簡易檢索 / 詳目顯示

研究生: 陳永承
Chen, Yung-Chung
論文名稱: 探討PP2A與Akt之間及PP2A次單元之間的交互作用
Study the interaction of PP2A with AKT and the interaction between subunits of PP2A
指導教授: 蔣輯武
Chiang, Chi-wu
何中良
Ho, Chung-liang
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 94
中文關鍵詞: 雙分子螢光互補作用螢光共振能量轉移
外文關鍵詞: PP2A/A, FRET, BiFC, Akt, B55, PP2A/C, PP2A
相關次數: 點閱:139下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • AKT/protein kinase B (PKB) 參與調節許多不同的細胞功能,包括葡萄糖代謝、細胞生長、細胞增殖和細胞凋亡等等。當細胞內上游的 phosphatidylinositide 3’ -OH kinase (PI3K)被活化之後,下游的 Akt 會被PDK1 和 mTOR/rictor complex 在 Thr-308 和 Ser-473 的位點分別磷酸化。而在許多生物系統之中, AKT的活性會被磷酸酶 protein phosphatase 2A(PP2A) 做負調控。PP2A 是一個由三個不同次單元所組成的磷酸酶,包括 36-kDa 的催化 C 次單元,65-kDa 的結構 A次單元,以及一個多變的調節 B次單元,B 次單元被認為可以控制PP2A holoenzyme 的受質特異性和PP2A holoenzyme 在細胞內的分布位置。在以前的研究中,我們已經發現 B55α (為B55 family 的 isoform 之一),可以調節 PP2A holoenzyme 去選擇性對Akt Thr308 位點去磷酸化且調節Akt 的活性。因此在我的研究,我們想要以時間及空間的角度探討在 AKT 的活化過程中, B55α 是如何調節 AKT 活化。我們使用細胞轉染及免疫沈澱法,發現不論是內生性的 B55α 或是外生性的 B55α-HA 都會和外生性的 AKTFLAG有交互作用。我們也發現在 HeLa 細胞中,B55α 和 AKT 的交互作用會因為epidermal growth factor 的刺激而增加。經由免疫螢光染色以及螢光顯微鏡的分析,我們觀察到 B55α 和 AKT 在細胞質和細胞膜有 colocalize 的現象。同時我們也發現,經由血清刺激而引發的AKT 轉移到細胞膜的現象,和 vector only 的細胞比較,在 B55α knockdown 的細胞有增快的趨勢,然而在 B55α 過度表現的細胞也有增快的趨勢。此外,因PP2A 三個次單元的組成,對於和PP2A 下游受質的作用來說是必需的。因此我們進一步利用bimolecular fluorescence complementation (BiFC) assay 的方式來探討PP2A 次單元之間的交互作用。結論:我們結果顯示 PP2A AB55αC holoenzyme 對 AKT 活化過程具有在時間和空間上的相關性;並且我們的結果顯示 BiFC assay 可以用來研究在活細胞中 PP2A holoenzyme 的組成。

    AKT/protein kinase B (PKB) is involved in regulation of diverse cellular functions, including glucose metabolism, cell growth, cell proliferation, and apoptosis. After upstream phosphatidylinositide 3’-OH kinase (PI3K) is activated, Akt is phosphorylated at Thr-308 and Ser-473 by PDK1 and mTOR/rictor complex, respectively. AKT activity is negatively regulated by protein phosphatase 2A (PP2A) in various systems. PP2A is a heterotrimeric enzyme consisting of a 36-kDa catalytic C subunit, a 65-kDa structural A subunit, and a variable regulatory B subunit that is thought to control the substrate specificity and subcellular localization of the holoenzymes. We have shown that B55α, a B55 family isoform, targets the PP2A holoenzymes to selectively regulate dephosphorylation of Thr-308 of AKT and regulates Akt activity. In this report, we investigated the role of B55α in regulating the temporal and spatial dynamics of Akt activation. By using transient transfection and co-immunoprecipitation, we found that both endogenous B55α and exogenous B55α-HA interacted with exogenous Akt-FLAG. We also found that interaction between B55α and AKT occurred when HeLa cells were stimulated with epidermal growth factor. By indirect fluorescence microscopy analysis, colocalization of B55α and AKT was shown in the cytosol and plasma membrane, and serum-stimulated membrane translocation of AKT occurred at a faster rate in B55α knockdown and B55α overexpression cells, as compared to vector only cells. Since the assembly of the trimeric PP2A holoenzymes is essential for specific targeting to regulation of a specific substrate, such as Akt. We further investigated the interaction between subunits of PP2A by bimolecular fluorescence complementation (BiFC) assay. Our results demonstrate that the PP2A AB55αC holoenzyme regulates AKT activation in a temporal and spatial manner and that it is feasible to apply BiFC to sudy PP2A holoenzyme assembly in live cells.

    【緒論】9 【一. 蛋白質磷酸酶 2A 型 (Protein phosphatase 2A)】9 【二. PP2A 催化次單元—PP2A/C】9 【三. PP2A 結構次單元—PP2A/A】10 【四. PP2A 調節次單元—PP2A/B】10 【B/PR55/B55 家族】 11 【B’/PR61/B56 家族】 11 【B’’ (B46/59/72/130) 家族】 12 【B’’’ (B93/110) 家族】 13 【五. Akt/PKB】13 【六. 以螢光共振能量轉移 Fluorescence resonance energy transfer (FRET) 研究 分子間的交互作用】15 【七. 以雙分子螢光互補作用 Bimolecular fluorescence complementation (BiFC) 研究分子的交互作用】15 【研究方向】17 【實驗材料與方法】18 【一. 抗體及試劑】18 【二. 細胞培養】18 【三. 刺激】18 EGF 刺激 18 血清刺激 19 【四. 轉染 (transfection)】19 Lipotectamine 2000 轉染法 19 在 24-well plate 中進行 lipofectamine 2000 轉染 20 Calcium-Phosphate 轉染法-反轉錄病毒製備 20 【五. 感染 (viral transduction)】20 【六. 篩選 (selection)】21 【七. 西方墨漬法】21 【八. 螢光免疫染色】21 偵測細胞中內生性的 Akt 21 偵測外生性的 B55α-HA localization 22 【九. DNA 表現載體的構築】23 【十. 免疫沈澱法】26 【實驗結果】27 【一.以免疫沈澱法證明 Akt-Flag 與 PP2AB55αC 在 HeLa 細胞中形成穩定複合物】27 【二. 以免疫沈澱法證明 Akt-EYFP 和 B55α-HA 的交互作用會因為受到 EGF 刺激而上升】28 【三. 以 EGF 刺激 HeLa 細胞觀察 Akt 活化過程中在細胞內和 B55α 的分布情形】29 【四. 探測 B55α 調節 Akt 活化的動力 (kinetics)】30 【五. 利用雙分子螢光互補作用 (BiFC) 觀察 B55α 和 Akt 的結合】31 【六. 利用螢光共振能量轉移 (FRET) 觀察 B55α 和 Akt 的交互作用】31 【七. 利用雙分子螢光互補作用 (BiFC) 觀察 PP2A A, B, C 次單元的交互作用】32 【結論】34 【討論】35 【一. 外生性的 PP2A 和 B55α 的交互作用只佔 PP2A 完全酶的一小部份】35 【二. Akt 和 PP2A/AB55αC 完全酶的交互作用是會受到調節而改變】35 【三. PP2A/B55α 會調節 Akt 活化的動力 (kinetics)】36 【四. 利用雙分子螢光互補作用 (BiFC) 及螢光共振能量轉移 (FRET) 並無法觀察到B55α 和 Akt 預期的交互作用】36 【五. 利用雙分子螢光互補作用 (BiFC) 觀察到 PP2A 次單元之間的交互作用】37 【參考文獻】38 【圖】49 圖一 (A) 在 HeLa 細胞中,免疫沈澱下 B55α-HA 觀察 Akt-Flag 和 B55α-HA 交互作用的情形。49 圖一 (B) 在 HeLa 細胞中,免疫沈澱下 Akt-FLAG 觀察Akt-FLAG 和 B55α-HA 交互作用的情形。50 圖二. Akt-EYFP 和 B55α-HA 的交互作用在 HeLa 細胞中經過 EGF 刺激的影響。51 圖三. 在 HeLa 細胞中經過 EGF 的刺激之後,B55α-HA 和 Akt-EYFP 有表現位置一致的現象。52 圖四 (A)~(C). PP2A B55α 次單元調節 Akt 活化的動力 (kinetics)。54 圖四 (D) 利用西方墨漬法分析 PP2A B55α 次單元調節 Akt 磷酸化55 圖六 (A) 在 HeLa 細胞中,以 anti-FLAG 免疫沈澱法觀察 Akt-ECFP 和 B55α-FLAG-EYFP 交互作用的情形。57 圖六 (B) 利用 Akt-ECFP 和 EYFP-B55α 觀察 Akt 和 B55α 之間 FRET 的現象。58 圖六 (C) 利用 Akt-EYFP 和 B55α-ECFP 觀察 Akt 和 B55α 之間的 FRET 現象。59 圖六 (D) 比較 B55α-ECFP 和 B55α-HA 的表現量。60 圖七. 利用雙分子螢光互補作用 (BiFC) 觀察 14-3-3 之間形成 dimer 的交互作用。61 圖八 (A) : 利用雙分子螢光互補作用 (BiFC) 觀察 PP2A/A 和 PP2A/C 次單元之間的交互作用。62 圖八 (B) : 利用雙分子螢光互補作用 (BiFC) 觀察 PP2A/A 和 PP2A/B56γ3 次單元之間的交互作用。63 【附錄】64 【附錄一. 轉染條件】65 【附錄二. 建立 pEYFP-N1-B55α construct】66 【附錄三. 建立 pECFP-N1-B55α construct】67 【附錄四. B55α-pEYFP-N1、B55α-pECFP-N1 map】68 【附錄五. clone Akt-FLAG 到 pECFP-C1 vector】69 【附錄六. clone Akt-FLAG 到 pECFP-C1 vector】70 【附錄七. pECFP-C1-Akt-FLAG、pEYFP-C1-Akt-FLAG map】71 【附錄八. clone EGFP[F1] 到 pcDNA3.1 Zeo (+) vector】72 【附錄九. clone EGFP[F2] 到 pcDNA3.1 Zeo (+) vector】73 【附錄十. clone B55α 到 pcDNA3.1-EGFP[F1] vector】74 【附錄十一 clone Akt-FLAG 到 pcDNA3.1-EGFP[F2] vector】75 【附錄十二. pcDNA3.1-EGFP[F1]-B55α、pcDNA3.1-EGFP[F2]-Akt-FLAG map】76 【附錄十三. clone PP2A/Aα 到 pcDNA3.1-EGFP[F1] vector】77 【附錄十四. clone PP2A/Aα 到 pcDNA3.1-EGFP[F2] vector】78 【附錄十五. 建立 pcDNAI-YFPN-Akt-FLAG constructs】79 【附錄十六. 建立 pcDNAI-YFPC-B55α-HA construct】80 【附錄十七. pcDNAI-YFPN-Akt-FLAG、pcDNAI-YFPC-B55α-HA MCS map】81 【附錄十八. Clone PP2A/C 進入 YFPN-pcDNAI 及 YFPC-pcDNAI】82 【附錄十九. pcDNAI-YFPN-PP2A/C、pcDNAI-YFPC-PP2A/C MCS map】83 【附錄二十. clone 14-3-3 進入 pGEX4T-1 載體】84 【附錄二十一. clone 14-3-3 進入 YFPN-pcDNAI 和 YFPC-pcDNAI 載體】85 【附錄二十二. pcDNAI-YFPN-1433、pcDNAI-YFPC-1433 MCS map】86 【附錄二十三. clone Akt 或 B55α 進入 pFLAG-CMV2-YN155 載體之中】87 【附錄二十四. clone Akt 或 B55α 進入 YC155-pCMV-HA 載體之中】88 【附錄二十五. pFLAG-CMV2-Akt-YN155、pFLAG-CMV2-B55α-YN155 map】89 【附錄二十六. pCMV-HA-Akt-YC155、pCMV-HA-B55α-YC155 map】90 【附錄二十七. 雙分子螢光互補作用 (BiFC) assay 原理】91 【附錄二十八. 螢光共振能量轉移 (FRET) 原理】92 【附錄二十九. 利用 EGFP[F1]-B55α、EGFP[F2]-Akt 觀察 B55α 和 Akt 的交互作用】93 【附錄三十. 利用 EGFP[F1]-B55α、EGFP[F2]-PP2A/A 觀察 B55α 和 PP2A/A 的交互作用】94

    1.
    Barford D. Molecular mechanisms of the protein serine/threonine phosphatases.
    Trends in Biochemical Sciences. 1996;21:407-412.
    2.
    Hunter T. Protein kinases and phosphatases: the yin and yang of protein
    phosphorylation and signaling. Cell. 1995;80:225-236.
    3.
    Millward TA, Zolnierowicz S, Hemmings BA. Regulation of protein kinase cascades
    by protein phosphatase 2A. Trends in Biochemical Sciences. 1999;24:186-191.
    4.
    Shenolikar S. Protein serine/threonine phosphatases--new avenues for cell
    regulation. Annu Rev Cell Biol. 1994;10:55-86.
    5.
    Wera S, Hemmings BA. Serine/threonine protein phosphatases. Biochem J.
    1995;311 ( Pt 1):17-29.
    6.
    Cohen P. Novel protein serine/threonine phosphatases: variety is the spice of life.
    Trends in Biochemical Sciences. 1997;22:245-251.
    7.
    Eichhorn PJ, Creyghton MP, Bernards R. Protein phosphatase 2A regulatory
    subunits and cancer. BBA - Reviews on Cancer. 2008;1795:1-15.
    8.
    Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/
    threonine phosphatases implicated in cell growth and signalling. Biochem J.
    2001;353:417-439.
    9.
    Schönthal AH. Role of PP2A in intracellular signal transduction pathways. Front
    Biosci. 1998;3:D1262-1273.
    10.
    Sontag E. Protein phosphatase 2A: the Trojan Horse of cellular signaling. Cell
    Signal. 2001;13:7-16.
    11.
    Janssens V, Goris J, Vanhoof C. PP2A: the expected tumor suppressor. Current
    Opinion in Genetics & Development. 2005;15:34-41.
    12.
    Virshup D. Protein phosphatase 2A: a panoply of enzymes. Curr Opin Cell Biol.
    2000;12:180-185.
    13.
    Schönthal AH. Role of serine/threonine protein phosphatase 2A in cancer. Cancer
    Lett. 2001;170:1-13.
    14.
    Stone SR, Hofsteenge J, Hemmings BA. Molecular cloning of cDNAs encoding two
    isoforms of the catalytic subunit of protein phosphatase 2A. Biochemistry.
    1987;26:7215-7220.
    15.
    Arino J, Woon CW, Brautigan DL, Miller TB, Johnson GL. Human liver phosphatase
    2A: cDNA and amino acid sequence of two catalytic subunit isotypes. Proc Natl
    Acad Sci USA. 1988;85:4252-4256.
    16.
    Green DD, Yang SI, Mumby MC. Molecular cloning and sequence analysis of the
    catalytic subunit of bovine type 2A protein phosphatase. Proc Natl Acad Sci USA.
    1987;84:4880-4884.
    17.
    Khew-Goodall Y, Mayer RE, Maurer F, Stone SR, Hemmings BA. Structure and
    transcriptional regulation of protein phosphatase 2A catalytic subunit genes.
    Biochemistry. 1991;30:89-97.
    38
    18.
    Jones TA, Barker HM, da Cruz e Silva EF, et al. Localization of the genes encoding
    the catalytic subunits of protein phosphatase 2A to human chromosome bands
    5q23-->q31 and 8p12-->p11.2, respectively. Cytogenet Cell Genet. 1993;63:35-41.
    19.
    Khew-Goodall Y, Hemmings BA. Tissue-specific expression of mRNAs encoding
    alpha- and beta-catalytic subunits of protein phosphatase 2A. FEBS Lett.
    1988;238:265-268.
    20.
    Cormier P, Osborne HB, Bassez T, Poulhe R, Bellé R, Mulner-Lorillon O. Protein
    phosphatase 2A from Xenopus oocytes. Characterization during meiotic cell
    division. FEBS Lett. 1991;295:185-188.
    21.
    Van Hoof C, Ingels F, Cayla X, Stevens I, Merlevede W, Goris J. Molecular cloning
    and developmental regulation of expression of two isoforms of the catalytic subunit
    of protein phosphatase 2A from Xenopus laevis. Biochem Biophys Res Commun.
    1995;215:666-673.
    22.
    Orgad S, Brewis ND, Alphey L, Axton JM, Dudai Y, Cohen PT. The structure of
    protein phosphatase 2A is as highly conserved as that of protein phosphatase 1.
    FEBS Lett. 1990;275:44-48.
    23.
    MacKintosh RW, Haycox G, Hardie DG, Cohen PT. Identification by molecular
    cloning of two cDNA sequences from the plant Brassica napus which are very
    similar to mammalian protein phosphatases-1 and -2A. FEBS Lett.
    1990;276:156-160.
    24.
    Ariño J, Pérez-Callejón E, Cunillera N, Camps M, Posas F, Ferrer A. Protein
    phosphatases in higher plants: multiplicity of type 2A phosphatases in Arabidopsis
    thaliana. Plant Mol Biol. 1993;21:475-485.
    25.
    Kinoshita N, Ohkura H, Yanagida M. Distinct, essential roles of type 1 and 2A
    protein phosphatases in the control of the fission yeast cell division cycle. Cell.
    1990;63:405-415.
    26.
    Sneddon AA, Cohen PT, Stark MJ. Saccharomyces cerevisiae protein phosphatase
    2A performs an essential cellular function and is encoded by two genes. EMBO J.
    1990;9:4339-4346.
    27.
    Baharians Z, Schönthal AH. Autoregulation of protein phosphatase type 2A
    expression. J Biol Chem. 1998;273:19019-19024.
    28.
    Götz J, Probst A, Ehler E, Hemmings B, Kues W. Delayed embryonic lethality in
    mice lacking protein phosphatase 2A catalytic subunit Calpha. Proc Natl Acad Sci
    USA. 1998;95:12370-12375.
    29.
    Xu Y, Xing Y, Chen Y, et al. Structure of the protein phosphatase 2A holoenzyme.
    Cell. 2006;127:1239-1251.
    30.
    Cho US, Xu W. Crystal structure of a protein phosphatase 2A heterotrimeric
    holoenzyme. Nature. 2007;445:53-57.
    31.
    Longin S, Zwaenepoel K, Louis JV, Dilworth S, Goris J, Janssens V. Selection of
    protein phosphatase 2A regulatory subunits is mediated by the C terminus of the
    catalytic Subunit. J Biol Chem. 2007;282:26971-26980.
    32.
    Hemmings BA, Adams-Pearson C, Maurer F, et al. alpha- and beta-forms of the 65-
    kDa subunit of protein phosphatase 2A have a similar 39 amino acid repeating
    structure. Biochemistry. 1990;29:3166-3173.
    33.
    Hendrix P, Turowski P, Mayer-Jaekel R, et al. Analysis of subunit isoforms in protein
    phosphatase 2A holoenzymes from rabbit and Xenopus. Journal of Biological
    Chemistry. 1993;268:7330-7337.
    34.
    Baysal BE, Farr JE, Goss JR, Devlin B, Richard CW. Genomic organization and
    precise physical location of protein phosphatase 2A regulatory subunit A beta
    isoform gene on chromosome band 11q23. Gene. 1998;217:107-116.
    35.
    Wang SS, Esplin ED, Li JL, et al. Alterations of the PPP2R1B gene in human lung
    and colon cancer. Science. 1998;282:284-287.
    36.
    Calin GA, di Iasio MG, Caprini E, et al. Low frequency of alterations of the alpha
    (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine
    phosphatase 2A in human neoplasms. Oncogene. 2000;19:1191-1195.
    37.
    Bosch M, Cayla X, Van Hoof C, et al. The PR55 and PR65 subunits of protein
    phosphatase 2A from Xenopus laevis. molecular cloning and developmental
    regulation of expression. FEBS Journal. 1995;230:1037.
    38.
    Andrade MA, Bork P. HEAT repeats in the Huntington's disease protein. Nat Genet.
    1995;11:115-116.
    39.
    Groves MR, Hanlon N, Turowski P, Hemmings BA, Barford D. The structure of the
    protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly
    repeated HEAT motifs. Cell. 1999;96:99-110.
    40.
    Ruediger R, Roeckel D, Fait J, Bergqvist A, Magnusson G, Walter G. Identification
    of binding sites on the regulatory A subunit of protein phosphatase 2A for the
    catalytic C subunit and for tumor antigens of simian virus 40 and polyomavirus. Mol
    Cell Biol. 1992;12:4872-4882.
    41.
    Ruediger R, Hentz M, Fait J, Mumby M, Walter G. Molecular model of the A subunit
    of protein phosphatase 2A: interaction with other subunits and tumor antigens. J
    Virol. 1994;68:123-129.
    42.
    Van Hoof C, Goris J. Phosphatases in apoptosis: to be or not to be, PP2A is in the
    heart of the question. Biochim Biophys Acta. 2003;1640:97-104.
    43.
    Li X, Virshup DM. Two conserved domains in regulatory B subunits mediate binding
    to the A subunit of protein phosphatase 2A. Eur J Biochem. 2002;269:546-552.
    44.
    Zhou J, Pham HT, Ruediger R, Walter G. Characterization of the Aalpha and Abeta
    subunit isoforms of protein phosphatase 2A: differences in expression, subunit
    interaction, and evolution. Biochem J. 2003;369:387-398.
    45.
    Mayer RE, Hendrix P, Cron P, et al. Structure of the 55-kDa regulatory subunit of
    protein phosphatase 2A: evidence for a neuronal-specific isoform. Biochemistry.
    1991;30:3589-3597.
    46.
    Healy AM, Zolnierowicz S, Stapleton AE, Goebl M, DePaoli-Roach AA, Pringle JR.
    CDC55, a Saccharomyces cerevisiae gene involved in cellular morphogenesis:
    identification, characterization, and homology to the B subunit of mammalian type
    2A protein phosphatase. Mol Cell Biol. 1991;11:5767-5780.
    47.
    Zolnierowicz S, Csortos C, Bondor J, Verin A, Mumby MC, DePaoli-Roach AA.
    Diversity in the regulatory B-subunits of protein phosphatase 2A: identification of a
    novel isoform highly expressed in brain. Biochemistry. 1994;33:11858-11867.
    48.
    Strack S, Chang D, Zaucha JA, Colbran RJ, Wadzinski BE. Cloning and
    characterization of B delta, a novel regulatory subunit of protein phosphatase 2A.
    FEBS Lett. 1999;460:462-466.
    49.
    Strack S, Zaucha JA, Ebner FF, Colbran RJ, Wadzinski BE. Brain protein
    phosphatase 2A: developmental regulation and distinct cellular and subcellular
    localization by B subunits. J Comp Neurol. 1998;392:515-527.
    50.
    Mayer-Jaekel RE, Hemmings BA. Protein phosphatase 2A--a 'ménage à trois'.
    Trends Cell Biol. 1994;4:287-291.
    51.
    Gomes R, Karess RE, Ohkura H, Glover DM, Sunkel CE. Abnormal anaphase
    resolution (aar): a locus required for progression through mitosis in Drosophila.
    Journal of Cell Science. 1993;104 ( Pt 2):583-593.
    52.
    Mayer-Jaekel RE, Ohkura H, Gomes R, et al. The 55 kd regulatory subunit of
    Drosophila protein phosphatase 2A is required for anaphase. Cell.
    1993;72:621-633.
    53.
    Turowski P, Myles T, Hemmings BA, Fernandez A, Lamb NJ. Vimentin
    dephosphorylation by protein phosphatase 2A is modulated by the targeting subunit
    B55. Mol Biol Cell. 1999;10:1997-2015.
    54.
    Mayer-Jaekel RE, Ohkura H, Ferrigno P, et al. Drosophila mutants in the 55 kDa
    regulatory subunit of protein phosphatase 2A show strongly reduced ability to
    dephosphorylate substrates of p34cdc2. Journal of Cell Science. 1994;107 ( Pt 9):
    2609-2616.
    55.
    McCright B, Rivers AM, Audlin S, Virshup DM. The B56 family of protein
    phosphatase 2A (PP2A) regulatory subunits encodes differentiation-induced
    phosphoproteins that target PP2A to both nucleus and cytoplasm. J Biol Chem.
    1996;271:22081-22089.
    56.
    McCright B, Virshup DM. Identification of a new family of protein phosphatase 2A
    regulatory subunits. J Biol Chem. 1995;270:26123-26128.
    57.
    Csortos C, Zolnierowicz S, Bakó E, Durbin SD, DePaoli-Roach AA. High complexity
    in the expression of the B' subunit of protein phosphatase 2A0. Evidence for the
    existence of at least seven novel isoforms. J Biol Chem. 1996;271:2578-2588.
    58.
    Tehrani MA, Mumby MC, Kamibayashi C. Identification of a novel protein
    phosphatase 2A regulatory subunit highly expressed in muscle. J Biol Chem.
    1996;271:5164-5170.
    59.
    Tanabe O, Nagase T, Murakami T, et al. Molecular cloning of a 74-kDa regulatory
    subunit (B" or delta) of human protein phosphatase 2A. FEBS Lett.
    1996;379:107-111.
    60.
    Zolnierowicz S, Van Hoof C, Andjelković N, et al. The variable subunit associated
    with protein phosphatase 2A0 defines a novel multimember family of regulatory
    subunits. Biochem J. 1996;317 ( Pt 1):187-194.
    61.
    McCright B, Brothman AR, Virshup DM. Assignment of human protein phosphatase
    2A regulatory subunit genes b56alpha, b56beta, b56gamma, b56delta, and
    b56epsilon (PPP2R5A-PPP2R5E), highly expressed in muscle and brain, to
    chromosome regions 1q41, 11q12, 3p21, 6p21.1, and 7p11.2 --> p12. Genomics.
    1996;36:168-170.
    62.
    Usui H, Imazu M, Maeta K, Tsukamoto H, Azuma K, Takeda M. Three distinct forms
    of type 2A protein phosphatase in human erythrocyte cytosol. J Biol Chem.
    1988;263:3752-3761.
    63.
    Usui H, Inoue R, Tanabe O, et al. Activation of protein phosphatase 2A by cAMPdependent
    protein kinase-catalyzed phosphorylation of the 74-kDa B' (delta)
    regulatory subunit in vitro and identification of the phosphorylation sites. FEBS Lett.
    1998;430:312-316.
    64.
    Berry M, Gehring W. Phosphorylation status of the SCR homeodomain determines
    its functional activity: essential role for protein phosphatase 2A,B'. EMBO J.
    2000;19:2946-2957.
    65.
    Seeling JM, Miller JR, Gil R, Moon RT, White R, Virshup DM. Regulation of betacatenin
    signaling by the B56 subunit of protein phosphatase 2A. Science.
    1999;283:2089-2091.
    66.
    Ratcliffe MJ, Itoh K, Sokol SY. A positive role for the PP2A catalytic subunit in Wnt
    signal transduction. J Biol Chem. 2000;275:35680-35683.
    67.
    Hendrix P, Mayer-Jackel RE, Cron P, et al. Structure and expression of a 72-kDa
    regulatory subunit of protein phosphatase 2A. Evidence for different size forms
    produced by alternative splicing. J Biol Chem. 1993;268:15267-15276.
    68.
    Voorhoeve PM, Hijmans EM, Bernards R. Functional interaction between a novel
    protein phosphatase 2A regulatory subunit, PR59, and the retinoblastoma-related
    p107 protein. Oncogene. 1999;18:515-524.
    69.
    Cegielska A, Shaffer S, Derua R, Goris J, Virshup DM. Different oligomeric forms of
    protein phosphatase 2A activate and inhibit simian virus 40 DNA replication. Mol
    Cell Biol. 1994;14:4616-4623.
    70.
    Yan Z, Fedorov SA, Mumby MC, Williams RS. PR48, a novel regulatory subunit of
    protein phosphatase 2A, interacts with Cdc6 and modulates DNA replication in
    human cells. Mol Cell Biol. 2000;20:1021-1029.
    71.
    Moreno CS, Park S, Nelson K, et al. WD40 repeat proteins striatin and S/G(2)
    nuclear autoantigen are members of a novel family of calmodulin-binding proteins
    that associate with protein phosphatase 2A. J Biol Chem. 2000;275:5257-5263.
    72.
    Lu Q, Pallas DC, Surks HK, Baur WE, Mendelsohn ME, Karas RH. Striatin
    assembles a membrane signaling complex necessary for rapid, nongenomic
    activation of endothelial NO synthase by estrogen receptor alpha. Proc Natl Acad
    Sci USA. 2004;101:17126-17131.
    73.
    Bellacosa A, Testa JR, Staal SP, Tsichlis PN. A retroviral oncogene, akt, encoding a
    serine-threonine kinase containing an SH2-like region. Science. 1991;254:274-277.
    74.
    Coffer PJ, Woodgett JR. Molecular cloning and characterisation of a novel putative
    protein-serine kinase related to the cAMP-dependent and protein kinase C families.
    Eur J Biochem. 1991;201:475-481.
    75.
    Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA. Molecular cloning
    and identification of a serine/threonine protein kinase of the second-messenger
    subfamily. Proc Natl Acad Sci USA. 1991;88:4171-4175.
    76.
    Murthy SS, Tosolini A, Taguchi T, Testa JR. Mapping of AKT3, encoding a member
    of the Akt/protein kinase B family, to human and rodent chromosomes by
    fluorescence in situ hybridization. Cytogenet Cell Genet. 2000;88:38-40.
    77.
    Cheng JQ, Godwin AK, Bellacosa A, et al. AKT2, a putative oncogene encoding a
    member of a subfamily of protein-serine/threonine kinases, is amplified in human
    ovarian carcinomas. Proc Natl Acad Sci USA. 1992;89:9267-9271.
    78.
    Cheng JQ, Ruggeri B, Klein WM, et al. Amplification of AKT2 in human pancreatic
    cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc
    Natl Acad Sci USA. 1996;93:3636-3641.
    79.
    Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes
    Dev. 1999;13:2905-2927.
    80.
    Chen WS, Xu PZ, Gottlob K, et al. Growth retardation and increased apoptosis in
    mice with homozygous disruption of the Akt1 gene. Genes Dev.
    2001;15:2203-2208.
    81.
    Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBalpha is required
    for normal growth but dispensable for maintenance of glucose homeostasis in mice.
    J Biol Chem. 2001;276:38349-38352.
    82.
    Cho H, Mu J, Kim JK, et al. Insulin resistance and a diabetes mellitus-like syndrome
    in mice lacking the protein kinase Akt2 (PKB beta). Science. 2001;292:1728-1731.
    83.
    George S, Rochford JJ, Wolfrum C, et al. A family with severe insulin resistance and
    diabetes due to a mutation in AKT2. Science. 2004;304:1325-1328.
    84.
    Tschopp O, Yang ZZ, Brodbeck D, et al. Essential role of protein kinase B gamma
    (PKB gamma/Akt3) in postnatal brain development but not in glucose homeostasis.
    Development. 2005;132:2943-2954.
    85.
    Franke TF, Yang SI, Chan TO, et al. The protein kinase encoded by the Akt protooncogene
    is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell.
    1995;81:727-736.
    86.
    Chan TO, Rittenhouse SE, Tsichlis PN. AKT/PKB and other D3 phosphoinositideregulated
    kinases: kinase activation by phosphoinositide-dependent
    phosphorylation. Annu Rev Biochem. 1999;68:965-1014.
    87.
    Alessi DR, James SR, Downes CP, et al. Characterization of a 3-phosphoinositidedependent
    protein kinase which phosphorylates and activates protein kinase
    Balpha. Curr Biol. 1997;7:261-269.
    88.
    Stephens L, Anderson K, Stokoe D, et al. Protein kinase B kinases that mediate
    phosphatidylinositol 3,4,5-trisphosphate-dependent activation of protein kinase B.
    Science. 1998;279:710-714.
    89.
    Hresko RC, Mueckler M. mTOR.RICTOR is the Ser473 kinase for Akt/protein
    kinase B in 3T3-L1 adipocytes. J Biol Chem. 2005;280:40406-40416.
    90.
    Cybulski N, Polak P, Auwerx J, Rüegg MA, Hall MN. mTOR complex 2 in adipose
    tissue negatively controls whole-body growth. Proc Natl Acad Sci USA. 2009.
    91.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of
    Akt/PKB by the rictor-mTOR complex. Science. 2005;307:1098-1101.
    92.
    Jacinto E, Facchinetti V, Liu D, et al. SIN1/MIP1 maintains rictor-mTOR complex
    integrity and regulates Akt phosphorylation and substrate specificity. Cell.
    2006;127:125-137.
    93.
    Meier R, Alessi DR, Cron P, Andjelković M, Hemmings BA. Mitogenic activation,
    phosphorylation, and nuclear translocation of protein kinase Bbeta. J Biol Chem.
    1997;272:30491-30497.
    94.
    Meier R, Hemmings BA. Regulation of protein kinase B. J Recept Signal Transduct
    Res. 1999;19:121-128.
    95.
    Hafezi-Moghadam A, Simoncini T, Yang Z, et al. Acute cardiovascular protective
    effects of corticosteroids are mediated by non-transcriptional activation of
    endothelial nitric oxide synthase. Nat Med. 2002;8:473-479.
    96.
    Vanhaesebroeck B, Alessi DR. The PI3K-PDK1 connection: more than just a road
    to PKB. Biochem J. 2000;346 Pt 3:561-576.
    97.
    Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK. Interaction
    of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH
    kinase. Nature. 2000;407:538-541.
    98.
    Downward J. Mechanisms and consequences of activation of protein kinase B/Akt.
    Curr Opin Cell Biol. 1998;10:262-267.
    99.
    Shaw M, Cohen P, Alessi DR. The activation of protein kinase B by H2O2 or heat
    shock is mediated by phosphoinositide 3-kinase and not by mitogen-activated
    protein kinase-activated protein kinase-2. Biochem J. 1998;336 ( Pt 1):241-246.
    100.
    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of
    glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature.
    1995;378:785-789.
    101.
    Wendel HG, De Stanchina E, Fridman JS, et al. Survival signalling by Akt and
    eIF4E in oncogenesis and cancer therapy. Nature. 2004;428:332-337.
    102.
    Harris TE, Lawrence JC. TOR signaling. Sci STKE. 2003;2003:re15.
    103.
    Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival
    signals to the cell-intrinsic death machinery. Cell. 1997;91:231-241.
    104.
    del Peso L, González-García M, Page C, Herrera R, Nuñez G. Interleukin-3-
    induced phosphorylation of BAD through the protein kinase Akt. Science.
    1997;278:687-689.
    105.
    Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease
    caspase-9 by phosphorylation. Science. 1998;282:1318-1321.
    106.
    Chen X, Thakkar H, Tyan F, et al. Constitutively active Akt is an important regulator
    of TRAIL sensitivity in prostate cancer. Oncogene. 2001;20:6073-6083.
    107.
    Wang Q, Wang X, Hernandez A, Hellmich MR, Gatalica Z, Evers BM. Regulation of
    TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in
    human colon cancer cells. J Biol Chem. 2002;277:36602-36610.
    108.
    Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival by the serinethreonine
    protein kinase Akt. Science. 1997;275:661-665.
    109.
    Kauffmann-Zeh A, Rodriguez-Viciana P, Ulrich E, et al. Suppression of c-Mycinduced
    apoptosis by Ras signalling through PI(3)K and PKB. Nature.
    1997;385:544-548.
    110.
    Kennedy SG, Kandel ES, Cross TK, Hay N. Akt/Protein kinase B inhibits cell death
    by preventing the release of cytochrome c from mitochondria. Mol Cell Biol.
    1999;19:5800-5810.
    111.
    Khwaja A, Rodriguez-Viciana P, Wennström S, Warne PH, Downward J. Matrix
    adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and
    protein kinase B/Akt cellular survival pathway. EMBO J. 1997;16:2783-2793.
    112.
    Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-like growth
    factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol.
    1997;17:1595-1606.
    113.
    Kulik G, Weber MJ. Akt-dependent and -independent survival signaling pathways
    utilized by insulin-like growth factor I. Mol Cell Biol. 1998;18:6711-6718.
    114.
    Chen RH, Su YH, Chuang RL, Chang TY. Suppression of transforming growth
    factor-beta-induced apoptosis through a phosphatidylinositol 3-kinase/Aktdependent
    pathway. Oncogene. 1998;17:1959-1968.
    115.
    Crowder RJ, Freeman RS. Phosphatidylinositol 3-kinase and Akt protein kinase are
    necessary and sufficient for the survival of nerve growth factor-dependent
    sympathetic neurons. J Neurosci. 1998;18:2933-2943.
    116.
    Eves EM, Xiong W, Bellacosa A, et al. Akt, a target of phosphatidylinositol 3-kinase,
    inhibits apoptosis in a differentiating neuronal cell line. Mol Cell Biol.
    1998;18:2143-2152.
    117.
    Blair LA, Bence-Hanulec KK, Mehta S, Franke T, Kaplan D, Marshall J. Aktdependent
    potentiation of L channels by insulin-like growth factor-1 is required for
    neuronal survival. J Neurosci. 1999;19:1940-1951.
    118.
    Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor
    regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt
    signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem.
    1998;273:30336-30343.
    119.
    Häusler P, Papoff G, Eramo A, Reif K, Cantrell DA, Ruberti G. Protection of CD95-
    mediated apoptosis by activation of phosphatidylinositide 3-kinase and protein
    kinase B. Eur J Immunol. 1998;28:57-69.
    120.
    Rohn JL, Hueber AO, McCarthy NJ, et al. The opposing roles of the Akt and c-Myc
    signalling pathways in survival from CD95-mediated apoptosis. Oncogene.
    1998;17:2811-2818.
    121.
    Chalecka-Franaszek E, Chuang DM. Lithium activates the serine/threonine kinase
    Akt-1 and suppresses glutamate-induced inhibition of Akt-1 activity in neurons. Proc
    Natl Acad Sci USA. 1999;96:8745-8750.
    122.
    Rust C, Karnitz LM, Paya CV, Moscat J, Simari RD, Gores GJ. The bile acid
    taurochenodeoxycholate activates a phosphatidylinositol 3-kinase-dependent
    survival signaling cascade. J Biol Chem. 2000;275:20210-20216.
    123.
    Hennessy B, Smith D, Ram P, Lu Y, Mills G. Exploiting the PI3K/AKT Pathway for
    Cancer Drug Discovery. Nat Rev Drug Discov. 2005;4:988-1004.
    124.
    Nicholson KM, Anderson NG. The protein kinase B/Akt signalling pathway in human
    malignancy. Cell Signal. 2002;14:381-395.
    125.
    Vivanco I, Sawyers CL. The phosphatidylinositol 3-Kinase AKT pathway in human
    cancer. Nat Rev Cancer. 2002;2:489-501.
    126.
    Meier R, Thelen M, Hemmings BA. Inactivation and dephosphorylation of protein
    kinase Balpha (PKBalpha) promoted by hyperosmotic stress. EMBO J.
    1998;17:7294-7303.
    127.
    Gao T, Furnari F, Newton AC. PHLPP: a phosphatase that directly
    dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell.
    2005;18:13-24.
    128.
    Andjelković M, Jakubowicz T, Cron P, Ming XF, Han JW, Hemmings BA. Activation
    and phosphorylation of a pleckstrin homology domain containing protein kinase
    (RAC-PK/PKB) promoted by serum and protein phosphatase inhibitors. Proc Natl
    Acad Sci USA. 1996;93:5699-5704.
    129.
    Chen D, Fucini RV, Olson AL, Hemmings BA, Pessin JE. Osmotic shock inhibits
    insulin signaling by maintaining Akt/protein kinase B in an inactive
    dephosphorylated state. Mol Cell Biol. 1999;19:4684-4694.
    130.
    Sato S, Fujita N, Tsuruo T. Modulation of Akt kinase activity by binding to Hsp90.
    Proc Natl Acad Sci USA. 2000;97:10832-10837.
    131.
    Ivaska J, Nissinen L, Immonen N, Eriksson JE, Kähäri VM, Heino J. Integrin alpha 2
    beta 1 promotes activation of protein phosphatase 2A and dephosphorylation of Akt
    and glycogen synthase kinase 3 beta. Mol Cell Biol. 2002;22:1352-1359.
    132.
    Resjö S, Göransson O, Härndahl L, Zolnierowicz S, Manganiello V, Degerman E.
    Protein phosphatase 2A is the main phosphatase involved in the regulation of
    protein kinase B in rat adipocytes. Cell Signal. 2002;14:231-238.
    133.
    Silvius JR, Nabi IR. Fluorescence-quenching and resonance energy transfer studies
    of lipid microdomains in model and biological membranes. Mol Membr Biol.
    2006;23:5-16.
    134.
    Zhang H, Rudkevich DM. A FRET approach to phosgene detection. Chem Commun
    (Camb). 2007:1238-1239.
    135.
    Schwille P, Haupts U, Maiti S, Webb WW. Molecular dynamics in living cells
    observed by fluorescence correlation spectroscopy with one- and two-photon
    excitation. Biophys J. 1999;77:2251-2265.
    136.
    Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel
    family proteins in living cells using bimolecular fluorescence complementation. Mol
    Cell. 2002;9:789-798.
    137.
    Hynes TR, Tang L, Mervine SM, et al. Visualization of G protein betagamma dimers
    using bimolecular fluorescence complementation demonstrates roles for both beta
    and gamma in subcellular targeting. J Biol Chem. 2004;279:30279-30286.
    138.
    Kerppola TK. Visualization of molecular interactions by fluorescence
    complementation. Nat Rev Mol Cell Biol. 2006;7:449-456.
    139.
    Shyu YJ, Suarez CD, Hu CD. Visualization of AP-1 NF-kappaB ternary complexes
    in living cells by using a BiFC-based FRET. Proc Natl Acad Sci USA.
    2008;105:151-156.
    140.
    Walter M, Chaban C, Schütze K, et al. Visualization of protein interactions in living
    plant cells using bimolecular fluorescence complementation. Plant J.
    2004;40:428-438.
    141.
    Weyand M, Wolf A, Kuhlmann J, Ottmann C. Applicability of superfolder YFP
    bimolecular fluorescence complementation in vitro. Biol Chem. 2008.
    142.
    Kerppola TK. Design and implementation of bimolecular fluorescence
    complementation (BiFC) assays for the visualization of protein interactions in living
    cells. Nat Protoc. 2006;1:1278-1286.
    143.
    Sontag E, Fedorov S, Kamibayashi C, Robbins D, Cobb M, Mumby M. The
    interaction of SV40 small tumor antigen with protein phosphatase 2A stimulates the
    map kinase pathway and induces cell proliferation. Cell. 1993;75:887-897.
    144.
    Chen W, Possemato R, Campbell KT, Plattner CA, Pallas DC, Hahn WC.
    Identification of specific PP2A complexes involved in human cell transformation.
    Cancer Cell. 2004;5:127-136.
    145.
    Yuan H, Veldman T, Rundell K, Schlegel R. Simian virus 40 small tumor antigen
    activates AKT and telomerase and induces anchorage-independent growth of
    human epithelial cells. J Virol. 2002;76:10685-10691.
    146.
    Zhao JJ, Gjoerup OV, Subramanian RR, et al. Human mammary epithelial cell
    transformation through the activation of phosphatidylinositol 3-kinase. Cancer Cell.
    2003;3:483-495.
    147.
    Arroyo JD, Hahn WC. Involvement of PP2A in viral and cellular transformation.
    Oncogene. 2005;24:7746-7755.
    148.
    Kuo YC, Huang KY, Yang CH, Yang YS, Lee WY, Chiang CW. Regulation of
    phosphorylation of Thr-308 of Akt, cell proliferation, and survival by the B55alpha
    regulatory subunit targeting of the protein phosphatase 2A holoenzyme to Akt. J
    Biol Chem. 2008;283:1882-1892.
    149.
    Suzuki K, Takahashi K. Reduced expression of the regulatory A subunit of serine/
    threonine protein phosphatase 2A in human breast cancer MCF-7 cells. Int J Oncol.
    2003;23:1263-1268.
    150.
    Colella S, Ohgaki H, Ruediger R, et al. Reduced expression of the Aalpha subunit
    of protein phosphatase 2A in human gliomas in the absence of mutations in the
    Aalpha and Abeta subunit genes. Int J Cancer. 2001;93:798-804.
    151.
    Janssens V, Longin S, Goris J. PP2A holoenzyme assembly: in cauda venenum
    (the sting is in the tail). Trends in Biochemical Sciences. 2008;33:113-121.
    152.
    Trotman L, Alimonti A, Scaglioni P, Koutcher J, Cordon-Cardo C, Pandolfi P.
    Identification of a tumour suppressor network opposing nuclear Akt function. Nature.
    2006;441:523-527.
    153.
    Dai Y, Wei Z, Sephton CF, Zhang D, Anderson DH, Mousseau DD. Haloperidol
    induces the nuclear translocation of phosphatidylinositol 3'-kinase to disrupt Akt
    phosphorylation in PC12 cells. J Psychiatry Neurosci. 2007;32:323-330.
    154.
    Bertoli C, Copetti T, Lam E, Demarchi F, Schneider C. Calpain small-1 modulates
    Akt/FoxO3A signaling and apoptosis through PP2A. Oncogene. 2009;28:721-733.
    155.
    Wadzinski BE, Eisfelder BJ, Peruski LF, Mumby MC, Johnson GL. NH2-terminal
    modification of the phosphatase 2A catalytic subunit allows functional expression in
    mammalian cells. J Biol Chem. 1992;267:16883-16888.
    156.
    Cabantous S, Terwilliger T, Waldo G. Protein tagging and detection with engineered
    self-assembling fragments of green fluorescent protein. Nat Biotechnol.
    2005;23:102-107.
    157.
    Kerppola TK. Bimolecular fluorescence complementation: visualization of molecular
    interactions in living cells. Methods Cell Biol. 2008;85:431-470.
    158.
    Kerppola TK. Bimolecular fluorescence complementation (BiFC) analysis as a
    probe of protein interactions in living cells. Annual review of biophysics.
    2008;37:465-487.

    下載圖示 校內:2011-08-19公開
    校外:2011-08-19公開
    QR CODE