| 研究生: |
宋國材 Sung, Kuo-Tsai |
|---|---|
| 論文名稱: |
一修改型階級樹集合分割影像編碼方法 An Efficient Image Coding Based on Modified Set Partitioning in Hierarchical Tree |
| 指導教授: |
陳進興
Chen, Chin-Hsing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系碩士在職專班 Department of Electrical Engineering (on the job class) |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 英文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 編碼 、階級樹集合分割 、小波 |
| 外文關鍵詞: | Wavelet, Set Partitioning in Hierarchical Tree, Coding |
| 相關次數: | 點閱:105 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
階級樹集合分割之影像編碼是一種有效率及計算簡單的影像壓縮技術,其最重要的特色是漸進式的影像編碼技術-一粗糙影像可由小波領域之空間方向樹的剩餘影像漸漸加強至細緻。
本論文在階級樹集合分割演算法中加入兩個步驟以改善編碼效率。第一步驟為減少直接分支之係數值,稱之為係數調整法。第二步驟為移除原演算法中多餘之編碼。
本論文以實驗比較階級樹集合分割和修改方法之效能。因修改法移除了原演算法中不需要的編碼,故修改法比原演算法有更好的效能。
Set partitioning in hierarchical trees (SPIHT) coding, introducted by Amir Said and William A. Pearlman, is a very effective and computationally simple technique for image compression. Its presents a progressive image coding technique in which a rough image is enhanced with the spatial orientation trees of the residual image in the wavelet domain.
In this thesis, two steps are added in the SPIHT algorithm to improve the coding efficiency. The first step, which is called regulating coefficient, decreases the coefficients of the immediate descendants. The second step removes the predictable coding redundancies in the algorithm.
The comparisons of the rate-distortion performance of the SPIHT coding and the modified approach are demonstrated by experiments. Since the modified approach remove unnecessary encoding in the SPIHT algorithm, it has better performance than the SPIHT algoritm.
[1] Jerome M. Shapiro,“Embedded image coding using zerotrees of wavelet
coefficients,”IEEE Trans. Signal Processing, Vol. 41, No. 12, pp. 3445-3462,
December 1993.
[2] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec based on set partitioning in hierarchical trees,” IEEE Trans. On Circuits and System for Video Technology, Vol. 6, No. 3, pp.243-250, Jun. 1996.
[3] A. Said and W. A. Pearlman, “A survey of the state-of-the-art and utilization of embedded, tree-based coding ,”Proceedings of the 1998 IEEE Int. Symposium on Circuits and systems, Monterey, California, May 1998.
[4] A Munteanu, J. Coornelis, G. V. D. Auwera and P. Cristea, “Wavelet image compression - the quadtree coding approach,” IEEE Trans. On Technology in Biomedicine, Vol. 3, No. 3, pp.176-185, Sept. 1999.
[5] H. J. Wang and C. C. J. Huo, “A multi-threshold wavelet coder (MTWC) for high fidelity image compression,”IEEE Proceedings Internetional Conference on Image Processing, Vol. 1, pp.652-655, 1997.
[6] M. Craizer, E. A. B. D. Silva and E. G. Ramos, “Convergent algorithms for successive approximation vector quantisation with applications to wavelet image compression,” IEE Proceedings-Vision Image and Signal Processing, Vol. 146 , No. 3, pp. 159-164, Jun. 1999.
[7] R. A. Devore, B. Jawerth, and B. J. Lucier,“Image compression through wavelet transform coding,”IEEE Trans. Informat. Theory, Vol. 38, pp. 719-746, Mar. 1992.
[8] B. B. Chai, J. Vass, and X. Zhuang, “Significance-linked connected componet analysis for wavelet image coding,”IEEE Trans.on Image Processing, Vol. 8, No. 6, pp. 774-784, Jun. 1999.
[9] A. S. Lewis, and G. Knowles, “Image compression using the 2-D wavelet transform ,” IEEE Trans.on Image Processing, Vol. 1, pp. 244-250, 1992.
[10] Khalid Sayood, Introduction to Data Compression, Morgan Kaufmann, Second Edition 2000.
[11] David Taubman and Avideh Zakhor, “A common framework for rate and distortion based scaling of highly scalable compressed video,” IEEE Trans. On circuits and systems for video technology, Vol. 6, No. 4, pp. 1374-1387, December 2000.
[12] Beong-Jo Kim, Zixiang Xiong and William A. Pearlman,“Low bit-rate scalable video coding with 3-D set partitioning in hierarchical trees(3-D SPIHT),” IEEE Trans. On circuits and systems for video technology, Vol. 10, No. 8, pp. 329-354, August 1996.
[13] Raghuveer M. Rao and Ajit S. Bopardikar, Wavelet Transforms Introduction to Theory and Applications , Addison-Wesley.
[14] 戴顯權, 資料壓縮, 紳藍, 民國九十年.
[15] 陳同孝, 張真誠, 黃國峰, 數位影像處理技術, 松崗, 民國九十年.
[16] 鍾國亮, 資料壓縮的原理與應用, 全華, 民國九十一年.
[17] V. K. Heer and H-E Reinfelder, “A comparison of reversible methods for data compression,”in Medical Imaging IV, pp. 354-365, Proc. SPIE 1233, 1990.
[18] A. Cohen, I. Daubechies, and J. C. Feauveau, “Biorthogonal bases of compactly supported wavelets,”Commun. Pure Appl. Math., Vol. 45, pp. 485-560, 1992.
[19] M. Vetterli and C. Herley, “Wavelet and filter banks: Theory and design,” IEEE Trans. Signal Proc., Vol. 40, pp. 2207-2232, 1992.
[20] J. Villasenor, B. Belzer, and J. Liao, “Wavelet filter evaluation for efficient image compression,” IEEE Trans. Image Processing, Vol. 4, pp. 1053-1060, 1995.