簡易檢索 / 詳目顯示

研究生: 李俊賢
Lee, Jyun-Sian
論文名稱: 合成螢光單體2-vinylfluorene以製備螢光模版材料對肌酸酐行專一性吸附之探討
Synthesis of the fluorescent monomer 2-vinylfluorene for the preparation of fluorescent imprinted material on the investigation of specific binding toward creatinine
指導教授: 許梅娟
Syu, Mei-Jywan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 71
中文關鍵詞: 肌酸酐分子模版高分子模印因子螢光檢測
外文關鍵詞: creatinine, fluorene, molecularly imprinted polymer (MIP), imprinting factor, fluorescence detection
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肌酸酐 (Creatinine) 是肌肉中肌酸代謝的產物,為診斷腎功能的重要因子,血液或尿液肌酸酐的濃度通常在臨床上是相當重要的生理指標。本研究乃是製備對肌酸酐具模印記憶的材料,同時,使此材料具有螢光可調節性,即可依肌酸酐被吸附量與螢光強度變化比例的關係進行對肌酸酐分子具專一性之螢光式檢測。芴 (Fluorene) 的聚合物聚芴,其導電性和電致發光已廣泛的被用於研究有機發光二極體之應用,本研究即想延伸其特性,以芴的衍生物為功能性單體,合成具螢光性與辨識性吸附之模版高分子。
    首先先合成螢光功能性單體,以2-acetylfluorene為反應物,2-acetylfluorene由還原反應形成2-(α-hydroxyethyl)fluorene,再行脫水反應合成2-vinylfluorene (2-VF),並以傅利葉轉換紅外線光譜儀 (Fourier transform infrared spectroscopy, FT-IR) 與氫核磁共振光譜 (1Hnuclear magnetic resonance, 1H NMR) 進行分子結構之鑑定,再以螢光光譜儀 (FL spectrophotometer) 進行3D螢光圖譜測定以決定2-VF之最佳激發波長與放射波長。
    模版高分子之合成則是以肌酸酐為模版分子,加入功能性單體methylacrylic acid (MAA)、自行合成之螢光單體2-vinylfluorene (2-VF)、交聯劑ethylene glycol dimethacrylate (EGDMA) 以及起始劑azobisisobutyronitrile (AIBN) 一起進行熱聚合反應。此模版材料 (MIP) 在10 mg/dL肌酸酐溶液中,對肌酸酐的平均吸附量為4.26 ± 0.25 mg/g;而非模版材料 (NIP) 則為1.39 ± 0.14 mg/g,因此可計算其模印因子 (imprinting factor) 為3.08 ± 0.32,此乃是以HPLC進行肌酸酐成份分析之結果。若以螢光檢測,則螢光模版高分子吸附肌酸酐後的螢光變化率為13.12 ± 0.91 %,而非模版高分子的螢光變化率為5.08 ± 0.27 %,則其模印因子為2.58 ± 0.16;且在不同肌酸酐濃度下以MIP對肌酸酐的平均吸附量對應螢光變化率所作的校正圖,具有良好的線性關係,顯示此模版材料具有以螢光檢測方式檢測未知樣本中肌酸酐濃度的可行性。因此不論以液相層析或螢光分析方式,皆可達到良好的模印效果。單體與交聯劑的比例是製備螢光模版高分子重要的條件,且以模印因子做為比較良劣的指標。螢光模版高分子在選擇性吸附感測實驗中,在肌酸酐/肌酸雙成份溶液中的選擇率相當良好,達2.78 ± 0.13;而在螢光模版高分子的干擾性吸附測試,在小牛血清肌酸酐濃度為10 mg/dL時,其螢光變化率為9.72 ± 1.26 %,肌酸酐平均吸附量為2.42 ± 0.43 mg /g MIP,皆呈現良好的辨識效果。
    綜合前述,於本研究中已確認以螢光單體製備螢光模版高分子材料的可行性,且在對肌酸酐吸附檢測上,不論在專一性、選擇性上皆有良好的效果,顯示此螢光模版高分子以螢光檢測方式進行肌酸酐吸附檢測的可用性已確立。

    Creatinine is a metabolite from muscle. Its concentration in serum or urine is an important physiological index in clinics and is essential to the diagnosis of renal functions. In this research, we intend to prepare molecularly imprinted polymer (MIP) that could provide specific cavity for the binding of creatinine as well as the fluorescence quenching via the binding of creatinine. Polyfluorenes, with electro-conductivity and electroluminescence, have long been applied to the organic light-emitting diodes. Consequently, this study further extends fluorene’s properties, by the utilization of a fluorene derivative as the fluorescence monomer, for the preparation of creatinine imprinted polymer. In this way, the MIP thus prepared would be able to own the fluorescence property and also recognize creatinine via specifically binding with creatinine.
    First of all, the fluorescent monomer, 2-vinylfluorene (2-VF) is synthesized. By reduction, 2-acetylfluorene forms 2-(α-hydroxyethyl)fluorene. 2-(α-Hydroxyethyl)fluorene further reacts to produce 2-VF by dehydration. The molecular structure could be identified by Fourier transform infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance (1H NMR). Three-dimensional fluorescence spectrum is analyzed to determine the best excitation and emission wavelengths for 2-VF measurement.
    In the following, 2-VF (fluorescence monomer), methylacrylic acid (MAA, functional monomer), ethylene glycol dimethacrylate (EGDMA, crosslinker), and azobisisobutyro- nitrile (AIBN, initiator) were mixed together in the presence of creatinine template. The binding capacity of the MIP and the NIP are 4.26 ± 0.25 and 1.39 ± 0.14 mg/g, respectively. The ratio, defined as the imprinting factor, is 3.08 ± 0.32.The proportions of the corresponding fluorescence intensity change of MIP and NIP upon the binding the creatinine are 13.12 ± 0.91% and 5.08 ± 0.27% respectively. Thus, the imprinting factor of fluorescence detection is calculated to be 2.58 ± 0.16. Besides, the binding capacity of MIP for creatinine under different creatinine concentration against proportion of fluorescence intensity change appears to be an excellently linear correlation for valid calibration. Both HPLC and fluorescence analysis confirm the imprinting effect of the MIP. Hence, the detection of the creatinine concentration is indeed feasible by the fluorescent MIP proposed in this work. The composition of prepolymerization solution for the preparation of MIP is also investigated. The molar ratio of 2-VF, MAA, and EGDMA is considered as an essential factor affecting the performance of MIP. The imprinting factor is used to judge and compare the performance of the MIPs. Additionally, the imprinting effect and the selectivity w.r.t. creatinine from the creatinine mixtures are also evaluated. Selectivity of MIP for creatinine from creatinine/creatine mixture is 2.78 ± 0.13. Creatinine was also spiked into bovine calf serum (BCS) for the interference investigation of serum creatinine analysis by the MIP. The proportion of fluorescence intensity change caused by the binding of creatinine is 9.72 ± 1.26 % and the average binding capacity is 2.42 ± 0.43 mg /g MIP.
    Concluded from the above, it is confirmed that the fluorescent MIP thus prepared is feasible for the clinical detection of serum creatinine. Its specific binding ability towards creatinine is also studied and proved in this work.

    中文摘要 II Abstract III 誌謝 V 目錄 VI 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 肌酸酐 (Creatinine) 1 1-1-1 肌酸酐與腎臟疾病 1 1-1-2 肌酸酐檢驗法 2 1-2 分子模版高分子 3 1-2-1 分子模版高分子之製備 3 1-3 分子模印方法 4 1-3-1 共價鍵結模印 (Covalent imprinting) 5 1-3-2 非共價鍵結模印 (Non-covalent imprinting) 5 1-4 分子模版高分子之架構 5 1-4-1 模版分子 (Template) 5 1-4-2 功能性單體 (Functional monomer) 6 1-4-3 交聯劑 (Crosslinker) 6 1-4-4 溶劑 (Solvent) 6 1-4-5 起始劑 (Initiator) 7 1-5 分子模版高分子之聚合法 7 1-5-1 總體聚合法 (Bulk polymerization) 7 1-5-2 沉澱聚合法 (Precipitation polymerization) 7 1-5-3 表面聚合法 (Surface polymerization) 8 1-5-4 懸浮聚合法 (Suspension polymerization) 8 1-5-5 非水溶液乳化聚合法 (Nonaqueous emulsion polymerization) 8 1-5-6 多步驟膨潤聚合法 (Multi-step swelling polymerization) 9 1-6 分子模版高分子之應用 10 1-6-1 層析應用 10 1-6-2 電化學檢測 11 1-6-3 人工觸媒與結合分析 12 1-6-4 薄膜分離 12 1-6-5 壓電檢測 12 1-7 螢光 13 1-7-1 螢光原理 13 1-7-2 影響螢光性質之原因 14 1-7-3 螢光應用之分子模版高分子 15 1-8 文獻回顧 17 1-9 研究動機 17 第二章 實驗方法、材料與儀器 18 2-1 功能性螢光單體之合成與探討 18 2-1-1 中間產物2-(α-hydroxyethyl)fluorene之合成 18 2-1-2 2-Vinylfluorene之合成 18 2-2 螢光單體之螢光強度測試 19 2-3 螢光模版高分子之製備 19 2-4 螢光模版高分子粉末特性測試 21 2-5 螢光模版高分子粉末之吸附實驗 21 2-5-1 螢光模版高分子粉末之高效能液相層析式 (HPLC) 分析 21 2-5-2 螢光模版高分子粉末之螢光檢測 22 2-5-3 螢光模版高分子粉末之選擇性吸附實驗 22 2-5-4 螢光模版高分子粉末之干擾性吸附實驗 24 第三章 結果與討論 28 3-1 功能性螢光單體之合成與探討 28 3-1-1 功能性螢光單體之FT-IR圖譜分析 29 3-1-2 功能性螢光單體之1H NMR圖譜分析 32 3-2 功能性螢光單體之螢光特性探討 35 3-2-1 功能性螢光單體之螢光3D圖譜 35 3-2-2 功能性螢光單體系列之螢光強度探討 37 3-2-3 功能性螢光單體之溶劑影響探討 38 3-3 螢光模版高分子特性探討 40 3-3-1 螢光模版高分子螢光特性之探討 40 3-3-2 螢光模版高分子於不同溶液中之螢光性探討 43 3-4 螢光模版高分子與螢光非模版高分子肌酸酐吸附比較 44 3-4-1 螢光模版高分子與螢光非模版高分子對肌酸酐吸附之比較 45 3-4-2 螢光模版高分子組成比例吸附測試 47 3-4-3 不等量之螢光模版高分子對肌酸酐之吸附測試 52 3-4-4 螢光模版高分子於不同濃度肌酸酐溶液之吸附檢測 55 3-4-5 螢光模版高分子之選擇性吸附檢測 59 3-4-6 螢光模版高分子之干擾性吸附檢測 62 第四章 結論 67 參考文獻 68

    1. S.Narayanan, H.D.Appleton, Creatinine: A review, Clin Chem, 26, 1119-1126, 1980
    2. R.Y. Hsieh, H.A. Tsai, M.J. Syu, Designing a molecularly imprinted polymer as an artificial receptor for the specific recognition of creatinine in serums, Biomaterials, 27, 2083-2089, 2006
    3. 吳明儒,評估腎臟功能的方法,腎臟與透析: 民國96年19卷2期
    4. 腎功能相關的檢驗項目,義大醫療財團法人義大醫院
    5. N. Kuster, A.S. Bargnoux, G.P. Pageaux, J.P. Cristol, Limitations of compensated Jaffé creatinine assays in cirrhotic patients, Clin Biochem45, 320-325, 2012
    6. K. Allegaert, M. Kuppens, D. Mekahli, E. Levtchenko, F. Vanstapel, C.Vanhole, J.N. van den Anker, Creatinine reference values in ELBW infants: impact of quantification by Jaffé or enzymatic method, J Matern-Fetal Neo Med, 25(9), 1678-1681, 2012
    7. M.J. Syu, T.J. Hsu, Z.K. Lin, Synthesis of recognition matrix from 4-methylamino- N-allylnaphthalimide with fluorescent effect for the imprinting of creatinine, Anal Chem, 82, 8821-8829, 2010
    8. B. Okutucu, S. Onal, Molecularly imprinted polymers for separation of various sugars from human urine, Talanta, 87, 74-79, 2011
    9. M.M. Zheng, R. Gong, X. Zhao, Y.Q. Feng, Selective sample pretreatment by molecularly imprinted polymer monolith for the analysis of fluoroquinolones from milk samples, J Chromat A, 1217, 2075-2081, 2010
    10. C. Lopez, B. Claude, P. Morin, J.P. Max, R. Pena, J.P. Ribet, Synthesis and study of a molecularly imprinted polymer for the specific extraction of indole alkaloids from Catharanthus roseus extracts, Anal Chim Acta, 683, 198-205, 2011
    11. G. Guan, R. Liu, Q. Mei, Z. Zhang, Molecularly imprinted shells from polymer and xerogel matrices on polystyrene colloidal spheres, Chem Eur J, 18, 4692-4698, 2012
    12. H. Lalo, C. Ayela, E. Dague, C. Vieu, K. Haupt, Nanopatterning molecularly imprinted polymers by soft lithography: a hierarchical approach, Lab Chip, 10, 1316-1318, 2010
    13. S. Guillon, R. Lemaire, A.V. Linares, K. Haupt, C. Ayela, Single step patterning of molecularly imprinted polymers for large scale fabrication of microbiochips, Lab Chip, 9, 2987-2991, 2009
    14. H. Yan, K.H. Row, Characteristic and synthetic approach of molecularly imprinted polymer, Int J Mol Sci,7, 155-178, 2006
    15. Y.W. Tang, G.Z. Fang, S. Wan, J.L. Li, Covalent imprinted polymer for selective and rapid enrichment of ractopamine by a noncovalent approach, Anal Bioanal Chem, 401, 2275-2282, 2011
    16. F. Meier, B. Schott, D. Riedel, B. Mizaikoff, Computational and experimental study on the influence of the porogen on the selectivity of 4-nitrophenol molecularly imprinted polymers, Anal Chim Acta, 744, 68-74, 2012
    17. Y. Yoshimi, R. Arai, S. Nakayama, Influence of the solvent on nature of gate effect in molecularly imprinted membrane, Anal Chim Acta, 682, 110-116, 2010
    18. C. Quesada-Molina, B. Claude, A.M. García-Campaňa, M. del Olmo-Iruela, P. Morin, Convenient solid phase extraction of cephalosporins in milk using a molecularly imprinted polymer, Food Chem, 135, 775-779, 2012
    19. Y. Tominaga, T. Kubo, A. Kobayashi, K. Yasuda, K. Kato, K. Hosoya, Synthesis of novel polymer type sulfoxide solid phase combined with the porogen imprinting for enabling selective separation of polychlorinated biphenyls, Chemosphere, 89, 378-382, 2012
    20. J. Wang, P.A.G. Cormack, D.C. Sherrington, E. Khoshdel, Monodisperse, molecularly imprinted polymer microspheres prepared by precipitation polymerization for affinity separation applications, Chem Int Ed, 42, 5336-5338, 2003
    21. R.C. Stringer, S. Gangopadhyay, S.A. Grant, Comparison of molecular imprinted particles prepared using precipitation polymerization in water and chloroform for fluorescent detection of nitroaromatics, Anal Chim Acta, 701, 239-244, 2011
    22. M.T. Gokmen, F.E.D. Prez, Porous polymer particles‒ a comprehensive guide to synthesis, characterization, functionalization and applications, Progs Polym Sci, 37, 365-405, 2012
    23. G. Dvorakova, R. Haschick, M. Klapper, K. Műllen, A. Biffis, Nonaqueous emulsion polymerization: a practical synthetic route for the production of molecularly imprinted nanospheres, Polymer Chemistry, 51, 267-274, 2013
    24. Y. Watabe, T. Kubo, T. Nishikawa, T. Fujita, K. Kaya, K. Hosoya, Fully automated liquid chromatography–mass spectrometry determination of 17β-estradiol in river water, J Chromatogry A, 1120, 252-259, 2006
    25. J. Ugelstad, K.H. Kaggerud, F.K. Hansen, A. Berge, Absorption of low molecular weight compounds in aqueous dispersions of polymer-oligomer particles, 2a) A two step swelling process of polymer particles giving an enormous increase in absorption capacity, Makromol Chem, 180, 737-744, 1979
    26. 黃悉雅,毛細管電層析之研究與牛奶中色素之分析,中原大學化學系碩士學位論文,2002
    27. I. Bakas, N.B. Oujji, E. Moczko, G. Istamboulie, S. Piletsky, E. Piletska, I. Ait-Ichou, E. Ait-Addi, T. Noguer, R. Rouillon, Molecular imprinting solid phase extraction for selective detection of methidathion in olive oil, Anal Chim Acta, 734, 99-105, 2012
    28. F. Barahona, E. Turiel, A. Martin-Esteban, Molecularly imprinted polymer grafted to porous polyethylene frits: A new selective solid-phase extraction format, J Chromatogr A, 1218, 7065-7070, 2011
    29. A. Martín-Esteban, Molecularly imprinted polymers: new molecular recognition materials for selective solid-phase extraction of organic compounds, Fresenius J Anal Chem, 370, 795-802, 2001
    30. G. Zhu, J. Fan, Y. Gao, X. Gao, J. Wang, Synthesis of surface molecularly imprinted polymer and the selective solid phase extraction of imidazole from its structural analogs, Talanta, 84, 1124-1132, 2011
    31. D. Kriz, K. Mosbach, Competitive amperometric morphine sensor based on an agarose immobilised molecularly imprinted polymer, Anal Chim Acta, 300, 71-75, 1995
    32. T.A. Sergeyeva, S.A. Piletsky, A.A. Brovko, E.A. Slinchenko, L.M. Sergeev, A.V. El'skaya, Selective recognition of atrazine by molecularly imprinted polymer membranes. Development of conductometric sensor for herbicides detection, Anal Chim Acta, 392, 105-111, 1999
    33. M. Lahav, E. Katz, I. Willner, Photochemical imprint of molecular recognition sites in two-dimensional monolayers assembled on Au electrodes: effects of the monolayer structures on the binding affinities and association kinetics to the imprinted interfaces, Langmuir, 17, 7387-7395, 2001
    34. S. Korkut, B. Keskinler, E. Erhan, An amperometric biosensor based on multiwalled carbon nanotube-poly(pyrrole)-horseradish peroxidase nanobiocomposite film for determination of phenol derivatives, Talanta, 76, 1147-1152, 2008
    35. H.Y. Lee, B.S. Kim, Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube, Biosens Bioelectron, 52, 587-591, 2009
    36. M.C. Blanco-López, M.J. Lobo-Castaňón, A.J. Miranda-Ordieres, P. Tuňón-Blanco, Electrochemical sensors based on molecularly imprinted polymers, Anal Chem, 23, 36-48, 2004
    37. D. Croux, A. Weustenraed, P. Pobedinskas, F. Horemans, H. Diliën, K. Haenen, T. Cleij, P. Wagner, R. Thoelen, W.D. Ceuninck, Development of multichannel quartz crystal microbalances for MIP-based biosensing, Phys Status Solidi A, 209(5), 892-899, 2012
    38. D.A. Skoog, F.J. Holler, T.A. Nieman, Principle of instrumental analysis,Fifth edition, Saunders College, 355-376, 1998
    39. H. Kubo, N. Yoshioka, T. Takeuchi, Fluorescent imprinted polymers prepared with 2-acrylamidoquinoline as a signaling monomer, Org Lett, 7(3), 359-362, 2005
    40. H. Sunayama, T. Ooya, T. Takeuchi, Fluorescent protein recognition polymer thin films capable of selective signal transduction of target binding events prepared by molecular imprinting with a post-imprinting treatment, Biosens Bioelectron, 26, 458-462, 2010
    41. H.B. Li, Y.L. Li, J. Cheng, Molecularly imprinted silica nanospheres embedded CdSe quantum dots for highly selective and sensitive optosensing of pyrethroids, Chem Mater, 22, 2451-2457, 2010
    42. J. Inoue, T. Ooya, T. Takeuchi, Protein imprinted TiO2-coated quantum dots for fluorescent protein sensing prepared by liquid phase deposition, Soft Matter, 7, 9681-9684, 2011
    43. G. Wulff, W. Vesper, R. Grobe-Einsler, A. Sarhan, Enzyme-analogue built polymers. 4. On the synthesis of polymers containing chiral cavities and their use for the resolution, Makromol Chem, 178, 2799-2816, 1977
    44. George Vlatakis, Lars I. Andersson, Ralf Muller, Klaus Mosbach, Drug assay using antibody mimics made by molecular imprinting, Nature, 361, 645-647, 1993
    45. A. Tong, H. Dong, L. Li, Molecular imprinting-based fluorescent chemosensor for histamine eusing zinc(II)–protoporphyrin as a functional monomer, Anal Chim Acta, 466, 31-37, 2002
    46. A.L. Graham, C.A. Carlson, P.L. Edmiston, Development and characterization of molecularly imprinted sol-gel materials for the selective detection of DDT, Anal Chem, 74, 458-467, 2002
    47. A. Ersöza, S.E. Diltemiza, A.A. Özcana, A. Denizlib, R. Saya, Synergie between molecular imprinted polymer based on solid-phase extraction and quartz crystal microbalance technique for 8-OHdG sensing, Biosens Bioelectron, 24, 742-747, 2008

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE