研究生: |
蔣竣宇 Jiang, Jiun-Yu |
---|---|
論文名稱: |
快速微流體免疫生物感測器應用於末期腎臟病患腹膜透析引流液中C反應蛋白之檢測 Application of rapid microfluidic immuno-biosensor for the detection of C-reactive protein in peritoneal dialysis drainage of end stage renal disease patients |
指導教授: |
傅龍明
Fu, Lung-Ming |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | CRP 、微流體晶片 、ELISA 、生醫感測器 |
外文關鍵詞: | CRP, Microfluidic chip, ELISA, Biosensor |
相關次數: | 點閱:63 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當腎臟受到疾病或飲食的影響導致腎臟受損或腎功能喪失,進而造成血中尿素氮以及肌酸酐濃度增高,即為慢性腎臟病 (Chronic kidney disease, CKD),或稱為慢性腎衰竭。若人體出現此病症,僅能透過接受血液透析或是腹膜透析,以人工的方式排除體內有害物質。在兩種不同透析方式中,血液透析是透過醫院儀器執行,腹膜透析則是透過病患或是病患親屬,可於醫院以外場所進行,但非專業醫護人員操作過程易發生細菌感染而導致腹膜炎,當感染嚴重容易產生敗血症而導致死亡,因此為了避免此風險,需要嚴格注意腹膜透析洗腎患者有無發炎情形。
當人體出現發炎症狀,可透過發炎指標 — C反應蛋白 (C-reactive protein, CRP) 得知體內發炎程度,在健康人體內,CRP 含量極低,因此當 CRP 濃度提高時,表示有發炎損傷情形發生,而一般的醫院 CRP 檢測流程不但較耗費時間也需專業人員操作和昂貴的儀器設備,且無法立即得知檢測結果,有鑒於此,開發出一套居家快速微流體檢測系統,提供給長期腹膜透析的腎臟病患者,能於更換腹膜透析液後檢測體內有無發炎情形,及早發現 CRP 濃度提高,可盡速就醫,有效預防腹膜炎發生。
本研究所提出開發的居家之快速微流體檢測系統分為微流體晶片及檢測機台兩部分,當腹膜透析療程結束後,患者添加少量的引流液到微流體晶片中,進行ELISA免疫分析,反應後搭配機台中的微型光譜儀進行結果分析,即可於 90 分鐘內得知體內 CRP 濃度,藉此得知體內是否有發炎跡象。為確認本研究之可行性,此晶片與檢測機台系統於開發時透過檢測 CRP 標準水樣溶液與人工尿液的濃度測試,實驗結果與實際濃度值的相關係數為 0.9933 和 0.9786,從檢測結果得知該系統有高準確性與穩定性,可實際應用於居家照護,達到預防腹膜炎的目的。
Chronic kidney disease (CKD) is defined as chronic kidney disease (CKD) when the kidneys are damaged or lose their function due to the influence of disease or diet. If this disease occurs in the human body after the kidney is damaged, the only way to remove harmful substances from the body is artificially through hemodialysis or peritoneal dialysis. Among the two different dialysis methods, hemodialysis is performed through hospital equipment, while peritoneal dialysis is performed through patients or relatives of patients, which can be performed by themselves outside the hospital, but non-professional medical staff are prone to bacterial infection during the operation. Peritonitis, when the infection is serious, it is easy to produce sepsis and lead to death. Therefore, in order to avoid this risk, it is necessary to strictly pay attention to whether there is inflammation in peritoneal dialysis patients.
If the human body has symptoms of inflammation, the degree of inflammation in the body can be known through the inflammatory indicator (C-reactive protein, CRP). In healthy people, the concentration of CRP is extremely low. When inflammation and injury occur, the concentration of CRP will rise fast. However, the CRP detection process in general hospitals are not only time-consuming, but also require professional operation and expensive equipment, and the test report cannot be immediately received. In view of this, a home rapid microfluidic test was developed. The system is provided to kidney disease patients on long-term peritoneal dialysis. They can self-check whether there is inflammation in the body after the treatment. If the CRP concentration is detected early, the patients can be treated as soon as possible, and the occurrence of peritonitis can be effectively prevented.
The home-based rapid microfluidic detection system proposed and developed in this study is divided into two parts: a microfluidic chip and a testing machine. After the peritoneal dialysis treatment is completed, the patient adds a small amount of peritoneal dialysis fluid sample to the microfluidic chip for immune-combination. After the reaction is completed, the micro-spectrometer in the detection machine is used to analyze the results, and the concentration of CRP in the body can be tested within 90 minutes, thereby knowing whether there is inflammation in the body. In order to confirm the feasibility of this research, this chip and inspection machine system were tested for the concentration of CRP water sample solution and artificial urine during the development stage. The correlation coefficients between the experimental results and the actual concentration values were 0.9933 and 0.9786. The results show that the microfluidic spectroscopic chip in this study has high accuracy and stability, and can be practically used in home care to achieve the purpose of peritonitis prevention.
[1] Kalantar-Zadeh, K., Jafar, T. H., Nitsch, D., Neuen, B. L., & Perkovic, V. (2021). Chronic kidney disease. The Lancet, 398, 786-802.
[2] El Nahas, A. M., & Bello, A. K. (2005). Chronic kidney disease: the global challenge. The Lancet, 365, 331-340.
[3] Dąbrowska-Bender, M., Dykowska, G., Żuk, W., Milewska, M., & Staniszewska, A. (2018). The impact on quality of life of dialysis patients with renal insufficiency. Patient Preference and Adherence, 12, 577.
[4] Sayin, A., Mutluay, R. Ü. Y. A., & Sindel, S. (2007, December). Quality of life in hemodialysis, peritoneal dialysis, and transplantation patients. In Transplantation Proceedings (Vol. 39, No. 10, pp. 3047-3053). Elsevier.
[5] Himmelfarb, J., & Ikizler, T. A. (2010). Hemodialysis. New England Journal of Medicine, 363, 1833-1845.
[6] Fenton, S. S., Schaubel, D. E., Desmeules, M., Morrison, H. I., Mao, Y., Copleston, P., Jeffery, J. R., & Kjellstrand, C. M. (1997). Hemodialysis versus peritoneal dialysis: A comparison of adjusted mortality rates. American Journal of Kidney Diseases, 30, 334-342.
[7] Korevaar, J. C., Feith, G., Dekker, F. W., Van Manen, J. G., Boeschoten, E. W., Bossuyt, P. M., Krediet, R. T., & Group, N. S. (2003). Effect of starting with hemodialysis compared with peritoneal dialysis in patients new on dialysis treatment: a randomized controlled trial. Kidney International, 64, 2222-2228..
[8] Collins, A. J., Hao, W., Xia, H., Ebben, J. P., Everson, S. E., Constantini, E. G., & Ma, J. Z. (1999). Mortality risks of peritoneal dialysis and hemodialysis. American Journal of Kidney Diseases, 34, 1065-1074.
[9] Tarca, B., Jesudason, S., Bennett, P. N., Kasai, D., Wycherley, T. P., & Ferrar, K. E. (2022). Exercise or physical activity-related adverse events in people receiving peritoneal dialysis: A systematic review. Peritoneal Dialysis International, 08968608221094423.
[10] Ross, J. T., Matthay, M. A., & Harris, H. W. (2018). Secondary peritonitis: principles of diagnosis and intervention. Bmj, 361.
[11] Judy, J. W. (2001). Microelectromechanical systems (MEMS): fabrication, design and applications. Smart Materials and Structures, 10, 1115.
[12] Lisowski, P., & Zarzycki, P. K. (2013). Microfluidic paper-based analytical devices (μPADs) and micro total analysis systems (μTAS): Development, applications and future trends. Chromatographia, 76, 1201-1214.
[13] Manz, A., Graber, N., & Widmer, H. Á. (1990). Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors and Actuators B: Chemical, 1, 244-248.
[14] Mark, D., Haeberle, S., Roth, G., Stetten, F. V., & Zengerle, R. (2010). Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Microfluidics Based Microsystems, 305-376.
[15] Pattanayak, P., Singh, S. K., Gulati, M., Vishwas, S., Kapoor, B., Chellappan, D. K., Anand, K., Gupta, G., Jha, N. K., & Gupta, P. K. (2021). Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluidics and Nanofluidics, 25, 1-28.
[16] Azizipour, N., Avazpour, R., Rosenzweig, D. H., Sawan, M., & Ajji, A. (2020). Evolution of biochip technology: A review from lab-on-a-chip to organ-on-a-chip. Micromachines, 11, 599.
[17] Ren, K., Zhou, J., & Wu, H. (2013). Materials for microfluidic chip fabrication. Accounts of Chemical Research, 46, 2396-2406.
[18] Liu, H., Wang, Y., Cui, K., Guo, Y., Zhang, X., & Qin, J. (2019). Advances in Hydrogels in Organoids and Organs‐on‐a‐Chip. Advanced Materials, 31, 1902042.
[19] Campbell, S. B., Wu, Q., Yazbeck, J., Liu, C., Okhovatian, S., & Radisic, M. (2020). Beyond polydimethylsiloxane: alternative materials for fabrication of organ-on-a-chip devices and microphysiological systems. ACS Biomaterials Science & Engineering, 7, 2880-2899.
[20] Tuomikoski, S., & Franssila, S. (2005). Free-standing SU-8 microfluidic chips by adhesive bonding and release etching. Sensors and Actuators A: Physical, 120, 408-415.
[21] Wu, Y. T., Yang, C. E., Ko, C. H., Wang, Y. N., Liu, C. C., & Fu, L. M. (2020). Microfluidic detection platform with integrated micro-spectrometer system. Chemical Engineering Journal, 393, 124700.
[22] Lim, Y. C., Kouzani, A. Z., & Duan, W. (2010). Lab-on-a-chip: a component view. Microsystem Technologies, 16, 1995-2015.
[23] Comer, J. P. (1956). Semiquantitative specific test paper for glucose in urine. Analytical Chemistry, 28, 1748-1750.
[24] Cheng, C. M., Martinez, A. W., Gong, J., Mace, C. R., Phillips, S. T., Carrilho, E., Mirica, K. A., & Whitesides, G. M. (2010). Paper‐based ELISA. Angewandte Chemie, 122, 4881-4884.
[25] Carrilho, E., Martinez, A. W., & Whitesides, G. M. (2009). Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Analytical Chemistry, 81, 7091-7095.
[26] Martinez, A. W., Phillips, S. T., & Whitesides, G. M. (2008). Three-dimensional microfluidic devices fabricated in layered paper and tape. Proceedings of the National Academy of Sciences, 105, 19606-19611.
[27] Liana, D. D., Raguse, B., Gooding, J. J., & Chow, E. (2012). Recent advances in paper-based sensors. Sensors, 12, 11505-11526.
[28] Li, X., Ballerini, D. R., & Shen, W. (2012). A perspective on paper-based microfluidics: Current status and future trends. Biomicrofluidics, 6, 011301.
[29] Li, X., Tian, J., Garnier, G., & Shen, W. (2010). Fabrication of paper-based microfluidic sensors by printing. Colloids and Surfaces B: Biointerfaces, 76, 564-570.
[30] Chitnis, G., Ding, Z., Chang, C. L., Savran, C. A., & Ziaie, B. (2011). Laser-treated hydrophobic paper: an inexpensive microfluidic platform. Lab on a Chip, 11, 1161-1165.
[31] Bruzewicz, D. A., Reches, M., & Whitesides, G. M. (2008). Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Analytical Chemistry, 80, 3387-3392.
[32] Olkkonen, J., Lehtinen, K., & Erho, T. (2010). Flexographically printed fluidic structures in paper. Analytical Chemistry, 82, 10246-10250.
[33] Dungchai, W., Chailapakul, O., & Henry, C. S. (2011). A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst, 136, 77-82.
[34] Kao, P. K., & Hsu, C. C. (2014). One-step rapid fabrication of paper-based microfluidic devices using fluorocarbon plasma polymerization. Microfluidics and Nanofluidics, 16, 811-818.
[35] Li, X., Tian, J., Nguyen, T., & Shen, W. (2008). based microfluidic devices by plasma treatment. Analytical Chemistry, 80, 9131-9134.
[36] Martinez, A. W., Phillips, S. T., Wiley, B. J., Gupta, M., & Whitesides, G. M. (2008). FLASH: a rapid method for prototyping paper-based microfluidic devices. Lab on a Chip, 8, 2146-2150.
[37] Martinez, A. W., Phillips, S. T., Butte, M. J., & Whitesides, G. M. (2007). Patterned paper as a platform for inexpensive, low‐volume, portable bioassays. Angewandte Chemie, 119, 1340-1342.
[38] Mahmud, M. A., Blondeel, E. J., Kaddoura, M., & MacDonald, B. D. (2016). Creating compact and microscale features in paper-based devices by laser cutting. Analyst, 141, 6449-6454.
[39] Abe, K., Suzuki, K., & Citterio, D. (2008). Inkjet-printed microfluidic multianalyte chemical sensing paper. Analytical Chemistry, 80, 6928-6934.
[40] Lu, Y., Shi, W., Jiang, L., Qin, J., & Lin, B. (2009). Rapid prototyping of paper‐based microfluidics with wax for low‐cost, portable bioassay. Electrophoresis, 30, 1497-1500.
[41] Lu, Y., Shi, W., Qin, J., & Lin, B. (2010). Fabrication and characterization of paper-based microfluidics prepared in nitrocellulose membrane by wax printing. Analytical Chemistry, 82, 329-335.
[42] Han, K. N., Choi, J. S., & Kwon, J. (2016). Three-dimensional paper-based slip device for one-step point-of-care testing. Scientific Reports, 6, 1-7.
[43] Ge, L., Wang, S., Song, X., Ge, S., & Yu, J. (2012). 3D origami-based multifunction-integrated immunodevice: Low-cost and multiplexed sandwich chemiluminescence immunoassay on microfluidic paper-based analytical device. Lab on a Chip, 12, 3150-3158.
[44] Sherwood, E. R., & Toliver-Kinsky, T. (2004). Mechanisms of the inflammatory response. Best Practice & Research Clinical Anaesthesiology, 18, 385-405.
[45] Lawrence, T., & Gilroy, D. W. (2007). Chronic inflammation: a failure of resolution?. International Journal of Experimental Pathology, 88, 85-94.
[46] Shacter, E., & Weitzman, S. A. (2002). Chronic inflammation and cancer. Oncology (Williston Park, NY), 16, 217-26.
[47] Zhou, T., Damsky, W., Weizman, O.-E., McGeary, M. K., Hartmann, K. P., Rosen, C. E., Fischer, S., Jackson, R., Flavell, R. A., & Wang, J. (2020). IL-18BP is a secreted immune checkpoint and barrier to IL-18 immunotherapy. Nature, 583, 609-614.
[48] Probert, L. (2015). TNF and its receptors in the CNS: The essential, the desirable and the deleterious effects. Neuroscience, 302, 2-22.
[49] Thompson, D., Pepys, M. B., & Wood, S. P. (1999). The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure, 7, 169-177.
[50] Pepys, M. B., & Hirschfield, G. M. (2003). C-reactive protein: a critical update. The Journal of Clinical Investigation, 111, 1805-1812.
[51] Yeh, E. T. (2004). CRP as a mediator of disease. Circulation, 109(21_suppl_1), II-11.
[52] Peisajovich, A., Marnell, L., Mold, C., & Du Clos, T. W. (2008). C-reactive protein at the interface between innate immunity and inflammation. Expert Review of Clinical Immunology, 4, 379-390.
[53] Clyne, B., & Olshaker, J. S. (1999). The C-reactive protein. The Journal of Emergency Medicine, 17, 1019-1025.
[54] Ramanathan, K., Padmanabhan, G., & Vijayaraghavan, B. (2016). Evaluation of continuous ambulatory peritoneal dialysis fluid C-reactive protein in patients with peritonitis. Saudi Journal of Kidney Diseases and Transplantation, 27, 467.
[55] Martinez, A. W. (2011). Microfluidic paper-based analytical devices: from POCKET to paper-based ELISA. Bioanalysis, 3, 2589-2592.
[56] Mu, X., Zhang, L., Chang, S., Cui, W., & Zheng, Z. (2014). Multiplex microfluidic paper-based immunoassay for the diagnosis of hepatitis C virus infection. Analytical Chemistry, 86, 5338-5344.
[57] Tiwari, S., Vinchurkar, M., Rao, V. R., & Garnier, G. (2017). Zinc oxide nanorods functionalized paper for protein preconcentration in biodiagnostics. Scientific Reports, 7, 1-10.
[58] Setchell Jr, J. S. (2012). Colour description and communication. In Colour Design (pp. 219-253). Woodhead Publishing.
[59] Saravanan, G., Yamuna, G., & Nandhini, S. (2016, April). Real time implementation of RGB to HSV/HSI/HSL and its reverse color space models. In 2016 International Conference on Communication and Signal Processing (ICCSP) (pp. 0462-0466). IEEE.
[60] Dong, M., Wu, J., Ma, Z., Peretz-Soroka, H., Zhang, M., Komenda, P., Tangri, N., Liu, Y., Rigatto, C., & Lin, F. (2017). Rapid and low-cost CRP measurement by integrating a paper-based microfluidic immunoassay with smartphone (CRP-Chip). Sensors, 17, 684.
[61] Pisano, A. (2021). Light, Air Pollution, and Pulse Oximetry: The Beer–Lambert Law. In Physics for Anesthesiologists and Intensivists (pp. 187-199). Springer, Cham.
[62] Beisl, S., Binder, M., Varmuza, K., Miltner, A., & Friedl, A. (2018). UV-Vis spectroscopy and chemometrics for the monitoring of organosolv pretreatments. ChemEngineering, 2, 45.