| 研究生: |
吳則聰 Wu, Ze-Cong |
|---|---|
| 論文名稱: |
四氧化三鐵-硫化銅蛋黃-蛋殼奈米結構的製備與光熱治療及磁共振造影之應用 Fabrication of Fe3O4@CuS Yolk-Shell Nanostructures in Photothermal Therapy and MR Imaging |
| 指導教授: |
葉晨聖
Yeh, Chen-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 四氧化三鐵 、硫化銅 、蛋黃-蛋殼奈米結構 、光熱治療 、磁共振造影 |
| 外文關鍵詞: | Fe3O4, copper sulfide, yolk-shell nanostructures, photothermal therapy, MR imaging |
| 相關次數: | 點閱:83 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於硫化銅奈米材料具有良好的生物相容性、很好的光熱穩定性且價格便宜等特性,近年來相關的研究漸漸受到重視,然而將硫化銅與磁性奈米材料結合之相關文獻報導,卻相對稀少。在本篇研究中,將具有磁性之性質的四氧化三鐵磁性奈米粒子作為核心,在其表面先包覆上氧化亞銅殼層,形成四氧化三鐵-氧化亞銅核-殼奈米結構作為犧牲模板,再經由非典型的克肯達效應 (modified-Kirkendall effect),將氧離子置換成硫離子,進而形成具有診斷與治療雙功能的四氧化三鐵-硫化銅蛋黃-蛋殼奈米結構,並在其表面修飾上聚乙二醇 (poly(ethylene glycol), PEG),以進一步增加生物相容性與分散性。由於該材料以四氧化三鐵磁性奈米粒子作為核心,因此具有鐵磁性之性質,且其可作為磁共振造影之T2負相顯影試劑。此外由於該材料之殼層為具有光熱轉換性質的硫化銅奈米結構,因此其在近紅外光的吸收波段同時涵蓋了650-950 nm的第一生物視窗 (first NIR window) 與1000-1350 nm的第二生物視窗 (second NIR window) 之範圍,並透過1064 nm與808 nm近紅外光雷射之比較,得知該材料照射1064 nm近紅外光雷射有較佳的光熱治療之功效,並結合磁導引之應用,得到更佳的光熱治療之效果。最後,由於四氧化三鐵-硫化銅蛋黃-蛋殼奈米材料具備有優異的磁性與光學之性質,因此預期該材料在癌症的治療上會有良好的治療與診斷之功效。
Recently, research and application in copper sulfide nanomaterial have attracted much attention base on its biocompatibility, photostability, favourable price and etc. However, nanoparticles combined the copper sulfide with magnetic iron oxide nanoparticles are little reported in previous literatures. Herein, the yolk-shell Fe3O4@CuS nanoparticles were fabricated from core-shell Fe3O4@Cu2O nanoparticles via ion exchange pathway, which can be developed as a theranostic platform in cancer treatment. Due to the component of Fe3O4 core which provides ferromagnetic property, it can be applied as T2-negative contrast agents of magnetic resonance imaging (MRI). On the other hand, shell of the CuS nanomaterials provides the photothermal conversion properties. Therefore, the Fe3O4@CuS nanostructures exhibit significant near-infrared (NIR) absorption which cover the range of the first NIR window (650-950 nm) and second NIR window (1000-1350 nm). To compare excitation by 1064 nm and 808 nm NIR laser, the nanomaterial exhibits better efficiency of photothermal therapy by irradiated with 1064 nm than 808 nm NIR laser. Besides, magnetic targeting can enhance the efficiency of photothermal therapy. In conclusion, Fe3O4@CuS yolk-shell nanostructure provides the excellent magnetic and optical properties, it will be expected that there will be a promising theranostic platform in cancer treatment.
1. Nolsoe, C. P.; Torp-Pedersen, S.; Burcharth, F.; Horn, T.; Pedersen, S.; Christensen, N. E.; Olldag, E. S.; Andersen, P. H.; Karstrup, S.; Lorentzen, T.; et al. Interstitial hyperthermia of colorectal liver metastases with a US-guided Nd-YAG laser with a diffuser tip: a pilot clinical study. Radiology 187, 2, 333-337, 1993.
2. Vogel, A.; Venugopalan, V. Mechanisms of pulsed laser ablation of biological tissues. Chemical Reviews 103, 2, 577-644, 2003.
3. Tsai, M. F.; Chang, S. H.; Cheng, F. Y.; Shanmugam, V.; Cheng, Y. S.; Su, C. H.; Yeh, C. S. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS nano 7, 6, 5330-5342, 2013.
4. Cheng, L.; Liu, J.; Gu, X.; Gong, H.; Shi, X.; Liu, T.; Wang, C.; Wang, X.; Liu, G.; Xing, H.; Bu, W.; Sun, B.; Liu, Z. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Advanced materials 26, 12, 1886-1893, 2014.
5. Chou, S. S.; Kaehr, B.; Kim, J.; Foley, B. M.; De, M.; Hopkins, P. E.; Huang, J.; Brinker, C. J.; Dravid, V. P. Chemically exfoliated MoS2 as near-infrared photothermal agents. Angewandte Chemie 52, 15, 4160-4164, 2013.
6. Li, W. P.; Liao, P. Y.; Su, C. H.; Yeh, C. S. Formation of oligonucleotide-gated silica shell-coated Fe3O4-Au core-shell nanotrisoctahedra for magnetically targeted and near-infrared light-responsive theranostic platform. Journal of the American Chemical Society 136, 28, 10062-10075, 2014.
7. Yang, K.; Hu, L.; Ma, X.; Ye, S.; Cheng, L.; Shi, X.; Li, C.; Li, Y.; Liu, Z. Multimodal imaging guided photothermal therapy using functionalized graphene nanosheets anchored with magnetic nanoparticles. Advanced materials 24, 14, 1868-1872, 2012.
8. Shi, X.; Gong, H.; Li, Y.; Wang, C.; Cheng, L.; Liu, Z. Graphene-based magnetic plasmonic nanocomposite for dual bioimaging and photothermal therapy. Biomaterials 34, 20, 4786-4793, 2013.
9. Tian, Q.; Hu, J.; Zhu, Y.; Zou, R.; Chen, Z.; Yang, S.; Li, R.; Su, Q.; Han, Y.; Liu, X. Sub-10 nm Fe3O4@Cu2-xS core-shell nanoparticles for dual-modal imaging and photothermal therapy. Journal of the American Chemical Society 135, 23, 8571-8577, 2013.
10. Li, Y.; Lu, W.; Huang, Q.; Huang, M.; Li, C.; Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 5, 8, 1161-1171, 2010.
11. Ramadan, S.; Guo, L.; Li, Y.; Yan, B.; Lu, W. Hollow copper sulfide nanoparticle-mediated transdermal drug delivery. Small 8, 20, 3143-3150, 2012.
12. Li, B.; Wang, Q.; Zou, R.; Liu, X.; Xu, K.; Li, W.; Hu, J. Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale 6, 6, 3274-3282, 2014.
13. Tian, Q.; Jiang, F.; Zou, R.; Liu, Q.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic Cu9S5 nanocrystals: a photothermal agent with a 25.7% heat conversion efficiency for photothermal ablation of cancer cells in vivo. ACS nano 5, 12, 9761-9771, 2011.
14. Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Advanced materials 23, 31, 3542-3547, 2011.
15. Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S.; Melancon, M. P.; Tian, M.; Liang, D.; Li, C. A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. Journal of the American Chemical Society 132, 43, 15351-15358, 2010.
16. Xiao, Q.; Zheng, X.; Bu, W.; Ge, W.; Zhang, S.; Chen, F.; Xing, H.; Ren, Q.; Fan, W.; Zhao, K.; Hua, Y.; Shi, J. A core/satellite multifunctional nanotheranostic for in vivo imaging and tumor eradication by radiation/photothermal synergistic therapy. Journal of the American Chemical Society 135, 35, 13041-13048, 2013.
17. Ding, X.; Liow, C. H.; Zhang, M.; Huang, R.; Li, C.; Shen, H.; Liu, M.; Zou, Y.; Gao, N.; Zhang, Z.; Li, Y.; Wang, Q.; Li, S.; Jiang, J. Surface plasmon resonance enhanced light absorption and photothermal therapy in the second near-infrared window. Journal of the American Chemical Society 136, 44, 15684-15693, 2014.
18. Dong, K.; Liu, Z.; Li, Z.; Ren, J.; Qu, X. Hydrophobic anticancer drug delivery by a 980 nm laser-driven photothermal vehicle for efficient synergistic therapy of cancer cells in vivo. Advanced materials 25, 32, 4452-4458, 2013.
19. Ku, G.; Zhou, M.; Song, S.; Huang, Q.; Hazle, J.; Li, C. Copper sulfide nanoparticles as a new class of photoacoustic contrast agent for deep tissue imaging at 1064 nm. ACS nano 6, 8, 7489-7496, 2012.
20. Guo, L.; Panderi, I.; Yan, D. D.; Szulak, K.; Li, Y.; Chen, Y. T.; Ma, H.; Niesen, D. B.; Seeram, N.; Ahmed, A.; Yan, B.; Pantazatos, D.; Lu, W. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. ACS nano 7, 10, 8780-8793, 2013.
21. Huang, C.-C.; Chuang, K.-Y.; Chou, C.-P.; Wu, M.-T.; Sheu, H.-S.; Shieh, D.-B.; Tsai, C.-Y.; Su, C.-H.; Lei, H.-Y.; Yeh, C.-S. Size-control synthesis of structure deficient truncated octahedral Fe3-δO4 nanoparticles: high magnetization magnetites as effective hepatic contrast agents. Journal of Materials Chemistry 21, 20, 7472-7479, 2011.
22. Zhou, L.; Kuai, L.; Li, W.; Geng, B. Ion-exchange route to Au-CuxOS yolk-shell nanostructures with porous shells and their ultrasensitive H2O2 detection. ACS applied materials & interfaces 4, 12, 6463-6467, 2012.
23. Zhang, L.; Wang, H. Cuprous oxide nanoshells with geometrically tunable optical properties. ACS nano 5, 4, 3257-3267, 2011.
24. Zhang, L.; Blom, D. A.; Wang, H. Au-Cu2O Core-Shell Nanoparticles: A Hybrid Metal-Semiconductor Heteronanostructure with Geometrically Tunable Optical Properties. Chemistry of Materials 23, 20, 4587-4598, 2011.
25. Pang, M.; Zeng, H. C. Highly ordered self-assemblies of submicrometer Cu2O spheres and their hollow chalcogenide derivatives. Langmuir 26, 8, 5963-5970, 2010.
26. Wu, H.; Zhu, H.; Zhuang, J.; Yang, S.; Liu, C.; Cao, Y. C. Water-soluble nanocrystals through dual-interaction ligands. Angewandte Chemie 47, 20, 3730-3734, 2008.
27. Zhang, D.-F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X.-D.; Zhang, Z. Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. Journal of Materials Chemistry 19, 29, 5220-5225, 2009.
28. Pang, M.; Hu, J.; Zeng, H. C. Synthesis, morphological control, and antibacterial properties of hollow/solid Ag2S/Ag heterodimers. Journal of the American Chemical Society 132, 31, 10771-10785, 2010.
29. Lee, N.; Hyeon, T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chemical Society Reviews 41, 7, 2575-2589, 2012.
30. Lee, N.; Choi, Y.; Lee, Y.; Park, M.; Moon, W. K.; Choi, S. H.; Hyeon, T. Water-dispersible ferrimagnetic iron oxide nanocubes with extremely high r2 relaxivity for highly sensitive in vivo MRI of tumors. Nano letters 12, 6, 3127-3131, 2012.
31. Cheong, S.; Ferguson, P.; Feindel, K. W.; Hermans, I. F.; Callaghan, P. T.; Meyer, C.; Slocombe, A.; Su, C. H.; Cheng, F. Y.; Yeh, C. S.; Ingham, B.; Toney, M. F.; Tilley, R. D. Simple synthesis and functionalization of iron nanoparticles for magnetic resonance imaging. Angewandte Chemie 50, 18, 4206-4209, 2011.
32. Lee, N.; Cho, H. R.; Oh, M. H.; Lee, S. H.; Kim, K.; Kim, B. H.; Shin, K.; Ahn, T. Y.; Choi, J. W.; Kim, Y. W.; Choi, S. H.; Hyeon, T. Multifunctional Fe3O4/TaOx core/shell nanoparticles for simultaneous magnetic resonance imaging and X-ray computed tomography. Journal of the American Chemical Society 134, 25, 10309-10312, 2012.
33. Wang, Y.; Huang, R.; Liang, G.; Zhang, Z.; Zhang, P.; Yu, S.; Kong, J. MRI-visualized, dual-targeting, combined tumor therapy using magnetic graphene-based mesoporous silica. Small 10, 1, 109-116, 2014.
34. Kuo, C.-H.; Chu, Y.-T.; Song, Y.-F.; Huang, M. H. Cu2O Nanocrystal-Templated Growth of Cu2S Nanocages with Encapsulated Au Nanoparticles and In-Situ Transmission X-ray Microscopy Study. Advanced Functional Materials 21, 4, 792-797, 2011.
35. Silvester, E. J.; Grieser, F.; Sexton, B. A.; Healy, T. W. Spectroscopic studies on copper sulfide sols. Langmuir 7, 12, 2917-2922, 1991.
36. Chang, Y. T.; Liao, P. Y.; Sheu, H. S.; Tseng, Y. J.; Cheng, F. Y.; Yeh, C. S. Near-infrared light-responsive intracellular drug and siRNA release using au nanoensembles with oligonucleotide-capped silica shell. Advanced materials 24, 25, 3309-3314, 2012.
37. Faraday, M. The Bakerian Lecture: Experimental Relations of Gold (and Other Metals) to Light. Philosophical Transactions of the Royal Society of London 147, 145-181, 1857.
38. Gimzewski, J. K.; Humbert, A. Scanning tunneling microscopy of surface microstructure on rough surfaces. IBM Journal of Research and Development 30, 5, 472-477,1986.
39. 伊邦躍,奈米時代,五南圖書出版社,台北,2002。
40. 王崇人,神奇的奈米科學,科學發展月刊,354,48-51,2002。
41. Wang, Z. L.; Petroski, J. M.; Green, T. C.; El-Sayed, M. A. Shape Transformation and Surface Melting of Cubic and Tetrahedral Platinum Nanocrystals. The Journal of Physical Chemistry B 102, 32, 6145-6151, 1998.
42. Lin, Y.-S.; Wu, S.-H.; Hung, Y.; Chou, Y.-H.; Chang, C.; Lin, M.-L.; Tsai, C.-P.; Mou, C.-Y. Multifunctional Composite Nanoparticles: Magnetic, Luminescent, and Mesoporous. Chemistry of Materials 18, 22, 5170-5172, 2006.
43. Memming, R. Photoreactions at Semiconductor Particles. Wiley-VCH Verlag GmbH, 264-299, 2007.
44. Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4, 6, 435-446, 2005.
45. Ling, D.; Hyeon, T. Chemical Design of Biocompatible Iron Oxide Nanoparticles for Medical Applications. Small 9, 9-10, 1450-1466, 2013.
46. Kim, D. K.; Zhang, Y.; Voit, W.; Rao, K. V.; Muhammed, M. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials 225, 1-2, 30-36, 2001.
47. Boucher, L. J. Advanced Inorganic Chemistry, Fifth Edition (Cotton, Albert F.; Wilkinson, Geoffrey). Journal of Chemical Education 66, 3, A104, 1989.
48. Massart, R. Preparation of aqueous magnetic liquids in alkaline and acidic media. Magnetics, IEEE Transactions on 17, 2, 1247-1248, 1981.
49. Fauconnier, N.; Bée, A.; Roger, J.; Pons, J. N. Synthesis of aqueous magnetic liquids by surface complexation of maghemite nanoparticles. Journal of Molecular Liquids 83, 1-3, 233-242, 1999.
50. Fauconnier, N.; Pons, J. N.; Roger, J.; Bee, A. Thiolation of Maghemite Nanoparticles by Dimercaptosuccinic Acid. Journal of Colloid and Interface Science 194, 2, 427-433, 1997.
51. Roger, J.; Pons, J. N.; Massart, R.; Halbreich, A.; Bacri, J. C. Some biomedical applications of ferrofluids. The European Physical Journal - Applied Physics 5, 03, 321-325, 1999.
52. Denizot, B.; amp; x; Tanguy, G.; Hindre, F.; Rump, E.; Jacques Le Jeune, J.; Jallet, P. Phosphorylcholine Coating of Iron Oxide Nanoparticles. Journal of Colloid and Interface Science 209, 1, 66-71, 1999.
53. Fauconnier, N.; Bee, A.; Roger, J.; Pons, J. N. Adsorption of gluconic and citric acids on maghemite particles in aqueous medium. Steinkopff, 212-216, 1996.
54. Bao, Y.; Pakhomov, A. B.; Krishnan, K. M. Brownian magnetic relaxation of water-based cobalt nanoparticle ferrofluids. Journal of Applied Physics 99, 8, 2006.
55. Sung Kim, K.; Park, J.-K. Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel. Lab on a Chip 5, 6, 657-664, 2005.
56. Kötitz, R.; Weitschies, W.; Trahms, L.; Brewer, W.; Semmler, W. Determination of the binding reaction between avidin and biotin by relaxation measurements of magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 194, 1-3, 62-68, 1999.
57. Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society 115, 19, 8706-8715, 1993.
58. Peng, X.; Manna, L.; Yang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Shape control of CdSe nanocrystals. Nature 404, 6773, 59-61, 2000.
59. Park, J.; An, K.; Hwang, Y.; Park, J.-G.; Noh, H.-J.; Kim, J.-Y.; Park, J.-H.; Hwang, N.-M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3, 12, 891-895, 2004.
60. Kwon, S. G.; Piao, Y.; Park, J.; Angappane, S.; Jo, Y.; Hwang, N.-M.; Park, J.-G.; Hyeon, T. Kinetics of Monodisperse Iron Oxide Nanocrystal Formation by “Heating-Up” Process. Journal of the American Chemical Society 129, 41, 12571-12584, 2007.
61. Bae, K. H.; Park, M.; Do, M. J.; Lee, N.; Ryu, J. H.; Kim, G. W.; Kim, C.; Park, T. G.; Hyeon, T. Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS nano 6, 6, 5266-5273, 2012.
62. Creixell, M.; Bohorquez, A. C.; Torres-Lugo, M.; Rinaldi, C. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS nano 5, 9, 7124-7129, 2011.
63. Lee, J. H.; Jang, J. T.; Choi, J. S.; Moon, S. H.; Noh, S. H.; Kim, J. W.; Kim, J. G.; Kim, I. S.; Park, K. I.; Cheon, J. Exchange-coupled magnetic nanoparticles for efficient heat induction. Nature nanotechnology 6, 7, 418-422, 2011.
64. Kundu, J.; Pradhan, D. Controlled synthesis and catalytic activity of copper sulfide nanostructured assemblies with different morphologies. ACS applied materials & interfaces 6, 3, 1823-1834, 2014.
65. Basu, M.; Sinha, A. K.; Pradhan, M.; Sarkar, S.; Negishi, Y.; Pal, T. Evolution of hierarchical hexagonal stacked plates of CuS from liquid-liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environmental science & technology 44, 16, 6313-6318, 2010.
66. Zhang, J.; Yu, J.; Zhang, Y.; Li, Q.; Gong, J. R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano letters 11, 11, 4774-4779, 2011.
67. Peng, M.; Ma, L.-L.; Zhang, Y.-G.; Tan, M.; Wang, J.-B.; Yu, Y. Controllable synthesis of self-assembled Cu2S nanostructures through a template-free polyol process for the degradation of organic pollutant under visible light. Materials Research Bulletin 44, 9, 1834-1841, 2009.
68. Wang, X.-y.; Fang, Z.; Lin, X. Copper sulfide nanotubes: facile, large-scale synthesis, and application in photodegradation. J Nanopart Res 11, 3, 731-736, 2009.
69. Rhee, J. H.; Lee, Y. H.; Bera, P.; Seok, S. I. Cu2S-deposited mesoporous NiO photocathode for a solar cell. Chemical Physics Letters 477, 4-6, 345-348, 2009.
70. Anuar, K.; Zainal, Z.; Hussein, M. Z.; Saravanan, N.; Haslina, I. Cathodic electrodeposition of Cu2S thin film for solar energy conversion. Solar Energy Materials and Solar Cells 73, 4, 351-365, 2002.
71. Lee, H.; Yoon, S. W.; Kim, E. J.; Park, J. In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano letters 7, 3, 778-784, 2007.
72. Chen, Y.; Davoisne, C.; Tarascon, J.-M.; Guery, C. Growth of single-crystal copper sulfide thin films viaelectrodeposition in ionic liquid media for lithium ion batteries. Journal of Materials Chemistry 22, 12, 5295-5299, 2012.
73. Liu, J.; Xue, D. Rapid and scalable route to CuS biosensors: a microwave-assisted Cu-complex transformation into CuS nanotubes for ultrasensitive nonenzymatic glucose sensor. Journal of Materials Chemistry 21, 1, 223-228, 2011.
74. Miessler, G. L.; Tarr, D. A. Inorganic Chemistry. Pearson Prentice Hall, 2011.
75. Adamson, A. W.; Fleischauer, P. D. Concepts of inorganic photochemistry. John Wiley & Sons Australia, Limited, 1975.
76. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. The journal of physical chemistry. B 110, 14, 7238-7248, 2006.
77. Pissuwan, D.; Nose, K.; Kurihara, R.; Kaneko, K.; Tahara, Y.; Kamiya, N.; Goto, M.; Katayama, Y.; Niidome, T. A solid-in-oil dispersion of gold nanorods can enhance transdermal protein delivery and skin vaccination. Small 7, 2, 215-220, 2011.
78. Liz-Marzan, L. M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22, 1, 32-41, 2006.
79. Zhao, Y.; Pan, H.; Lou, Y.; Qiu, X.; Zhu, J.; Burda, C. Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides. Journal of the American Chemical Society 131, 12, 4253-4261, 2009.
80. Wang, Y. F.; Liu, G. Y.; Sun, L. D.; Xiao, J. W.; Zhou, J. C.; Yan, C. H. Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS nano 7, 8, 7200-7206, 2013.
81. Smith, A. M.; Mancini, M. C.; Nie, S. Bioimaging: second window for in vivo imaging. Nature nanotechnology 4, 11, 710-711, 2009.
82. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society 128, 6, 2115-2120, 2006.
83. Lai, J.; Shah, B. P.; Garfunkel, E.; Lee, K. B. Versatile fluorescence resonance energy transfer-based mesoporous silica nanoparticles for real-time monitoring of drug release. ACS nano 7, 3, 2741-2750, 2013.
84. Chou, S. W.; Shau, Y. H.; Wu, P. C.; Yang, Y. S.; Shieh, D. B.; Chen, C. C. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. Journal of the American Chemical Society 132, 38, 13270-13278, 2010.
85. Alric, C.; Taleb, J.; Le Duc, G.; Mandon, C.; Billotey, C.; Le Meur-Herland, A.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; Roux, S.; Tillement, O. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. Journal of the American Chemical Society 130, 18, 5908-5915, 2008.
86. Li, J.; Jiang, F.; Yang, B.; Song, X. R.; Liu, Y.; Yang, H. H.; Cao, D. R.; Shi, W. R.; Chen, G. N. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Scientific reports 3, 1998, 2013.
87. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S. T.; Liu, Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano letters 10, 9, 3318-3323, 2010.
88. Wang, Y.; Wang, K.; Zhao, J.; Liu, X.; Bu, J.; Yan, X.; Huang, R. Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. Journal of the American Chemical Society 135, 12, 4799-4804, 2013.
89. Zheng, R. K.; Gu, H.; Xu, B.; Fung, K. K.; Zhang, X. X.; Ringer, S. P. Self-Assembly and Self-Orientation of Truncated Octahedral Magnetite Nanocrystals. Advanced materials 18, 18, 2418-2421, 2006.
90. Nai, J.; Tian, Y.; Guan, X.; Guo, L. Pearson's principle inspired generalized strategy for the fabrication of metal hydroxide and oxide nanocages. Journal of the American Chemical Society 135, 43, 16082-16091, 2013.
91. Wu, C.; Yu, S.-H.; Chen, S.; Liu, G.; Liu, B. Large scale synthesis of uniform CuS nanotubes in ethylene glycol by a sacrificial templating method under mild conditions. Journal of Materials Chemistry 16, 32, 3326-3331, 2006.
92. Xu, H.; Wang, W.; Zhu, W. Sonochemical synthesis of crystalline CuS nanoplates via an in situ template route. Materials Letters 60, 17-18, 2203-2206, 2006.
93. Zhu, H.; Ji, X.; Yang, D.; Ji, Y.; Zhang, H. Novel CuS hollow spheres fabricated by a novel hydrothermal method. Microporous and Mesoporous Materials 80, 1-3, 153-156, 2005.
94. Liu, Y.; Wang, W.; Yang, J.; Zhou, C.; Sun, J. pH-sensitive polymeric micelles triggered drug release for extracellular and intracellular drug targeting delivery. Asian Journal of Pharmaceutical Sciences 8, 3, 159-167, 2013.
95. Zhang, Y.; Kohler, N.; Zhang, M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23, 7, 1553-1561, 2002.
96. Aden, A. L.; Kerker, M. Scattering of Electromagnetic Waves from Two Concentric Spheres. Journal of Applied Physics 22, 10, 1242-1246, 1951.
97. Wang, H.; Halas, N. J. Mesoscopic Au “Meatball” Particles. Advanced materials 20, 4, 820-825, 2008.
98. Westcott, S.; Jackson, J.; Radloff, C.; Halas, N. Relative contributions to the plasmon line shape of metal nanoshells. Physical Review B 66, 15, 155431, 2002.
99. Guo, L.; Yan, D. D.; Yang, D.; Li, Y.; Wang, X.; Zalewski, O.; Yan, B.; Lu, W. Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS nano 8, 6, 5670-5681, 2014.