| 研究生: |
倪瑞珣 Ni, Jui-Hsun |
|---|---|
| 論文名稱: |
生體表面加熱之熱波傳遞問題研究 Study on thermal propagation for living tissue with surface heating problem |
| 指導教授: |
陳朝光
Chen, Cha'o-Kung |
| 共同指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 微分轉換 、生物熱傳 、鬆弛時間 、熱波傳遞 |
| 外文關鍵詞: | differential transformation, bioheat transfer, relaxation time, thermal wave |
| 相關次數: | 點閱:138 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文運用微分轉換法結合有限差分混合法應用於考慮一維、二維邊界下求解雙曲線型熱傳導問題。文中首先介紹微分轉換理論的基本定義、性質及演算方法,接著介紹此法混合有限差分法在各種熱傳導問題上的應用。
研究結果顯示運用微分轉換混合有限差分法可應用於求解雙曲線型一維及二維之熱傳導問題,並均得到良好的模擬結果。經由選取一適當的差分格點數後將能有效抑制位於熱傳波前陡峭不連續處的數值振盪現象發生。一般說來,使用微分轉換法進行模擬求解與其他方法相比較所需的運算處理時間較為短暫。有別於以往運用積分運算求解的方法,以微分轉換法求解各類熱傳導問題省去了冗長及繁雜的變換程式,不僅顯得簡易且將更具系統性。
為了更貼近熱在生體內的熱傳情形,因此考慮鬆弛時間,此效應可將熱傳遞視為具有波的性質之熱波波傳,此傳遞方向與皮膚表面垂直,且具有一有限速度。
In this research, the hybrid method which combines differential transformation and finite difference approximation techniques was employed to solve hyperbolic heat conduction problems in one and two dimensions.
The basic definitions and properties of the differential transformation method were introduced briefly and the applications of this method on the heat conduction problems were displayed later.
The results of this research show that the hybrid method of differential transformation and finite difference methods can be used to solve the hyperbolic heat conduction problems for good results whether in one and two dimensions. The oscillations which arise in the vicinity of sharp discontinuities can be successfully suppressed by calculating with an appropriate number of grids. In usual case, applying the hybrid method on the simulation procedure consumes less CPU time as compared with other methods. Unlike other integral transform methods, using the differential transform to solve heat conduction problems leaves out the copious and complex transform procedure and appears not only brief but also more systematical.
In order to conform the real thermal behavior in a living tissue subjected to constant or exponential surface heatings with the thermal wave model of bioheat transfer, we consider a relaxation time. Due to the effects of relaxation time, the heat transfer has a phenomenon of wave-like propagation in a finite velocity. The attention paid on the cases that heat mainly propagates in the direction perpendicular to the skin surface.
Abraham J.P., Sparrow E.M., A thermal-ablation bioheat model including liquid-to-vapor phase chang, pressure- and necrosis-dependent perfusion, and moisture-dependent properties, International Journal of Heat and Mass Transfer, 50, 2537-2544, 2007.
Cary G..F., Tasi M., Hyperbolic heat transfer with reflection, Numerical Heat transfer, Vol.5, pp. 309-327, 1982.
Chen C.K., Ho S.H., Application of Differential Transformation to Eigenvalue problem, Applied Mathematics and Computation, Vol.79, pp.173-188, 1996.
Chiou J.S., Tzeng J.R., Application of Taylor Transformation to Nonlinear Vibration Problems, Trans. ASME, J of Vibration and Acoustics, Vol. 118, pp. 83-87, 1996.
Chen C.L., Liu Y.C., Solution of two-boundary-value-problems using the differential transform method, Journal of Optimization Theory and Application, 99, pp. 23-35, 1998.
Chen C.K., Lai H.Y., Liu C.C., Application of hybrid differential transformation/finite difference method to nonlinear analysis of micro fixed-fixed beam, Microsyst Technol, 15, 813-820, 2009.
Deng Z.S., Liu J., Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bodies, J. Biomed. Engrg., 124, 638-649, 2002.
Glass D.E., Özişik M.N., McRae D.S and Vick B., On the numerical solution of hyperbolic heat conduction, Numer. Heat transfer, 8, pp. 497-504, 1985.
Hu L., A. Gupta, J.P. Gore, L.X. Xu, Effect of forced convection on the skin thermal expression of breast cancer, J. Biomed. Engrg., 126, 204-211, 2004.
Jang M.J., Chen C.L., Liu Y.C. ,Two-dimensional differential transform for partial differential equations, Applied Mathematics and Computation, 121, pp. 261-270, 2001.
Jiang S.C., Ma N., Li H.J., Zhang X.X., Effects of thermal properties and geometrical dimensions on skin burn injuries, Burn, 28, 713-717, 2002.
Kuo B.L., Chen C.K., Application of Hybrid Method to the Solution of the Nonlinear Burgers’ Equation, ASME, Vol. 70, 926-929, 2003.
Liu J., Chen X., Xu L.X., New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating, IEEE Trans. Biomed. Engrg., 46, 420-428, 1999.
Liu J., Uncertainty analysis for temperature prediction of biological bodies subject to randomly spatial heating, Journal of Biomechanics, 34, 1637-1642, 2001.
Liu K.C., Thermal propagation analysis for living tissue with surface heating, International Journal of Thermal Sciences, 47, 507-513, 2008.
Rabin Y., Shitzer A., Numerical solution of the multidimensional freezing problem during cryosurgery, J. Biomed. Engrg., 120, 32-37, 1998.
Shen W., Zhang J., Yang F., Three-dimensional model on thermal response of skin subject to laser heating, Computer Methods in Biomechanics and Biomedical Engineering, 8:2, 115-125, 2005.
Shuja S.Z., Yilbas B.S., Khan Shafique M.A., Laser heating of semi-infinite solid with consecutive pulses: Influence of material properties on temperature field, Optics & Laser Technology, 40, 472-480, 2008.
Tamma K.K., Railkar S.B, Specially tailored transfinite-element formulations for hyperbolic heat conduction involving non-fourier effects, Numer. Heat transfer, 15(Part B), pp. 211-226, 1989.
Tamma K.K., D’Costa J.F., Transient modeling analysis of hyperbolic heat conduction problem employing mixed implicit-explicit α method, Numer Heat Transfer, 19(Part B), 49-68, 1991.
Torvi D.A., Dale J.D., A finite element model of subjected to a flash fire, J. Biomed. Engrg., 116, 250-255, 1994.
Tung M.M., Trujillo M., López Molina J.A., Rivera M.J., Berjano E.J., Modeling the heating of biological tissue based on the hyperbolic heat transfer equation, Mathematical and Computer Modelling, 50, 665-672, 2009.
Vernotte P., Les paradoxes de la théorie continue de L’équation de la chaleur, C.R. Acad. Sci, 246, pp. 3154-3155, 1958.
Yang H.Q., Characteristics-based, high-order accurate and nonoscillatory numerical method for hyperbolic heat conduction, Numer. Heat transfer, 18(Part B), pp.221-241, 1990.
Yu L.T., Chen C.K, Application of Taylor Transformation to Optimize Rectangular Fins with Variable Thermal parameters, Applied Mathematical Modeling, 22, pp.11-21, 1998.
Yu L.T, Chen C.K., The Solution of the Blasius Equation by the Differential Transform method, Math. Comput. Modeling, Vol. 28, No.1, pp. 101-111, 1998.
Yilbas B.S., Kalyon M., Repetitive laser pulse heating with a convective boundary condition at the surface, Journal of Physics D: Applied Physics, 34, 222-231, 2001.
朱心平, 應用微分轉換法於強非線性物理系統之研究, 國立成功大學機械工程學系博士論文,2004
何星輝, 微分轉換於自旋、預扭、承受軸向負載Timoshenko樑振動問題之研究, 國立成功大學機械工程學系博士論文,1998.
陳柏佑, 混合微分轉換/有限差分法在非線性暫態熱傳問題之研究, 國立成功大學機械工程學系碩士論文,2005
趙家奎, 微分轉換及其在電路中的應用,華中理工大學出版社1986.
劉晉嘉, 混合微分轉換與有限差分法在非線性靜電驅動微結構系統動態特性之研究, 國立成功大學機械工程學系博士論文,2009