簡易檢索 / 詳目顯示

研究生: 林子軒
Lin, Zi-Xuan
論文名稱: 量子通訊立方衛星的設計與分析
Design and Analysis of Cube Satellite for Quantum Communication
指導教授: 楊憲東
Yang, Ciann-Dong
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 126
中文關鍵詞: 量子通信立方衛星量子密鑰分配衛星技術量子光學
外文關鍵詞: quantum communication, cubic satellite, quantum key distribution, satellite technology, quantum optics
相關次數: 點閱:76下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中國在2016年所發射的墨子號量子通訊實驗衛星為全球性的量子通訊建立基礎,相對於國內關於量子通訊衛星的研究尚未啟動。為了使台灣提早進入量子通訊衛星的研究,本論文利用立方衛星實施量子通訊實驗,來降低實驗執行的門檻。因為立方衛星的小型化與發射成本低的特性,能夠讓太空任務成本大幅降低。
    本論文對量子通訊立方衛星進行分析與設計,首先介紹量子通訊衛星的架構及其運作方法,然後討論量子通訊衛星內的量子元件如糾纏源、單光子源、單光子探測器可否小型化,並且選擇適用於立方衛星上的設備。衛星與地面站之間的量子通訊透過衛星姿態控制與望遠鏡的追蹤系統建立光通訊,因此必須對於立方衛星的姿態控制精度進行模擬;接著模擬光子傳遞到地面站受大氣湍流所造成的對準偏離,進一步模擬在地面站上使用自適應光學系統,將大氣湍流所造成的對準偏離進行補償。本論文總計完成下列四項主要工作:
    1.量子通訊立方衛星架構及運作方法。
    2.量子通訊關鍵元件小型化的可行性分析。
    3.模擬立方衛星對準地面站的姿態控制精準度。
    4.模擬光子遭受大氣湍流影響,並使用自適應光學系統進行補償。

    The Mozi quantum communication experimental satellite launched by China in 2016 established the foundation for global quantum communication. Compared with domestic research on quantum communication satellites, it has not yet started. In order to enable Taiwan to enter the research of quantum communication satellites earlier, this thesis uses cubic satellites to carry out quantum communication experiments to reduce the threshold of experiment execution. Because of the cubic satellite's miniaturization and low launch costs, it can greatly reduce the cost of space missions.

    This paper analyzes and designs the quantum communication cube satellite, first introduces the architecture and operation method of the quantum communication satellite, and then discusses whether the quantum components in the quantum communication satellite such as entanglement source, single photon source, single photon detector can be miniaturized, and Select the equipment suitable for the cube satellite. The quantum communication between the satellite and the ground station establishes optical communication through the satellite attitude control and the telescope tracking system, so it is necessary to simulate the accuracy of the cubic satellite's attitude control; then simulate the photon transfer to the ground station due to the alignment deviation caused by atmospheric turbulence , To further simulate the use of adaptive optical systems on ground stations to compensate for alignment deviations caused by atmospheric turbulence. This paper has completed the following four main tasks:

    1. The quantum communication cubic satellite architecture and operation method.
    2. Feasibility analysis of miniaturization of key components of quantum communication.
    3. Simulated cubic satellite's attitude control accuracy towards ground station.
    4. Simulated photons are affected by atmospheric turbulence and are compensated using adaptive optics.

    中文摘要 I Design and Analysis of Cube Satellite for Quantum Communication II 目錄 IX 圖目錄 XII 表目錄 XVII 符號表 XVIII 第 1 章 緒論 1 1.1量子通訊 1 1.2 背景及文獻回顧 1 1.3研究動機 7 1.4論文架構 8 第 2 章 量子通訊立方衛星的組成與操作原理 11 2.1量子通訊立方衛星的組成 11 2.1.1衛星本體架構 11 2.1.2地面站架構 17 2.1.3量子通訊立方衛星設計初探 18 2.2量子通訊立方衛星的運作軌道 23 2.2.1克卜勒元素 23 2.2.2太陽同步軌道 25 2.2.3使用火箭進入衛星軌道 28 第 3 章 製備糾纏光子 30 3.1量子糾纏現象 30 3.2自發參量下轉換機制產生糾纏光子對 31 3.2.1古典理論與量子力學理論 31 3.2.2相位匹配條件 33 3.2.3自發參量下轉換的非線性材質選擇 35 第 4 章 量子通訊實驗 38 4.1量子隱形傳輸 38 4.2量子密鑰分發 40 4.2.1量子密鑰分發操作 41 4.2.2量子密鑰協定確立 44 4.2.3量子密鑰協定實施 46 4.3單光子源與單光子探測器 47 4.3.1單光子源 47 4.3.2單光子探測器 50 第 5 章 衛星姿態控制 53 5.1參考座標系與座標轉換 53 5.1.1參考座標系 54 5.1.2座標系之間的轉換 55 5.2姿態運動方程式 56 5.2.1尤拉角與四元數 56 5.2.2尤拉角的運動方程式 57 5.2.3四元數的運動方程式 58 5.3姿態動力方程式 59 5.4姿態感測器 60 5.5控制器 61 5.6致動器 63 5.6.1姿態控制的致動器種類 63 5.6.2動量輪的模型建立 65 5.6.3動量輪的安裝 68 5.7姿態模擬 70 第 6 章 大氣湍流的影響與補償 76 6.1大氣湍流效應 76 6.2自適應光學 80 6.2.1自適應光學系統架構 81 6.2.2自適應光學系統模擬結果與設置 89 第 7 章 在立方衛星上實施量子通訊實驗 92 7.1量子通訊立方衛星精準度 92 7.2量子通訊立方衛星運作流程 93 7.2.1衛星與地面站量子隱形傳輸實驗流程 93 7.2.2衛星與地面站量子密鑰分發實驗流程 97 第 8 章 結論 102 8.1結果與討論 102 8.2未來展望 103 參考文獻 104 附錄A 111 附錄B 114 附錄C 118 C1尤拉角描述 119 C2四元數描述 120 C3尤拉角與四元數的關係 121 附錄D 123

    [1] Adam Greenbaum , Stefan Slagowski , Lars Dyrud , Dave Landis , Thomas Hilker , Joanna Joiner, "The Earth Photosynthesis Imaging Constellation: Measuring Photosynthesis with a cubesat platform," in 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 2015.
    [2] Alexander Ling and Daniel Oi, "Small Photon-Entangling Quantum Systems (SPEQS) for LEO Satellites," in International Conference on Space Optical Systems and Applications, Ajaccio, Corsica, France, 2012.
    [3] Charles H. Bennett and Gilles Brassard, "Quantum cryptography Public key distribution and coin tossing," Theoretical Computer Science, vol. 560, pp. 7-11, 2014.
    [4] Artur K. Ekert, "Quantum cryptography based on Bell’s theorem," Phys. Rev. Lett, vol. 67, p. 661, 5, Aug, 1991.
    [5] Charles H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett., vol. 68, no. 3121, 25, May, 1992.
    [6] Phuc V. Trinh, Anh T. Pham, Alberto Carrasco-Casado, and Morio Toyoshima, "Quantum Key Distribution over FSO: Current Development and Future Perspectives," 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama), 3, Jan, 2019.
    [7] Sheng-Kai Liao, Wen-Qi Cai, Wei-Yue Liu, Liang Zhang, Yang Li, Ji-Gang Ren, Juan Yin, Qi Shen, Yuan Cao, Zheng-Ping Li, Feng-Zhi Li, Xia-Wei Chen, Li-Hua Sun, Jian-Jun Jia, Jin-Cai Wu, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Yi-Lin Zho, “Satellite-to-ground quantum key distribution,” Nature, 第 冊549, p. 43–47, 9, Aug, 2017.
    [8] Hideki Takenaka, Alberto Carrasco-Casado, Mikio Fujiwara, Mitsuo Kitamura, Masahide Sasaki & Morio Toyoshima, "Satellite-to-ground quantum-limited communication using a 50-kg-classmicrosatellite," Nat. Photonics, vol. 11, p. 502–508, 2017.
    [9] Kevin Günthner, Imran Khan, Dominique Elser, Birgit Stiller, Ömer Bayraktar, Christian R. Müller, Karen Saucke, Daniel Tröndle, Frank Heine, Stefan Seel, Peter Greulich, Herwig Zech, Björn Gütlich, Sabine Philipp-May, Christoph Marquardt, and Gerd Leuchs, "Quantum-limited measurements of optical signals from a geostationary satellite," Optica, vol. 4, no. 6, pp. 611-616, 2017.
    [10] William Morong, Alexander Ling, and Daniel Oi, "Quantum optics for space platforms," Optics and Photonics News, vol. 23, no. 10, pp. 42-49, 2012.
    [11] Zhongkan Tang, Rakhitha Chandrasekara, Yau Yong Sean, Cliff Cheng, Christoph Wildfeuer & Alexander Ling, "Near-space flight of a correlated photon system," Scientific Reports, vol. 4, no. 6366, 15, Sep, 2015.
    [12] Zhongkan Tang, Rakhitha Chandrasekara, Yue Chuan Tan, Cliff Cheng, Kadir Durak & Alexander Ling, “The photon pair source that survived a rocket explosion,” Scientific Reports, 第 冊25603, p. 6, 10, May, 2016.
    [13] Zhongkan Tang, Rakhitha Chandrasekara, Yue Chuan Tan, Cliff Cheng, Luo Sha, Goh Cher Hiang, Daniel Oi, Alexander Ling, "Generation and analysis of correlated pairs of photons on board a nanosatellite," in 2016 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 2016.
    [14] Robert Bedington, Xueliang Bai, Edward Truong-Cao, Yue Chuan Tan, Kadir Durak, Aitor Villar Zafra, James A Grieve, Daniel KL Oi & Alexander Ling, "Nanosatellite experiments to enable future space-based QKD missions," EPJ Quantum Technology, vol. 3, no. 12, 18, Oct, 2016.
    [15] Daniel KL Oi, Alex Ling, Giuseppe Vallone, Paolo Villoresi, Steve Greenland, Emma Kerr, Malcolm Macdonald, Harald Weinfurter, Hans Kuiper, Edoardo Charbon & Rupert Ursin, "CubeSat quantum communications mission," EPJ Quantum Technology , vol. 4, no. 6, 17, Apr, 2017.
    [16] J. W. Silverstone, D. Bonneau, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, V. Zwiller, G. D. Marshall, J. G. Rarity, J. L. O'Brien & M. G. Thompson, "On-chip quantum interference between silicon photon-pair sources," Nature Photonics, vol. 8, p. 104–108, 15, Dec, 2013.
    [17] “https://www.aac-clyde.space/epic-spacecraft/epic-6u”.
    [18] “https://nanoavionics.com/nanosatellite-buses/6u-nanosatellite-bus-m6p/”.
    [19] “https://www.bluecanyontech.com/spacecraft”.
    [20] “https://spacewatch.global/2019/04/communications-successfully-established-with-nanoavionics-satellites/”.
    [21] P. H. H. Oakley, R. Casini, S. Sewell, N. Ela, "Instrument prototypes of miniature near-UV imaging spectro-polarimeters for observations of solar magnetism," in Proceedings Volume 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, Austin, Texas, United States, 2018.
    [22] Kadir Durak, Aitor Villar, Brigitta Septriani, Zhongkan Tang, Rakhitha Chandrasekara, Robert Bedington, Alexander Ling, "The next iteration of the small photon entangling quantum system (SPEQS-2.0)," in Advances in Photonics of Quantum Computing, Memory, and Communication IX, San Francisco, California, United States, 2016.
    [23] Chun Ju Youn, Haesin Ko, Byung-Seok Choi, Joong-Seon Choe, Kap-Joong Kim, Jong-Hoi Kim, and Yongsoon Baek, "Optical C omponents and System for free-space quantum key distribution," in The 23rd OptoElectronics and Communications Conference (OECC 2018), Jeju Island, Korea (South), 2018.
    [24] “https://newsspaceflight.com/quess-launched-form-cosmodrome-on-gobi-desert/”.
    [25] Y. Kozai, "The motion of a close earth satellite," Astronomical Journal, vol. 64, no. 367, 1959.
    [26] D. Eagle, "https://www.mathworks.com/matlabcentral/fileexchange/43333-sun-synchronous-orbit-design".
    [27] “http://en.homasim.com/orbitsimulation.php”.
    [28] M. Aspelmeyer ; T. Jennewein ; M. Pfennigbauer ; W.R. Leeb ; A. Zeilinger, "Long-Distance Quantum Communication With Entangled Photons Using Satellites," IEEE Journal of Selected Topics in Quantum Electronics, vol. 9, no. 6, pp. 1541-1551, Nov 2003.
    [29] http://css.yabit.org.tw/document/technology/%E7%81%AB%E7%AE%AD%E7%9A%84%E7%99%BC%E5%B0%84%E5%80%92%E6%95%B8%E5%92%8C%E9%A3%9B%E8%A1%8C%E9%81%8E%E7%A8%8B.pdf.
    [30] A. Einstein, B. Podolsky, and N. Rosen, "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?," Phys.Rev, vol. 47, no. 10, pp. 777-780, 15, May, 1935.
    [31] E. Schrödinger, "Discussion of probability relations between separated systems," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31, no. 4, p. 555–563, Oct, 1935.
    [32] A. Aspect, P. Grangier, and G. Roger, "Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedanken-experiment: A New Violation of Bell's Inequalities," Physical Review Letters, vol. 49, no. 2, pp. 91-94, 12, Jul, 1982.
    [33] Rainer Blatt, David Wineland, "Entangled states of trapped atomic ions," Nature, vol. 453, pp. 1008-1015, 18, Jun, 2008.
    [34] Gernot Pfanner, Marek Seliger, and Ulrich Hohenester, "Entangled photon sources based on semiconductor quantum dots: The role of pure dephasing," Phys. Rev., vol. 78, no. 19, p. 195410, 11, Nov, 2008.
    [35] J. M. Raimond, M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys., vol. 73, no. 565, 28, Aug, 2001.
    [36] Anton Zeilinger, Dance of the Photons: From Einstein to Quantum Teleportation, Farrar.Straus and Giroux, 2010.
    [37] Stephan Krapick, Harald Herrmann, Viktor Quiring, Benjamin Brecht, Hubertus Suche, Christine Silberhorn, "An Efficient Integrated Two-Color Source for Heralded Single Photons," New Journal of Physics, vol. 15, 12, Mar, 2013.
    [38] hcp corp., “https://www.hcphotonics.com/documents”.
    [39] Yi Yan, Chang-xing Pei, Rui-juan Shi, Bao-bin Han, Lei Zhang,, "Study of quantum communication systems used for free space," JOURNAL OF XIDIAN UNIVERSITY, vol. 34, no. 5, pp. 708-711, 2007.
    [40] Xiao-song Ma, Stefan Zotter, Johannes Kofler, Thomas Jennewein, and Anton Zeilinger, "Experimental generation of single photons via active multiplexing," Phys. Rev. A, vol. 83, no. 4, p. 043814, 13, Apr, 2011.
    [41] Fumihiro Kaneda, Bradley G. Christensen, Jia Jun Wong, Hee Su Park, Kevin T. McCusker, and Paul G. Kwiat, "Time-multiplexed heralded single-photon source," Optica, vol. 2, no. 12, pp. 1010-1013, 2015.
    [42] 林易陞, "福爾摩沙量子通訊衛星的概念性設計,國立成功大學航太研究所碩士論文," 2018年7月.
    [43] Alex Chuchra,Steve Fujikawa,Nicholas Galassi,George Sebestyen, Low Earth Orbit Satellite Design, USA, 2016.
    [44] Benjamin L. McGlamery, "Restoration of Turbulence Degraded images," Journal of the Optical Society of America, vol. 57, no. 3, pp. 293-297, 1967.
    [45] R. J. Noll, "Zernike polynomials and atmospheric turbulence," Journal of the Optical Society of America, vol. 66, no. 3, pp. 207-211, 1975.
    [46] N. Roddier, "Atmospheric wavefront simulation using Zernike polynomials," Optical Engineering 29, Oct, 1990.
    [47] Michael C. Roggemann, Byron M. Welsh, Bobby R. Hunt, Imaging Through Turbulence, CRC, 1996.
    [48] 李. 張慧敏, "大氣湍流畸變相位屏的數值模擬分析," 光電工程, 2006.
    [49] "https://www.telescope-optics.net/zernike_expansion_schemes.htm".
    [50] M. Lloyd-Hart, "Taking the twinkle out of starlight," IEEE Spectrum, vol. 40, no. 12, pp. 22-29, 2003.
    [51] “http://www.ausairpower.net/APA-DEW-HEL-Analysis.html”.
    [52] Robert K. Tyson, "Bit-error rate for free-space adaptive optics laser communications," Journal of the Optical Society of America A, vol. 19, no. 4, pp. 753-758, 2002.
    [53] 吳加麗,柯熙政, "無波前傳感器的自適應光學校正," 激光與光電子學進展, vol. 55, no. 3, p. 030103, 2018.
    [54] 陳波,楊慧珍,張金寶,李新陽,姜文漢, "點目標自適應光學隨機隨機梯度下降算法性能指標與收斂速度," 光學學報, pp. 1143-1148, 2009.
    [55] 張金寶, 陳波, 王彩霞, 李新陽, "61 單元自適應光學系統隨機並行梯度下降算法動態實驗研究," Chinese Journal of Lasers, vol. 37, no. 3, pp. 668-674, 2010.
    [56] Siyuan Yu , Feng Wu, Qiang Wang , Liying Tan , Jing Ma, "Theoretical analysis and experimental study of constraint boundary," Optics Communications, vol. 402, pp. 585-592, 1, Nov, 2017.
    [57] 蘇盟傑, “量子通訊衛星的運作與模擬,國立成功大學航太研究所碩士論文,” 2017年7月.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE