak, H., Szalay, A.A., Fong, Y. and Blasberg, R., 2008. Escherichia coli Nissle 1917 facilitates tumor detection by positron emission tomography and optical imaging. Clinical Cancer Research, 14(8), pp.2295-2302.
    21. Burgard, A.P., Pharkya, P. and Maranas, C.D., 2003. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnology and Bioengineering, 84(6), pp.647-657.
    22. Butler, M.S., 2004. The role of natural product chemistry in drug discovery. J. Nat. Prod. 67 (12), 2141-2153.
    23. Cai, M., Liu, J., Song, X., Qi, H., Li, Y., Wu, Z., Xu, H. and Qiao, M., 2022. De novo biosynthesis of p-coumaric acid and caffeic acid from carboxymethyl-cellulose by microbial co-culture strategy. Microbial Cell Factories, 21(1), p.81.
    24. Campodonico, M.A., Andrews, B.A., Asenjo, J.A., Palsson, B.O. and Feist, A.M., 2014. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path. Metabolic Engineering, 25, pp.140-158.
    25. Carlson, E.D., Gan, R., Hodgman, C.E. and Jewett, M.C., 2012. Cell-free protein synthesis: applications come of age. Biotechnology Advances, 30(5), pp.1185-1194.
    26. Caspi, R., Billington, R., Keseler, I.M., Kothari, A., Krummenacker, M., Midford, P.E., Ong, W.K., Paley, S., Subhraveti, P. and Karp, P.D., 2020. The MetaCyc database of metabolic pathways and enzymes-a 2019 update. Nucleic Acids Research, 48(D1), pp.D445-D453.
    27. Catherine, C., Lee, K.H., Oh, S.J. and Kim, D.M., 2013. Cell-free platforms for flexible expression and screening of enzymes. Biotechnology Advances, 31(6), pp.797-803.
    28. Celińska-Janowicz, K., Zaręba, I., Lazarek, U., Teul, J., Tomczyk, M., Pałka, J. and Miltyk, W., 2018. Constituents of propolis: Chrysin, caffeic acid, p-coumaric acid, and ferulic acid induce PRODH/POX-dependent apoptosis in human tongue squamous cell carcinoma cell (CAL-27). Frontiers in Pharmacology, 9, p.350584.
    29. Chae, T.U., Choi, S.Y., Kim, J.W., Ko, Y.S. and Lee, S.Y., 2017. Recent advances in systems metabolic engineering tools and strategies. Current Opinion in Biotechnology, 47, pp.67-82.
    30. Charlton, N.C., Mastyugin, M., Török, B. and Török, M., 2023. Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity. Molecules, 28(3), p.1057.
    31. Chen, J., Li, X., Liu, Y., Su, T., Lin, C., Shao, L., Li, L., Li, W., Niu, G., Yu, J. and Liu, L., 2021. Engineering a probiotic strain of Escherichia coli to induce the regression of colorectal cancer through production of 5‐aminolevulinic acid. Microbial Biotechnology, 14(5), pp.2130-2139.
    32. Chen, R., Gao, J., Yu, W., Chen, X., Zhai, X., Chen, Y., Zhang, L. and Zhou, Y.J., 2022. Engineering cofactor supply and recycling to drive phenolic acid biosynthesis in yeast. Nature Chemical Biology, 18(5), pp.520-529.
    33. Chiang, C.J., Hu, M.C. and Chao, Y.P., 2020. A strategy to improve production of recombinant proteins in Escherichia coli based on a glucose–glycerol mixture and glutamate. Journal of Agricultural and Food Chemistry, 68(33), pp.8883-8889.
    34. Chiang, C.J., Lin, Y.L., Hu, M.C. and Chao, Y.P., 2021. Understanding and harnessing the glutamate metabolism in Escherichia coli. Journal of the Taiwan Institute of Chemical Engineers, 121, pp.115-121.
    35. Cho, J.S., Kim, G.B., Eun, H., Moon, C.W. and Lee, S.Y., 2022. Designing microbial cell factories for the production of chemicals. Jacs Au, 2(8), pp.1781-1799.
    36. Choe, D., Lee, J.H., Yoo, M., Hwang, S., Sung, B.H., Cho, S., Palsson, B., Kim, S.C. and Cho, B.K., 2019. Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nature Communications, 10(1), p.935.
    37. Choi, H.S., Lee, S.Y., Kim, T.Y. and Woo, H.M., 2010. In silico identification of gene amplification targets for improvement of lycopene production. Applied and Environmental Microbiology, 76(10), pp.3097-3105.
    38. Choi, K.R., Jang, W.D., Yang, D., Cho, J.S., Park, D. and Lee, S.Y., 2019. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends in Biotechnology, 37(8), pp.817-837.
    39. Conrado, R.J., Wu, G.C., Boock, J.T., Xu, H., Chen, S.Y., Lebar, T., Turnšek, J., Tomšič, N., Avbelj, M., Gaber, R. and Koprivnjak, T., 2012. DNA-guided assembly of biosynthetic pathways promotes improved catalytic efficiency. Nucleic Acids Research, 40(4), pp.1879-1889.
    40. Cremers, C.M., Knoefler, D., Vitvitsky, V., Banerjee, R. and Jakob, U., 2014. Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo. Proceedings of the National Academy of Sciences, 111(16), pp.E1610-E1619.
    41. Cui, P., Zhong, W., Qin, Y., Tao, F., Wang, W. and Zhan, J., 2020. Characterization of two new aromatic amino acid lyases from actinomycetes for highly efficient production of p-coumaric acid. Bioprocess and Biosystems Engineering, 43, pp.1287-1298.
    42. Czerwinska, N., Giosuè, C., Matos, I., Sabbatini, S., Ruello, M.L. and Bernardo, M., 2024. Development of activated carbons derived from wastes: coffee grounds and olive stones as potential porous materials for air depollution. Science of The Total Environment, 914, p.169898.
    43. Das, A., Tyagi, N., Verma, A., Akhtar, S. and Mukherjee, K.J., 2018. Metabolic engineering of Escherichia coli W3110 strain by incorporating genome-level modifications and synthetic plasmid modules to enhance L-Dopa production from glycerol. Preparative Biochemistry and Biotechnology, 48(8), pp.671-682.
    44. Datsenko, K.A. and Wanner, B.L., 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of Sciences, 97(12), pp.6640-6645.
    45. Datta, P., Fu, L., Brodfuerer, P., Dordick, J.S. and Linhardt, R.J., 2021. High density fermentation of probiotic E. coli Nissle 1917 towards heparosan production, characterization, and modification. Applied Microbiology and Biotechnology, 105, pp.1051-1062.
    46. David, B., Wolfender, J.L. and Dias, D.A., 2015. The pharmaceutical industry and natural products: historical status and new trends. Phytochemistry Reviews, 14, pp.299-315.
    47. Dávila-Guzman, N.E., Cerino-Córdova, F.J., Diaz-Flores, P.E., Rangel-Mendez, J.R., Sánchez-González, M.N. and Soto-Regalado, E., 2012. Equilibrium and kinetic studies of ferulic acid adsorption by Amberlite XAD-16. Chemical Engineering Journal, 183, pp.112-116.
    48. Deutscher, J., 2008. The mechanisms of carbon catabolite repression in bacteria. Current Opinion in Microbiology, 11(2), pp.87-93.
    49. Di Rienzi, S.C. and Britton, R.A., 2020. Adaptation of the gut microbiota to modern dietary sugars and sweeteners. Advances in Nutrition, 11(3), pp.616-629.
    50. Dobrindt, U., Chowdary, M.G., Krumbholz, G. and Hacker, J., 2010. Genome dynamics and its impact on evolution of Escherichia coli. Medical Microbiology and Immunology, 199, pp.145-154.
    51. Donnelly, A.E., Murphy, G.S., Digianantonio, K.M. and Hecht, M.H., 2018. A de novo enzyme catalyzes a life-sustaining reaction in Escherichia coli. Nature Chemical Biology, 14(3), pp.253-255.
    52. Doroshenko, V., Airich, L., Vitushkina, M., Kolokolova, A., Livshits, V. and Mashko, S., 2007. YddG from Escherichia coli promotes export of aromatic amino acids. FEMS Microbiology Letters, 275(2), pp.312-318.
    53. Effendi, S.S.W. and Ng, I.S., 2022. Reprogramming T7RNA polymerase in Escherichia coli Nissle 1917 under specific lac operon for efficient p-coumaric acid production. ACS Synthetic Biology, 11(10), pp.3471-3481.
    54. Effendi, S.S.W. and Ng, I.S., 2023. Prospective and challenges of live bacterial therapeutics from a superhero Escherichia coli Nissle 1917. Critical Reviews in Microbiology, 49(5), pp.611-627.
    55. Effendi, S.S.W., Chiu, C.Y., Chang, Y.K. and Ng, I.S., 2020. Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration. International Journal of Biological Macromolecules, 152, pp.930-938.
    56. Effendi, S.S.W., Lin, J.Y. and Ng, I.S., 2022. Simultaneous carbon dioxide sequestration and utilization for cadaverine production using dual promoters in engineered Escherichia coli strains. Bioresource technology, 363, p.127980.
    57. Effendi, S.S.W., Tan, S.I., Chang, C.H., Chen, C.Y., Chang, J.S. and Ng, I.S., 2020. Development and fabrication of disease resistance protein in recombinant Escherichia coli. Bioresources and Bioprocessing, 7, pp.1-10.
    58. Effendi, S.S.W., Tan, S.I., Ting, W.W. and Ng, I.S., 2021. Enhanced recombinant Sulfurihydrogenibium yellowstonense carbonic anhydrase activity and thermostability by chaperone GroELS for carbon dioxide biomineralization. Chemosphere, 271, p.128461.
    59. Effendi, S.S.W., Tan, S.I., Ting, W.W. and Ng, I.S., 2021. Genetic design of co-expressed Mesorhizobium loti carbonic anhydrase and chaperone GroELS to enhancing carbon dioxide sequestration. International Journal of Biological Macromolecules, 167, pp.326-334.
    60. Effendi, S.S.W., Xue, C., Tan, S.I. and Ng, I.S., 2021. Whole-cell biocatalyst of recombinant tyrosine ammonia lyase with fusion protein and integrative chaperone in Escherichia coli for high-level p-Coumaric acid production. Journal of the Taiwan Institute of Chemical Engineers, 128, pp.64-72.
    61. Farasat, I., Kushwaha, M., Collens, J., Easterbrook, M., Guido, M. and Salis, H.M., 2014. Efficient search, mapping, and optimization of multi‐protein genetic systems in diverse bacteria. Molecular Systems Biology, 10(6), p.731.
    62. Fatma, Z., Hartman, H., Poolman, M.G., Fell, D.A., Srivastava, S., Shakeel, T. and Yazdani, S.S., 2018. Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production. Metabolic Engineering, 46, pp.1-12.
    63. Fiege, K. and Frankenberg-Dinkel, N., 2020. Construction of a new T7 promoter compatible Escherichia coli Nissle 1917 strain for recombinant production of heme-dependent proteins. Microbial Cell Factories, 19(1), p.190.
    64. Fischer, C.R., Tseng, H.C., Tai, M., Prather, K.L. and Stephanopoulos, G., 2010. Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli. Applied Microbiology and Biotechnology, 88, pp.265-275.
    65. Fisher, Z., Boone, C.D., Biswas, S.M., Venkatakrishnan, B., Aggarwal, M., Tu, C., Agbandje-McKenna, M., Silverman, D. and McKenna, R., 2012. Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase II. Protein Engineering, Design & Selection, 25(7), pp.347-355.
    66. Flamholz, A.I., Dugan, E., Blikstad, C., Gleizer, S., Ben-Nissan, R., Amram, S., Antonovsky, N., Ravishankar, S., Noor, E., Bar-Even, A. and Milo, R., 2020. Functional reconstitution of a bacterial CO2 concentrating mechanism in Escherichia coli. Elife, 9, p.e59882.
    67. Fowler, Z.L., Gikandi, W.W. and Koffas, M.A., 2009. Increased malonyl coenzyme A biosynthesis by tuning the Escherichia coli metabolic network and its application to flavanone production. Applied and Environmental Microbiology, 75(18), pp.5831-5839.
    68. Gao, S., Lyu, Y., Zeng, W., Du, G., Zhou, J. and Chen, J., 2019. Efficient biosynthesis of (2 S)-naringenin from p-coumaric acid in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 68(4), pp.1015-1021.
    69. Gilbert, W. and Maxam, A., 1973. The nucleotide sequence of the lac operator. Proceedings of the National Academy of Sciences, 70(12), pp.3581-3584.
    70. Gonzalez, J.E., Long, C.P. and Antoniewicz, M.R., 2017. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by 13C metabolic flux analysis. Metabolic Engineering, 39, pp.9-18.
    71. Gosalvitr, P., Cuéllar-Franca, R.M., Smith, R. and Azapagic, A., 2023. An environmental and economic sustainability assessment of coffee production in the UK. Chemical Engineering Journal, 465, p.142793.
    72. Grandview Research. Global Market Size. Market Research Reports & Consulting | Grand View Research, Inc. (Accessed 10th December 2022).
    73. Grosse, C., Scherer, J., Koch, D., Otto, M., Taudte, N. and Grass, G., 2006. A new ferrous iron‐uptake transporter, EfeU (YcdN), from Escherichia coli. Molecular Microbiology, 62(1), pp.120-131.
    74. Gustavsson, M. and Lee, S.Y., 2016. Prospects of microbial cell factories developed through systems metabolic engineering. Microbial Biotechnology, 9(5), pp.610-617.
    75. Hancock, V., Vejborg, R.M. and Klemm, P., 2010. Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972, and UPEC strain CFT073: comparison of transcriptomes, growth and biofilm formation. Molecular Genetics and Genomics, 284, pp.437-454.
    76. Hao, Y., Pan, X., Xing, R., You, J., Hu, M., Liu, Z., Li, X., Xu, M. and Rao, Z., 2022. High-level production of L-valine in Escherichia coli using multi-modular engineering. Bioresource Technology, 359, p.127461.
    77. Haslinger, K. and Prather, K.L., 2020. Heterologous caffeic acid biosynthesis in Escherichia coli is affected by choice of tyrosine ammonia lyase and redox partners for bacterial Cytochrome P450. Microbial Cell Factories, 19, pp.1-12.
    78. Hasni, M.H., Sulaiman, S., Jimat, D.N. and Amid, A., 2023. Kinetics of microwave-assisted extraction of virgin coconut oil from solid coconut waste. Chemical Engineering Communications, 210(3), pp.330-347.
    79. Hendrikse, N.M., Holmberg Larsson, A., Svensson Gelius, S., Kuprin, S., Nordling, E. and Syrén, P.O., 2020. Exploring the therapeutic potential of modern and ancestral phenylalanine/tyrosine ammonia-lyases as supplementary treatment of hereditary tyrosinemia. Scientific Reports, 10(1), p.1315.
    80. Holcik, M. and Sonenberg, N., 2005. Translational control in stress and apoptosis. Nature reviews Molecular Cell Biology, 6(4), pp.318-327.
    81. Hsiang, C.C., Tan, S.I., Chen, Y.C. and Ng, I.S., 2023. Genetic design of co-expressing a novel aconitase with cis-aconitate decarboxylase and chaperone GroELS for high-level itaconic acid production. Process Biochemistry, 129, pp.133-139.
    82. Hu, G., Li, Y., Ye, C., Liu, L. and Chen, X., 2019. Engineering microorganisms for enhanced CO2 sequestration. Trends in Biotechnology, 37(5), pp.532-547.
    83. Hu, S., Fei, M., Fu, B., Yu, M., Yuan, P., Tang, B., Yang, H. and Sun, D., 2023. Development of probiotic E. coli Nissle 1917 for β-alanine production by using protein and metabolic engineering. Applied Microbiology and Biotechnology, 107(7), pp.2277-2288.
    84. Huang, Q., Braffett, B.H., Simmens, S.J., Young, H.A. and Ogden, C.L., 2020. Dietary polyphenol intake in US adults and 10-year trends: 2007-2016. Journal of the Academy of Nutrition and Dietetics, 120(11), pp.1821-1833.
    85. Hwang, H.G., Noh, M.H., Koffas, M.A., Jang, S. and Jung, G.Y., 2021. Multi-level rebalancing of the naringenin pathway using riboswitch-guided high-throughput screening. Metabolic Engineering, 67, pp.417-427.
    86. Isabella, V.M., Ha, B.N., Castillo, M.J., Lubkowicz, D.J., Rowe, S.E., Millet, Y.A., Anderson, C.L., Li, N., Fisher, A.B., West, K.A. and Reeder, P.J., 2018. Development of a synthetic live bacterial therapeutic for the human metabolic disease phenylketonuria. Nature Biotechnology, 36(9), pp.857-864.
    87. Jacob, F. and Monod, J., 1961. Genetic regulatory mechanisms in the synthesis of proteins. Journal of Molecular Biology, 3(3), pp.318-356.
    88. Jendresen, C.B., Stahlhut, S.G., Li, M., Gaspar, P., Siedler, S., Förster, J., Maury, J., Borodina, I. and Nielsen, A.T., 2015. Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Applied and Environmental Microbiology, 81(13), pp.4458-4476.
    89. Jia, M., Luo, Z., Chen, H., Ma, B., Qiao, L., Xiao, Q., Zhang, P. and Wang, A., 2022. Programmable Polyproteams of Tyrosine Ammonia Lyases as Cross-Linked Enzymes for Synthesizing p-Coumaric Acid. Biomolecules, 12(7), p.997.
    90. Jiang, Y., Chen, B., Duan, C., Sun, B., Yang, J. and Yang, S., 2015. Multigene editing in the Escherichia coli genome via the CRISPR-Cas9 system. Applied and Environmental Microbiology, 81(7), pp.2506-2514.
    91. Jing, K., Guo, Y. and Ng, I.S., 2019. Antigen-43-mediated surface display revealed in Escherichia coli by different fusion sites and proteins. Bioresources and Bioprocessing, 6, pp.1-11.
    92. Johnson, K., Liu, Y. and Lu, M., 2022. A review of recent advances in spent coffee grounds upcycle technologies and practices. Frontiers in Chemical Engineering, 4, p.838605.
    93. Joshi, S.S. and Ranade, V.V. eds., 2016. Industrial Catalytic Processes For Fine And Specialty Chemicals. Elsevier.
    94. Kamil, M., Ramadan, K.M., Awad, O.I., Ibrahim, T.K., Inayat, A. and Ma, X., 2019. Environmental impacts of biodiesel production from waste spent coffee grounds and its implementation in a compression ignition engine. Science of The Total Environment, 675, pp.13-30.
    95. Kan, A., Gelfat, I., Emani, S., Praveschotinunt, P. and Joshi, N.S., 2020. Plasmid vectors for in vivo selection-free use with the probiotic E. coli Nissle 1917. ACS Synthetic Biology, 10(1), pp.94-106.
    96. Kang, C.W., Lim, H.G., Yang, J., Noh, M.H., Seo, S.W. and Jung, G.Y., 2018. Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number. Metabolic Engineering, 48, pp.121-128.
    97. Kang, S.Y., Choi, O., Lee, J.K., Hwang, B.Y., Uhm, T.B. and Hong, Y.S., 2012. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain. Microbial Cell Factories, 11, pp.1-9.
    98. Kashiwada, Y., Aoshima, A., Ikeshiro, Y., Chen, Y.P., Furukawa, H., Itoigawa, M., Fujioka, T., Mihashi, K., Cosentino, L.M., Morris-Natschke, S.L. and Lee, K.H., 2005. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure–activity correlations with related alkaloids. Bioorganic & Medicinal Chemistry, 13(2), pp.443-448.
    99. Kaur, J., Kumar, A. and Kaur, J., 2018. Strategies for optimization of heterologous protein expression in E. coli: Roadblocks and reinforcements. International Journal of Biological Macromolecules, 106, pp.803-822.
    100. Keller, P., Noor, E., Meyer, F., Reiter, M.A., Anastassov, S., Kiefer, P. and Vorholt, J.A., 2020. Methanol-dependent Escherichia coli strains with a complete ribulose monophosphate cycle. Nature Communications, 11(1), p.5403.
    101. Keseler, I.M., Collado-Vides, J., Gama-Castro, S., Ingraham, J., Paley, S., Paulsen, I.T., Peralta-Gil, M. and Karp, P.D., 2005. EcoCyc: a comprehensive database resource for Escherichia coli. Nucleic Acids Research, 33(suppl_1), pp.D334-D337.
    102. Kikuzaki, H., Hisamoto, M., Hirose, K., Akiyama, K. and Taniguchi, H., 2002. Antioxidant properties of ferulic acid and its related compounds. Journal of Agricultural and Food Chemistry, 50(7), pp.2161-2168.
    103. Kim, B., Park, H., Na, D. and Lee, S.Y., 2014. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnology Journal, 9(5), pp.621-629.
    104. Kim, S., Kim, J.C., Kim, Y.Y., Yang, J.E., Lee, H.M., Hwang, I.M., Park, H.W. and Kim, H.M., 2024. Utilization of coffee waste as a sustainable feedstock for high-yield lactic acid production through microbial fermentation. Science of The Total Environment, 912, p.169521.
    105. Ko, Y.S., Kim, J.W., Lee, J.A., Han, T., Kim, G.B., Park, J.E. and Lee, S.Y., 2020. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production. Chemical Society Reviews, 49(14), pp.4615-4636.
    106. Kim, S., Kim, J.C., Kim, Y.Y., Yang, J.E., Lee, H.M., Hwang, I.M., Park, H.W. and Kim, H.M., 2024. Utilization of coffee waste as a sustainable feedstock for high-yield lactic acid production through microbial fermentation. Science of The Total Environment, 912, p.169521.
    107. Kurtz, C.B., Millet, Y.A., Puurunen, M.K., Perreault, M., Charbonneau, M.R., Isabella, V.M., Kotula, J.W., Antipov, E., Dagon, Y., Denney, W.S. and Wagner, D.A., 2019. An engineered E. coli Nissle improves hyperammonemia and survival in mice and shows dose-dependent exposure in healthy humans. Science Translational Medicine, 11(475), p.eaau7975.
    108. Kwon, S.K., Kim, S.K., Lee, D.H. and Kim, J.F., 2015. Comparative genomics and experimental evolution of Escherichia coli BL21 (DE3) strains reveal the landscape of toxicity escape from membrane protein overproduction. Scientific Reports, 5(1), p.16076.
    109. Kyndt, J.A., Meyer, T.E., Cusanovich, M.A. and Van Beeumen, J.J., 2002. Characterization of a bacterial tyrosine ammonia lyase, a biosynthetic enzyme for the photoactive yellow protein. FEBS Letters, 512(1-3), pp.240-244.
    110. Lan, Y.J., Tan, S.I., Cheng, S.Y., Ting, W.W., Xue, C., Lin, T.H., Cai, M.Z., Chen, P.T. and Ng, I.S., 2021. Development of Escherichia coli Nissle 1917 derivative by CRISPR/Cas9 and application for gamma-aminobutyric acid (GABA) production in antibiotic-free system. Biochemical Engineering Journal, 168, p.107952.
    111. Larson, M.H., Gilbert, L.A., Wang, X., Lim, W.A., Weissman, J.S. and Qi, L.S., 2013. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nature Protocols, 8(11), pp.2180-2196.
    112. Lee, J.W., Na, D., Park, J.M., Lee, J., Choi, S. and Lee, S.Y., 2012. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nature Chemical Biology, 8(6), pp.536-546.
    113. Lee, Y.F., Hsieh, H.Y., Tullman-Ercek, D., Chiang, T.K., Turner, R.J. and Lin, S.C., 2010. Enhanced translocation of recombinant proteins via the Tat pathway with chaperones in Escherichia coli. Journal of the Taiwan Institute of Chemical Engineers, 41(5), pp.540-546.
    114. Lee, Y.J., Yi, Y.C., Lin, Y.C., Chen, C.C., Hung, J.H., Lin, J.Y. and Ng, I.S., 2022. Purification and biofabrication of 5-aminolevulinic acid for photodynamic therapy against pathogens and cancer cells. Bioresources and Bioprocessing, 9(1), p.68.
    115. Li, J., Rong, L., Zhao, Y., Li, S., Zhang, C., Xiao, D., Foo, J.L. and Yu, A., 2020. Next-generation metabolic engineering of non-conventional microbial cell factories for carboxylic acid platform chemicals. Biotechnology Advances, 43, p.107605.
    116. Li, J., Tian, C., Xia, Y., Mutanda, I., Wang, K. and Wang, Y., 2019. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine. Metabolic Engineering, 52, pp.124-133.
    117. Li, J., Yue, C., Wei, W., Shang, Y., Zhang, P. and Ye, B.C., 2022. Construction of a p-coumaric and ferulic acid auto-regulatory system in Pseudomonas putida KT2440 for protocatechuate production from lignin-derived aromatics. Bioresource Technology, 344, p.126221.
    118. Li, Q., Wu, H., Li, Z. and Ye, Q., 2016. Enhanced succinate production from glycerol by engineered Escherichia coli strains. Bioresource Technology, 218, pp.217-223.
    119. Li, T., Zhou, W., Bi, H., Zhuang, Y., Zhang, T. and Liu, T., 2018. Production of caffeoylmalic acid from glucose in engineered Escherichia coli. Biotechnology Letters, 40, pp.1057-1065.
    120. Li, Y., Li, J., Qian, B., Cheng, L., Xu, S. and Wang, R., 2018. De novo biosynthesis of p-coumaric acid in E. coli with a trans-cinnamic acid 4-hydroxylase from the Amaryllidaceae plant Lycoris aurea. Molecules, 23(12), p.3185.
    121. Li, Z., Wang, X. and Zhang, H., 2019. Balancing the non-linear rosmarinic acid biosynthetic pathway by modular co-culture engineering. Metabolic Engineering, 54, pp.1-11.
    122. Liang, X., Li, C., Wang, W. and Li, Q., 2018. Integrating T7 RNA polymerase and its cognate transcriptional units for a host-independent and stable expression system in single plasmid. ACS Synthetic Biology, 7(5), pp.1424-1435.
    123. Lin, B. and Tao, Y., 2017. Whole-cell biocatalysts by design. Microbial Cell Factories, 16, pp.1-12.
    124. Lin, J.Y. and Ng, I.S., 2023. Thermal cultivation of halophilic Cyanobacterium aponinum for C-phycocyanin production and simultaneously reducing carbon emission using wastewater. Chemical Engineering Journal, 461, p.141968.
    125. Lin, Y.C., Xue, C., Tan, S.I., Ting, W.W., Yang, S.C. and Ng, I.S., 2022. Precise measurement of decarboxylase and applied cascade enzyme for simultaneous cadaverine production with carbon dioxide recovery. Journal of the Taiwan Institute of Chemical Engineers, 137, p.104188.
    126. Lin, Y.C., Xue, C., Tan, S.I., Ting, W.W., Yang, S.C. and Ng, I.S., 2022. Precise measurement of decarboxylase and applied cascade enzyme for simultaneous cadaverine production with carbon dioxide recovery. Journal of the Taiwan Institute of Chemical Engineers, 137, p.104188.
    127. Liu, Q., Lin, B. and Tao, Y., 2022. Improved methylation in E. coli via an efficient methyl supply system driven by betaine. Metabolic Engineering, 72, pp.46-55.
    128. Liu, S., Hu, W., Wang, Z. and Chen, T., 2020. Production of riboflavin and related cofactors by biotechnological processes. Microbial Cell Factories, 19(1), p.31.
    129. Liu, Y. and Nielsen, J., 2019. Recent trends in metabolic engineering of microbial chemical factories. Current Opinion in Biotechnology, 60, pp.188-197.
    130. Liu, Y. and Shen, L., 2008. From Langmuir kinetics to first-and second-order rate equations for adsorption. Langmuir, 24(20), pp.11625-11630.
    131. Lu, Y.C. and Chang, Y.R., 2019. Gene expression in E. coli influences the position and motion of the lac operon and vicinal loci. Biochemical and Biophysical Research Communications, 519(2), pp.438-443.
    132. Lütke-Eversloh, T. and Stephanopoulos, G., 2007. L-tyrosine production by deregulated strains of Escherichia coli. Applied Microbiology and Biotechnology, 75(1), pp.103-110.
    133. Lv, H., Zhang, Y., Shao, J., Liu, H. and Wang, Y., 2021. Ferulic acid production by metabolically engineered Escherichia coli. Bioresources and Bioprocessing, 8(1), p.70.
    134. Ma, W., Zhu, M., Zhang, D., Yang, L., Yang, T., Li, X. and Zhang, Y., 2017. Berberine inhibits the proliferation and migration of breast cancer ZR-75-30 cells by targeting Ephrin-B2. Phytomedicine, 25, pp.45-51.
    135. MacDonald, M.C., Arivalagan, P., Barre, D.E., MacInnis, J.A. and D’Cunha, G.B., 2016. Rhodotorula glutinis Phenylalanine/tyrosine ammonia lyase enzyme catalyzed synthesis of the methyl ester of para-hydroxycinnamic acid and its potential antibacterial activity. Frontiers in Microbiology, 7, p.171476.
    136. Mairhofer, J., Wittwer, A., Cserjan-Puschmann, M. and Striedner, G., 2015. Preventing T7 RNA Polymerase Read-through Transcription A Synthetic Termination Signal Capable of Improving Bioprocess Stability. ACS Synthetic Biology, 4(3), pp.265-273.
    137. Mao, J., Liu, Q., Song, X., Wang, H., Feng, H., Xu, H. and Qiao, M., 2017. Combinatorial analysis of enzymatic bottlenecks of L-tyrosine pathway by p-coumaric acid production in Saccharomyces cerevisiae. Biotechnology Letters, 39, pp.977-982.
    138. Marisch, K., Bayer, K., Scharl, T., Mairhofer, J., Krempl, P.M., Hummel, K., Razzazi-Fazeli, E. and Striedner, G., 2013. A comparative analysis of industrial Escherichia coli K–12 and B strains in high-glucose batch cultivations on process-, transcriptome-and proteome level. PloS One, 8(8), p.e70516.
    139. Marsafari, M., Samizadeh, H., Rabiei, B., Mehrabi, A., Koffas, M. and Xu, P., 2020. Biotechnological production of flavonoids: an update on plant metabolic engineering, microbial host selection, and genetically encoded biosensors. Biotechnology Journal, 15(8), p.1900432.
    140. Martin, R.W., Des Soye, B.J., Kwon, Y.C., Kay, J., Davis, R.G., Thomas, P.M., Majewska, N.I., Chen, C.X., Marcum, R.D., Weiss, M.G. and Stoddart, A.E., 2018. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nature Communications, 9(1), p.1203.
    141. Martínez-Gómez, K., Flores, N., Castañeda, H.M., Martínez-Batallar, G., Hernández-Chávez, G., Ramírez, O.T., Gosset, G., Encarnación, S. and Bolivar, F., 2012. New insights into Escherichia coli metabolism: carbon scavenging, acetate metabolism and carbon recycling responses during growth on glycerol. Microbial Cell Factories, 11, pp.1-21.
    142. Matsumoto, T., Tanaka, T. and Kondo, A., 2017. Engineering metabolic pathways in Escherichia coli for constructing a “microbial chassis” for biochemical production. Bioresource Technology, 245, pp.1362-1368.
    143. McCloskey, D., Palsson, B.Ø. and Feist, A.M., 2013. Basic and applied uses of genome‐scale metabolic network reconstructions of Escherichia coli. Molecular Systems Biology, 9(1), p.661.
    144. McCutcheon, S.R., Chiu, K.L., Lewis, D.D. and Tan, C., 2018. CRISPR‐Cas expands dynamic range of gene expression from T7RNAP promoters. Biotechnology Journal, 13(5), p.1700167.
    145. McElwain, L., Phair, K., Kealey, C. and Brady, D., 2022. Current trends in biopharmaceuticals production in Escherichia coli. Biotechnology Letters, 44(8), pp.917-931.
    146. Mears, L., Stocks, S.M., Sin, G. and Gernaey, K.V., 2017. A review of control strategies for manipulating the feed rate in fed-batch fermentation processes. Journal of Biotechnology, 245, pp.34-46.
    147. Melkani, G.C., Zardeneta, G. and Mendoza, J.A., 2003. The ATPase activity of GroEL is supported at high temperatures by divalent cations that stabilize its structure. Biometals, 16, pp.479-484.
    148. Mijts, B.N. and Schmidt-Dannert, C., 2003. Engineering of secondary metabolite pathways. Current Opinion in Biotechnology, 14(6), pp.597-602.
    149. Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T.O.R.S.T.E.N., Bourlieu, C., Carrière, F., Boutrou, R., Corredig, M., Dupont, D. and Dufour, C., 2014. A standardised static in vitro digestion method suitable for food–an international consensus. Food & function, 5(6), pp.1113-1124.
    150. Mishra, C.B., Tiwari, M. and Supuran, C.T., 2020. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today?. Medicinal Research Reviews, 40(6), pp.2485-2565.
    151. Moghaddasi, H., Culp, C. and Vanegas, J., 2021. Net zero energy communities: integrated power system, building and transport sectors. Energies, 14(21), p.7065.
    152. Mohd Sharif, N.S.A., Thor, E.S., Zainol, N. and Jamaluddin, M.F., 2017. Optimization of ferulic acid production from banana stem waste using central composite design. Environmental Progress & Sustainable Energy, 36(4), pp.1217-1223.
    153. Monk, J.M., Koza, A., Campodonico, M.A., Machado, D., Seoane, J.M., Palsson, B.O., Herrgård, M.J. and Feist, A.M., 2016. Multi-omics quantification of species variation of Escherichia coli links molecular features with strain phenotypes. Cell Systems, 3(3), pp.238-251.
    154. Mosberg, J.A., Lajoie, M.J. and Church, G.M., 2010. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics, 186(3), pp.791-799.
    155. Moxley, W.C. and Eiteman, M.A., 2021. Pyruvate production by Escherichia coli by use of pyruvate dehydrogenase variants. Applied and Environmental Microbiology, 87(13), pp.e00487-21.
    156. Niu, F.X., Yan, Z.B., Huang, Y.B. and Liu, J.Z., 2021. Cell-free biosynthesis of chlorogenic acid using a mixture of chassis cell extracts and purified spy-cyclized enzymes. Journal of Agricultural and Food Chemistry, 69(28), pp.7938-7947.
    157. Nowroozi, F.F., Baidoo, E.E., Ermakov, S., Redding-Johanson, A.M., Batth, T.S., Petzold, C.J. and Keasling, J.D., 2014. Metabolic pathway optimization using ribosome binding site variants and combinatorial gene assembly. Applied Microbiology and Biotechnology, 98, pp.1567-1581.
    158. Okano, H., Hermsen, R., Kochanowski, K. and Hwa, T., 2020. Regulation underlying hierarchical and simultaneous utilization of carbon substrates by flux sensors in Escherichia coli. Nature Microbiology, 5(1), pp.206-215.
    159. Oldiges, M., Kunze, M., Degenring, D., Sprenger, G.A. and Takors, R., 2004. Stimulation, monitoring, and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway. Biotechnology Progress, 20(6), pp.1623-1633.
    160. Ou, S. and Kwok, K.C., 2004. Ferulic acid: pharmaceutical functions, preparation and applications in foods. Journal of the Science of Food and Agriculture, 84(11), pp.1261-1269.
    161. Özacar, M., Şengil, İ.A. and Türkmenler, H., 2008. Equilibrium and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chemical Engineering Journal, 143(1-3), pp.32-42.
    162. Park, D., Swayambhu, G., Lyga, T. and Pfeifer, B.A., 2021. Complex natural product production methods and options. Synthetic and Systems Biotechnology, 6(1), pp.1-11.
    163. Park, J.H., Lee, K.H., Kim, T.Y. and Lee, S.Y., 2007. Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proceedings of the National Academy of Sciences, 104(19), pp.7797-7802.
    164. Park, J.M., Park, H.M., Kim, W.J., Kim, H.U., Kim, T.Y. and Lee, S.Y., 2012. Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Systems Biology, 6, pp.1-11.
    165. Park, S., Lee, J.U., Cho, S., Kim, H., Oh, H.B., Pack, S.P. and Lee, J., 2017. Increased incorporation of gaseous CO2 into succinate by Escherichia coli overexpressing carbonic anhydrase and phosphoenolpyruvate carboxylase genes. Journal of Biotechnology, 241, pp.101-107.
    166. Park, S.Y., Yang, D., Ha, S.H. and Lee, S.Y., 2022. Production of phenylpropanoids and flavonolignans from glycerol by metabolically engineered Escherichia coli. Biotechnology and Bioengineering, 119(3), pp.946-962.
    167. Park, Y.T., Kim, T., Ham, J., Choi, J., Lee, H.S., Yeon, Y.J., Choi, S.I., Kim, N., Kim, Y.R. and Seok, Y.J., 2022. Physiological activity of E. coli engineered to produce butyric acid. Microbial Biotechnology, 15(3), pp.832-843.
    168. Patzer, S., Baquero, M.R., Bravo, D., Moreno, F. and Hantke, K., 2003. The colicin G, H and X determinants encode microcins M and H47, which might utilize the catecholate siderophore receptors FepA, Cir, Fiu and IroN. Microbiology, 149(9), pp.2557-2570.
    169. Pei, K., Ou, J., Huang, J. and Ou, S., 2016. p‐Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. Journal of the Science of Food and Agriculture, 96(9), pp.2952-2962.
    170. Pittard, J., Camakaris, H. and Yang, J., 2005. The TyrR regulon. Molecular Microbiology, 55(1), pp.16-26.
    171. Pontrelli, S., Chiu, T.Y., Lan, E.I., Chen, F.Y.H., Chang, P. and Liao, J.C., 2018. Escherichia coli as a host for metabolic engineering. Metabolic engineering, 50, pp.16-46.
    172. Porter, E.B., Polaski, J.T., Morck, M.M. and Batey, R.T., 2017. Recurrent RNA motifs as scaffolds for genetically encodable small-molecule biosensors. Nature Chemical Biology, 13(3), pp.295-301.
    173. Pouresmaeil, M. and Azizi-Dargahlou, S., 2023. Factors involved in heterologous expression of proteins in E. coli host. Archives of Microbiology, 205(5), p.212.
    174. Pragasam, S.J., Venkatesan, V. and Rasool, M., 2013. Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation, 36, pp.169-176.
    175. Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P. and Lim, W.A., 2013. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152(5), pp.1173-1183.
    176. Qian, X., Chen, L., Sui, Y., Chen, C., Zhang, W., Zhou, J., Dong, W., Jiang, M., Xin, F. and Ochsenreither, K., 2020. Biotechnological potential and applications of microbial consortia. Biotechnology Advances, 40, p.107500.
    177. Qiu, Z., Liu, X., Li, J., Qiao, B. and Zhao, G.R., 2022. Metabolic division in an Escherichia coli coculture system for efficient production of kaempferide. ACS Synthetic Biology, 11(3), pp.1213-1227.
    178. Quertinmont, L.T., Orru, R. and Lutz, S., 2015. RApid Parallel Protein EvaluatoR (RAPPER), from gene to enzyme function in one day. Chemical Communications, 51(1), pp.122-124.
    179. Ramadevi, S., Shelin, R. and Shanmugaraja, M., 2023. Comprehensive analysis of the physiological characterization of Escherichia coli Nissle 1917. Current Microbiology, 80(5), p.150.
    180. Raman, S., Rogers, J.K., Taylor, N.D. and Church, G.M., 2014. Evolution-guided optimization of biosynthetic pathways. Proceedings of the National Academy of Sciences, 111(50), pp.17803-17808.
    181. Ramón-Gonçalves, M., Gómez-Mejía, E., Rosales-Conrado, N., León-González, M.E. and Madrid, Y., 2019. Extraction, identification and quantification of polyphenols from spent coffee grounds by chromatographic methods and chemometric analyses. Waste Management, 96, pp.15-24.
    182. Rao, S., Hu, S., McHugh, L., Lueders, K., Henry, K., Zhao, Q., Fekete, R.A., Kar, S., Adhya, S. and Hamer, D.H., 2005. Toward a live microbial microbicide for HIV: commensal bacteria secreting an HIV fusion inhibitor peptide. Proceedings of the National Academy of Sciences, 102(34), pp.11993-11998.
    183. Rao, Y., Cai, D., Wang, H., Xu, Y., Xiong, S., Gao, L., Xiong, M., Wang, Z., Chen, S. and Ma, X., 2020. Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. Journal of Biotechnology, 312, pp.1-10.
    184. Reister, M., Hoffmeier, K., Krezdorn, N., Rotter, B., Liang, C., Rund, S., Dandekar, T., Sonnenborn, U. and Oelschlaeger, T.A., 2014. Complete genome sequence of the gram-negative probiotic Escherichia coli strain Nissle 1917. Journal of Biotechnology, 187, pp.106-107.
    185. Remer, K.A., Bartrow, M., Roeger, B., Moll, H., Sonnenborn, U. and Oelschlaeger, T.A., 2009. Split immune response after oral vaccination of mice with recombinant Escherichia coli Nissle 1917 expressing fimbrial adhesin K88. International Journal of Medical Microbiology, 299(7), pp.467-478.
    186. Ren, N., Wang, C., Zhao, Z., Liang, Y., Wei, W. and Qin, G., 2021. Recovery of ferulic acid from corn bran by adsorption on mesoporous carbon. Journal of Food Process Engineering, 44(10), p.e13817.
    187. Robinson, E.A., Frankenberg-Dinkel, N., Xue, F. and Wilks, A., 2021. Recombinant production of biliverdin IXβ and δ isomers in the T7 promoter compatible Escherichia coli Nissle. Frontiers in Microbiology, 12, p.787609.
    188. Rodrigues, J.L., Araújo, R.G., Prather, K.L., Kluskens, L.D. and Rodrigues, L.R., 2015. Heterologous production of caffeic acid from tyrosine in Escherichia coli. Enzyme and Microbial Technology, 71, pp.36-44.
    189. Rodrigues, J.L., Gomes, D. and Rodrigues, L.R., 2020. A combinatorial approach to optimize the production of curcuminoids from tyrosine in Escherichia coli. Frontiers in Bioengineering and Biotechnology, 8, p.59.
    190. Rodrigues, J.L. and Rodrigues, L.R., 2018. Potential applications of the Escherichia coli heat shock response in synthetic biology. Trends in Biotechnology, 36(2), pp.186-198.
    191. Rodriguez, A., Strucko, T., Stahlhut, S.G., Kristensen, M., Svenssen, D.K., Forster, J., Nielsen, J. and Borodina, I., 2017. Metabolic engineering of yeast for fermentative production of flavonoids. Bioresource Technology, 245, pp.1645-1654.
    192. Rosano, G.L., Morales, E.S. and Ceccarelli, E.A., 2019. New tools for recombinant protein production in Escherichia coli: A 5‐year update. Protein Science, 28(8), pp.1412-1422.
    193. Rosero-Chasoy, G., Rodríguez-Jasso, R.M., Aguilar, C.N., Buitrón, G., Chairez, I. and Ruiz, H.A., 2021. Microbial co-culturing strategies for the production high value compounds, a reliable framework towards sustainable biorefinery implementation–an overview. Bioresource Technology, 321, p.124458.
    194. Rousk, J., Brookes, P.C. and Bååth, E., 2009. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Applied and Environmental Microbiology, 75(6), pp.1589-1596.
    195. Salis, H.M., Mirsky, E.A. and Voigt, C.A., 2009. Automated design of synthetic ribosome binding sites to control protein expression. Nature Biotechnology, 27(10), pp.946-950.
    196. Santos, C.N.S., Koffas, M. and Stephanopoulos, G., 2011. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metabolic Engineering, 13(4), pp.392-400.
    197. Santos, C.N.S., Regitsky, D.D. and Yoshikuni, Y., 2013. Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nature Communications, 4(1), p.2503.
    198. Sariaslani, F.S., 2007. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu. Rev. Microbiol., 61, pp.51-69.
    199. Satanowski, A., Dronsella, B., Noor, E., Vögeli, B., He, H., Wichmann, P., Erb, T.J., Lindner, S.N. and Bar-Even, A., 2020. Awakening a latent carbon fixation cycle in Escherichia coli. Nature Communications, 11(1), p.5812.
    200. Sato, T., Utashima, S., Yoshii, Y., Hirata, K., Kanda, S., Onoda, Y., Jin, J.Q., Xiao, S., Minami, R., Fukushima, H. and Noguchi, A., 2022. A non-carboxylating pentose bisphosphate pathway in halophilic archaea. Communications Biology, 5(1), p.1290.
    201. Schlegel, S., Genevaux, P. and de Gier, J.W., 2015. De-convoluting the genetic adaptations of E. coli C41 (DE3) in real time reveals how alleviating protein production stress improves yields. Cell Reports, 10(10), pp.1758-1766.
    202. Schleussner, C.F., Rogelj, J., Schaeffer, M., Lissner, T., Licker, R., Fischer, E.M., Knutti, R., Levermann, A., Frieler, K. and Hare, W., 2016. Science and policy characteristics of the Paris Agreement temperature goal. Nature Climate Change, 6(9), pp.827-835.
    203. Schoch, C.L., Ciufo, S., Domrachev, M., Hotton, C.L., Kannan, S., Khovanskaya, R., Leipe, D., Mcveigh, R., O’Neill, K., Robbertse, B. and Sharma, S., 2020. NCBI Taxonomy: a comprehensive update on curation, resources and tools. Database, 2020, p.baaa062.
    204. Schwaiger, K.N., Voit, A., Wiltschi, B. and Nidetzky, B., 2022. Engineering cascade biocatalysis in whole-cells for bottom-up synthesis of cello-oligosaccharides: flux control over three enzymatic steps enables soluble production. Microbial Cell Factories, 21(1), p.61.
    205. Seo, E.J., Weibel, S., Wehkamp, J. and Oelschlaeger, T.A., 2012. Construction of recombinant E. coli Nissle 1917 (EcN) strains for the expression and secretion of defensins. International Journal of Medical Microbiology, 302(6), pp.276-287.
    206. Shi, C., Zhang, X., Nilghaz, A., Wu, Z., Wang, T., Zhu, B., Tang, G., Su, B. and Tian, J., 2023. Large-scale production of spent coffee ground-based photothermal materials for high-efficiency solar-driven interfacial evaporation. Chemical Engineering Journal, 455, p.140361.
    207. Shiloach, J. and Fass, R., 2005. Growing E. coli to high cell density—a historical perspective on method development. Biotechnology Advances, 23(5), pp.345-357.
    208. Shivhare, A., Jampaiah, D., Bhargava, S.K., Lee, A.F., Srivastava, R. and Wilson, K., 2021. Hydrogenolysis of lignin-derived aromatic ethers over heterogeneous catalysts. ACS Sustainable Chemistry & Engineering, 9(9), pp.3379-3407.
    209. Sibhatu, H.K., Jabasingh, S.A., Yimam, A. and Ahmed, S., 2021. Ferulic acid production from brewery spent grains, an agro-industrial waste. LWT, 135, p.110009.
    210. Smits, W.K., Kuipers, O.P. and Veening, J.W., 2006. Phenotypic variation in bacteria: the role of feedback regulation. Nature Reviews Microbiology, 4(4), pp.259-271.
    211. Song, C.W., Kim, D.I., Choi, S., Jang, J.W. and Lee, S.Y., 2013. Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnology and Bioengineering, 110(7), pp.2025-2034.
    212. Sonnenborn, U., 2016. Escherichia coli strain Nissle 1917—from bench to bedside and back: history of a special Escherichia coli strain with probiotic properties. FEMS Microbiology Letters, 363(19), p.fnw212.
    213. Stargardt, P., Feuchtenhofer, L., Cserjan-Puschmann, M., Striedner, G. and Mairhofer, J., 2020. Bacteriophage inspired growth-decoupled recombinant protein production in Escherichia coli. ACS Synthetic Biology, 9(6), pp.1336-1348.
    214. Stargardt, P., Striedner, G. and Mairhofer, J., 2021. Tunable expression rate control of a growth-decoupled T7 expression system by L-arabinose only. Microbial Cell Factories, 20, pp.1-17.
    215. Stephanopoulos, G., 2012. Synthetic biology and metabolic engineering. ACS Synthetic Biology, 1(11), pp.514-525.
    216. St-Pierre, F., Cui, L., Priest, D.G., Endy, D., Dodd, I.B. and Shearwin, K.E., 2013. One-step cloning and chromosomal integration of DNA. ACS Synthetic Biology, 2(9), pp.537-541.
    217. Studier, F.W., 2005. Protein production by auto-induction in high-density shaking cultures. Protein expression and purification, 41(1), pp.207-234.
    218. Sun, L. and Alper, H.S., 2020. Non-conventional hosts for the production of fuels and chemicals. Current Opinion in Chemical Biology, 59, pp.15-22.
    219. Sun, X., Li, X., Shen, X., Wang, J. and Yuan, Q., 2021. Recent advances in microbial production of phenolic compounds. Chinese Journal of Chemical Engineering, 30, pp.54-61.
    220. Tan, S.I. and Ng, I.S., 2020. New insight into plasmid-driven T7 RNA polymerase in Escherichia coli and use as a genetic amplifier for a biosensor. ACS Synthetic Biology, 9(3), pp.613-622.
    221. Tan, S.I. and Ng, I.S., 2021. Stepwise optimization of genetic RuBisCO-equipped Escherichia coli for low carbon-footprint protein and chemical production. Green Chemistry, 23(13), pp.4800-4813.
    222. Tan, S.I., Hsiang, C.C. and Ng, I.S., 2021. Tailoring genetic elements of the plasmid-driven T7 system for stable and robust one-step cloning and protein expression in broad Escherichia coli. ACS Synthetic Biology, 10(10), pp.2753-2762.
    223. Tan, S.I. and Ng, I.S., 2020. Design and optimization of bioreactor to boost carbon dioxide assimilation in RuBisCo-equipped Escherichia coli. Bioresource Technology, 314, p.123785.
    224. Ting, W.W. and Ng, I.S., 2023. Tunable T7 Promoter Orthogonality on T7RNAP for cis-Aconitate Decarboxylase Evolution via Base Editor and Screening from Itaconic Acid Biosensor. ACS Synthetic Biology, 12(10), pp.3020-3029.
    225. Ting, W.W. and Ng, I.S., 2022. Adaptive laboratory evolution and metabolic regulation of genetic Escherichia coli W3110 toward low-carbon footprint production of 5-aminolevulinic acid. Journal of the Taiwan Institute of Chemical Engineers, 141, p.104612.
    226. Tong, M., French, S., El Zahed, S.S., Ong, W.K., Karp, P.D. and Brown, E.D., 2020. Gene dispensability in Escherichia coli grown in thirty different carbon environments. MBio, 11(5), pp.10-1128.
    227. Tsoi, R., Dai, Z. and You, L., 2019. Emerging strategies for engineering microbial communities. Biotechnology Advances, 37(6), p.107372.
    228. Tsuchiya, H., Doki, S., Takemoto, M., Ikuta, T., Higuchi, T., Fukui, K., Usuda, Y., Tabuchi, E., Nagatoishi, S., Tsumoto, K. and Nishizawa, T., 2016. Structural basis for amino acid export by DMT superfamily transporter YddG. Nature, 534(7607), pp.417-420.
    229. Turner, N.J., 2009. Directed evolution drives the next generation of biocatalysts. Nature Chemical Biology, 5(8), pp.567-573.
    230. Tyo, K.E., Ajikumar, P.K. and Stephanopoulos, G., 2009. Stabilized gene duplication enables long-term selection-free heterologous pathway expression. Nature Biotechnology, 27(8), pp.760-765.
    231. Valdebenito, M., Crumbliss, A.L., Winkelmann, G. and Hantke, K., 2006. Environmental factors influence the production of enterobactin, salmochelin, aerobactin, and yersiniabactin in Escherichia coli strain Nissle 1917. International Journal of Medical Microbiology, 296(8), pp.513-520.
    232. Valerio, R., Torres, C.A., Brazinha, C., da Silva, M.G., Coelhoso, I.M. and Crespo, J.G., 2022. Purification of ferulic acid from corn fibre alkaline extracts for bio-vanillin production using an adsorption process. Separation and Purification Technology, 298, p.121570.
    233. Valgepea, K., Adamberg, K., Nahku, R., Lahtvee, P.J., Arike, L. and Vilu, R., 2010. Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase. BMC Systems Biology, 4, pp.1-13.
    234. van Kessel, S.P., Frye, A.K., El-Gendy, A.O., Castejon, M., Keshavarzian, A., van Dijk, G. and El Aidy, S., 2019. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nature Communications, 10(1), p.310.
    235. Vargas-Tah, A. and Gosset, G., 2015. Production of cinnamic and p-hydroxycinnamic acids in engineered microbes. Frontiers in Bioengineering and Biotechnology, 3, p.116.
    236. Vejborg, R.M., Friis, C., Hancock, V., Schembri, M.A. and Klemm, P., 2010. A virulent parent with probiotic progeny: comparative genomics of Escherichia coli strains CFT073, Nissle 1917 and ABU 83972. Molecular Genetics and Genomics, 283, pp.469-484.
    237. von Gromoff, E.D., Schroda, M., Oster, U. and Beck, C.F., 2006. Identification of a plastid response element that acts as an enhancer within the Chlamydomonas HSP70A promoter. Nucleic Acids Research, 34(17), pp.4767-4779.
    238. Wada, A., Prates, É.T., Hirano, R., Werner, A.Z., Kamimura, N., Jacobson, D.A., Beckham, G.T. and Masai, E., 2021. Characterization of aromatic acid/proton symporters in Pseudomonas putida KT2440 toward efficient microbial conversion of lignin-related aromatics. Metabolic Engineering, 64, pp.167-179.
    239. Wadhawan, M. and Anand, A.C., 2016. Coffee and liver disease. Journal of Clinical and Experimental Hepatology, 6(1), pp.40-46.
    240. Wagner, S., Klepsch, M.M., Schlegel, S., Appel, A., Draheim, R., Tarry, M., Högbom, M., Van Wijk, K.J., Slotboom, D.J., Persson, J.O. and De Gier, J.W., 2008. Tuning Escherichia coli for membrane protein overexpression. Proceedings of the National Academy of Sciences, 105(38), pp.14371-14376.
    241. Wan, R., Chen, Y., Zheng, X., Su, Y. and Li, M., 2016. Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption. Environmental Science & Technology, 50(18), pp.9915-9922.
    242. Wang, H.H., Isaacs, F.J., Carr, P.A., Sun, Z.Z., Xu, G., Forest, C.R. and Church, G.M., 2009. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 460(7257), pp.894-898.
    243. Wang, L., Li, N., Yu, S. and Zhou, J., 2023. Enhancing caffeic acid production in Escherichia coli by engineering the biosynthesis pathway and transporter. Bioresource Technology, 368, p.128320.
    244. Wang, W., Li, Y., Wang, Y., Shi, C., Li, C., Li, Q. and Linhardt, R.J., 2018. Bacteriophage T7 transcription system: an enabling tool in synthetic biology. Biotechnology Advances, 36(8), pp.2129-2137.
    245. Wan, R., Chen, Y., Zheng, X., Su, Y. and Li, M., 2016. Effect of CO2 on microbial denitrification via inhibiting electron transport and consumption. Environmental Science & Technology, 50(18), pp.9915-9922.
    246. Wang, Y., Subrizi, F., Carter, E.M., Sheppard, T.D., Ward, J.M. and Hailes, H.C., 2022. Enzymatic synthesis of benzylisoquinoline alkaloids using a parallel cascade strategy and tyrosinase variants. Nature Communications, 13(1), p.5436.
    247. Weiner, M., Albermann, C., Gottlieb, K., Sprenger, G.A. and Weuster-Botz, D., 2014. Fed-batch production of l-phenylalanine from glycerol and ammonia with recombinant Escherichia coli. Biochemical Engineering Journal, 83, pp.62-69.
    248. Wernérus, H. and Ståhl, S., 2004. Biotechnological applications for surface‐engineered bacteria. Biotechnology and Applied Biochemistry, 40(3), pp.209-228.
    249. Winkler, J.D. and Kao, K.C., 2014. Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics, 104(6), pp.406-411.
    250. Wu, J., Zhou, P., Zhang, X. and Dong, M., 2017. Efficient de novo synthesis of resveratrol by metabolically engineered Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 44(7), pp.1083-1095.
    251. Xia, X.X., Qian, Z.G., Ki, C.S., Park, Y.H., Kaplan, D.L. and Lee, S.Y., 2010. Native-sized recombinant spider silk protein produced in metabolically engineered Escherichia coli results in a strong fiber. Proceedings of the National Academy of Sciences, 107(32), pp.14059-14063.
    252. Xu, Y., Zhao, Z., Tong, W., Ding, Y., Liu, B., Shi, Y., Wang, J., Sun, S., Liu, M., Wang, Y. and Qi, Q., 2020. An acid-tolerance response system protecting exponentially growing Escherichia coli. Nature Communications, 11(1), p.1496.
    253. Yang, C., Sesterhenn, F., Bonet, J., van Aalen, E.A., Scheller, L., Abriata, L.A., Cramer, J.T., Wen, X., Rosset, S., Georgeon, S. and Jardetzky, T., 2021. Bottom-up de novo design of functional proteins with complex structural features. Nature Chemical Biology, 17(4), pp.492-500.
    254. Yang, D., Park, S.Y., Park, Y.S., Eun, H. and Lee, S.Y., 2020. Metabolic engineering of Escherichia coli for natural product biosynthesis. Trends in Biotechnology, 38(7), pp.745-765.
    255. Yang, J., Seo, S.W., Jang, S., Shin, S.I., Lim, C.H., Roh, T.Y. and Jung, G.Y., 2013. Synthetic RNA devices to expedite the evolution of metabolite-producing microbes. Nature Communications, 4(1), p.1413.
    256. Yang, J., Zhang, H., Liu, H., Zhang, J., Pei, Y. and Zang, L., 2022. Unraveling the roles of lanthanum-iron oxide nanoparticles in biohydrogen production. Bioresource Technology, 351, p.127027.
    257. Yi, Y.C., Xue, C. and Ng, I.S., 2021. Low-carbon-footprint production of high-end 5-aminolevulinic acid via integrative strain engineering and RuBisCo-equipped Escherichia coli. ACS Sustainable Chemistry & Engineering, 9(46), pp.15623-15633.
    258. Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A., Boldt, J., Khandurina, J., Trawick, J.D., Osterhout, R.E., Stephen, R. and Estadilla, J., 2011. Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nature Chemical Biology, 7(7), pp.445-452.
    259. Yishai, O., Bouzon, M., Doring, V. and Bar-Even, A., 2018. In vivo assimilation of one-carbon via a synthetic reductive glycine pathway in Escherichia coli. ACS Synthetic Biology, 7(9), pp.2023-2028.
    260. Yu, I.K., Chan, O.Y., Zhang, Q., Wang, L., Wong, K.H. and Tsang, D.C., 2023. Upcycling of Spent Tea Leaves and Spent Coffee Grounds into Sustainable 3D-Printing Materials: Natural Plasticization and Low-Energy Fabrication. ACS Sustainable Chemistry & Engineering, 11(16), pp.6230-6240.
    261. Yu, J.H., Zhu, L.W., Xia, S.T., Li, H.M., Tang, Y.L., Liang, X.H., Chen, T. and Tang, Y.J., 2016. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering. Biotechnology and Bioengineering, 113(7), pp.1531-1541.
    262. Yu, T. and Chen, Y., 2019. Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Science of the Total Environment, 655, pp.865-879.
    263. Yu, T.H., Tan, S.I., Yi, Y.C., Xue, C., Ting, W.W., Chang, J.J. and Ng, I.S., 2022. New insight into the codon usage and medium optimization toward stable and high-level 5-aminolevulinic acid production in Escherichia coli. Biochemical Engineering Journal, 177, p.108259.
    264. Yuan, S.F., Yi, X., Johnston, T.G. and Alper, H.S., 2020. De novo resveratrol production through modular engineering of an Escherichia coli–Saccharomyces cerevisiae co-culture. Microbial Cell Factories, 19, pp.1-12.
    265. Zang, Y., Zha, J., Wu, X., Zheng, Z., Ouyang, J. and Koffas, M.A., 2019. In vitro naringenin biosynthesis from p-coumaric acid using recombinant enzymes. Journal of Agricultural and Food Chemistry, 67(49), pp.13430-13436.
    266. Zhang, H., Li, Z., Pereira, B. and Stephanopoulos, G., 2015. Engineering E. coli–E. coli cocultures for production of muconic acid from glycerol. Microbial Cell Factories, 14, pp.1-10.
    267. Zhang, W., Liu, H., Li, X., Liu, D., Dong, X.T., Li, F.F., Wang, E.X., Li, B.Z. and Yuan, Y.J., 2017. Production of naringenin from D‐xylose with co‐culture of E. coli and S. cerevisiae. Engineering in Life Sciences, 17(9), pp.1021-1029.
    268. Zhang, X., He, Y., Wu, Z., Liu, G., Tao, Y., Jin, J.M., Chen, W. and Tang, S.Y., 2021. Whole-cell biosensors aid exploration of vanillin transmembrane transport. Journal of Agricultural and Food Chemistry, 69(10), pp.3114-3123.
    269. Zhang, X., Jantama, K., Moore, J.C., Jarboe, L.R., Shanmugam, K.T. and Ingram, L.O., 2009. Metabolic evolution of energy-conserving pathways for succinate production in Escherichia coli. Proceedings of the National Academy of Sciences, 106(48), pp.20180-20185.
    270. Zhang, X., Tervo, C.J. and Reed, J.L., 2016. Metabolic assessment of E. coli as a Biofactory for commercial products. Metabolic Engineering, 35, pp.64-74.
    271. Zhang, Y., Zhang, Y., Xia, L., Zhang, X., Ding, X., Yan, F. and Wu, F., 2012. Escherichia coli Nissle 1917 targets and restrains mouse B16 melanoma and 4T1 breast tumors through expression of azurin protein. Applied and Environmental Microbiology, 78(21), pp.7603-7610.
    272. Zhang, Y., Zhou, J., Zhang, Y., Liu, T., Lu, X., Men, D. and Zhang, X.E., 2021. Auxiliary module promotes the synthesis of carboxysomes in E. coli to achieve high-efficiency CO2 assimilation. ACS Synthetic Biology, 10(4), pp.707-715.
    273. Zhang, Y.H.P., 2015. Production of biofuels and biochemicals by in vitro synthetic biosystems: opportunities and challenges. Biotechnology Advances, 33(7), pp.1467-1483.
    274. Zhang, Z., He, Y., Huang, Y., Ding, L., Chen, L., Liu, Y., Nie, Y. and Zhang, X., 2018. Development and optimization of an in vitro multienzyme synthetic system for production of kaempferol from naringenin. Journal of Agricultural and Food Chemistry, 66(31), pp.8272-8279.
    275. Zhao, X., Chen, J., Meng, X., Li, L., Zhou, X., Li, J., Bai, S., 2021. Environmental profile of natural biological vanillin production via life cycle assessment. Journal of Cleaner Production, 308, 127399.
    276. Zhao, J., Ou, S., Ding, S., Wang, Y. and Wang, Y., 2011. Effect of activated charcoal treatment of alkaline hydrolysates from sugarcane bagasse on purification of p-coumaric acid. Chemical Engineering Research and Design, 89(10), pp.2176-2181.
    277. Zhao, Y., Wu, B.H., Liu, Z.N., Qiao, J. and Zhao, G.R., 2018. Combinatorial optimization of resveratrol production in engineered E. coli. Journal of Agricultural and Food Chemistry, 66(51), pp.13444-13453.
    278. Zhou, S. and Alper, H.S., 2019. Strategies for directed and adapted evolution as part of microbial strain engineering. Journal of Chemical Technology & Biotechnology, 94(2), pp.366-376.
    279. Zhou, S., Liu, P., Chen, J., Du, G., Li, H. and Zhou, J., 2016. Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis. Applied Microbiology and Biotechnology, 100, pp.10443-10452.
    280. Zhou, S., Lyu, Y., Li, H., Koffas, M.A. and Zhou, J., 2019. Fine‐tuning the (2S)‐naringenin synthetic pathway using an iterative high‐throughput balancing strategy. Biotechnology and Bioengineering, 116(6), pp.1392-1404.
    281. Zhou, Y., Wu, S. and Bornscheuer, U.T., 2021. Recent advances in (chemo) enzymatic cascades for upgrading bio-based resources. Chemical Communications, 57(82), pp.10661-10674.
    282. Zhou, Z., Zhang, X., Wu, J., Li, X., Li, W., Sun, X., Wang, J., Yan, Y., Shen, X. and Yuan, Q., 2022. Targeting cofactors regeneration in methylation and hydroxylation for high level production of Ferulic acid. Metabolic Engineering, 73, pp.247-255.

    下載圖示 校內:2025-06-26公開
    校外:2025-06-26公開
    QR CODE